An Attention Enhanced Spatial–Temporal Graph Convolutional LSTM Network for Action Recognition in Karate

With the increasing popularity of artificial intelligence applications, artificial intelligence technology has begun to be applied in competitive sports. These applications have promoted the improvement of athletes’ competitive ability, as well as the fitness of the masses. Human action recognition...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 11; no. 18; p. 8641
Main Authors: Guo, Jianping, Liu, Hong, Li, Xi, Xu, Dahong, Zhang, Yihan
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.09.2021
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the increasing popularity of artificial intelligence applications, artificial intelligence technology has begun to be applied in competitive sports. These applications have promoted the improvement of athletes’ competitive ability, as well as the fitness of the masses. Human action recognition technology, based on deep learning, has gradually been applied to the analysis of the technical actions of competitive sports athletes, as well as the analysis of tactics. In this paper, a new graph convolution model is proposed. Delaunay’s partitioning algorithm was used to construct a new spatiotemporal topology which can effectively obtain the structural information and spatiotemporal features of athletes’ technical actions. At the same time, the attention mechanism was integrated into the model, and different weight coefficients were assigned to the joints, which significantly improved the accuracy of technical action recognition. First, a comparison between the current state-of-the-art methods was undertaken using the general datasets of Kinect and NTU-RGB + D. The performance of the new algorithm model was slightly improved in comparison to the general dataset. Then, the performance of our algorithm was compared with spatial temporal graph convolutional networks (ST-GCN) for the karate technique action dataset. We found that the accuracy of our algorithm was significantly improved.
AbstractList With the increasing popularity of artificial intelligence applications, artificial intelligence technology has begun to be applied in competitive sports. These applications have promoted the improvement of athletes’ competitive ability, as well as the fitness of the masses. Human action recognition technology, based on deep learning, has gradually been applied to the analysis of the technical actions of competitive sports athletes, as well as the analysis of tactics. In this paper, a new graph convolution model is proposed. Delaunay’s partitioning algorithm was used to construct a new spatiotemporal topology which can effectively obtain the structural information and spatiotemporal features of athletes’ technical actions. At the same time, the attention mechanism was integrated into the model, and different weight coefficients were assigned to the joints, which significantly improved the accuracy of technical action recognition. First, a comparison between the current state-of-the-art methods was undertaken using the general datasets of Kinect and NTU-RGB + D. The performance of the new algorithm model was slightly improved in comparison to the general dataset. Then, the performance of our algorithm was compared with spatial temporal graph convolutional networks (ST-GCN) for the karate technique action dataset. We found that the accuracy of our algorithm was significantly improved.
Author Zhang, Yihan
Liu, Hong
Xu, Dahong
Li, Xi
Guo, Jianping
Author_xml – sequence: 1
  givenname: Jianping
  surname: Guo
  fullname: Guo, Jianping
– sequence: 2
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
– sequence: 3
  givenname: Xi
  surname: Li
  fullname: Li, Xi
– sequence: 4
  givenname: Dahong
  surname: Xu
  fullname: Xu, Dahong
– sequence: 5
  givenname: Yihan
  surname: Zhang
  fullname: Zhang, Yihan
BookMark eNptUcFuEzEQtVCRKKUnfsASRxTwrNdr-xhFpVQEkGg4W7O2t3XY2ovXKeLGP_CHfAlOAlKFmMPM6Om9pzeap-QkpugJeQ7sFeeavcZpAgCluhYekdOGyW7BW5AnD_Yn5Hyet6yWBq6AnZLtMtJlKT6WkCK9iLcYrXf0esIScPz14-fG300p40gvM063dJXifRp3e3bF1teb9_SDL99S_kKHlOnSHnw-eZtuYjjsIdJ3mLH4Z-TxgOPsz__MM_L5zcVm9Xax_nh5tVquF5Z3bamdoxVOiEFr58APg4MOFIpeiq7hvWi4lH0vW933AN61oICLQQnesNbLhp-Rq6OvS7g1Uw53mL-bhMEcgJRvDOYS7OhNIzzjjrcdomidtgqkZFL1nQat-gaq14uj15TT152fi9mmXa6nz1UrOy51DVVZcGTZnOY5-8HYUHB_fckYRgPM7D9kHnyoal7-o_mb9H_s34bGkxc
CitedBy_id crossref_primary_10_1142_S0219519425400366
crossref_primary_10_1371_journal_pone_0293313
crossref_primary_10_1177_17543371241273827
crossref_primary_10_3390_s24061940
crossref_primary_10_1007_s42979_023_02476_8
crossref_primary_10_3390_app12010317
crossref_primary_10_1155_2022_2832661
crossref_primary_10_1007_s11276_023_03574_4
crossref_primary_10_1155_2022_1594741
crossref_primary_10_3390_s23052422
crossref_primary_10_3390_app12031028
crossref_primary_10_1038_s41598_022_19484_y
crossref_primary_10_1002_int_22855
crossref_primary_10_3390_app112110463
crossref_primary_10_3390_app112412019
crossref_primary_10_1080_10447318_2025_2532709
Cites_doi 10.1109/CVPR.2019.00371
10.24963/ijcai.2018/109
10.1109/CVPR.2019.01230
10.1109/CVPR.2017.143
10.1109/CVPR.2019.00132
10.1109/CVPR42600.2020.00026
10.1007/978-3-030-01246-5_7
10.1109/ICIP.2019.8802912
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11188641
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_25e03d346aa54d9c8177078b69198b21
10_3390_app11188641
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-c33ac5d55f99dd1effd1618a5b75623b52377bb749bb11ed418135f853204e723
IEDL.DBID PIMPY
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000699091400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:02:28 EDT 2025
Mon Jun 30 07:27:13 EDT 2025
Sat Nov 29 07:11:55 EST 2025
Tue Nov 18 22:43:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c33ac5d55f99dd1effd1618a5b75623b52377bb749bb11ed418135f853204e723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/2576379756?pq-origsite=%requestingapplication%
PQID 2576379756
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_25e03d346aa54d9c8177078b69198b21
proquest_journals_2576379756
crossref_citationtrail_10_3390_app11188641
crossref_primary_10_3390_app11188641
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhao (ref_5) 2017; 21
Ren (ref_7) 2018; 2
ref_14
Guo (ref_1) 2021; 44
ref_13
Yan (ref_11) 2018; 1
ref_12
Yue (ref_4) 2017; 40
ref_21
ref_20
Xie (ref_9) 2019; 2
Feng (ref_10) 2019; 38
ref_2
ref_19
ref_18
ref_17
ref_16
ref_15
ref_8
Zhou (ref_3) 2017; 21
Cao (ref_6) 2018; 03
References_xml – ident: ref_13
  doi: 10.1109/CVPR.2019.00371
– volume: 2
  start-page: 54
  year: 2019
  ident: ref_9
  article-title: Study on the mode and system of karate preparation for Olympic Games in Japan
  publication-title: J. Sports Res.
– ident: ref_8
– ident: ref_19
  doi: 10.24963/ijcai.2018/109
– volume: 1
  start-page: 7444
  year: 2018
  ident: ref_11
  article-title: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
  publication-title: Assoc. Adv. Artif. Intell.
– ident: ref_12
  doi: 10.1109/CVPR.2019.01230
– volume: 21
  start-page: 250
  year: 2017
  ident: ref_5
  article-title: The influence of karate sports on athletes’ anaerobic working ability
  publication-title: Yangtze River Ser.
– ident: ref_16
  doi: 10.1109/CVPR.2017.143
– volume: 38
  start-page: 72
  year: 2019
  ident: ref_10
  article-title: Research on the Competitive Pattern of Chinese Competitive Karate Project under the Background of Entering Olympic Games—Take the 2018 National Karate Championship Finals as an Example
  publication-title: Sichuan Sports Sci.
– ident: ref_2
  doi: 10.1109/CVPR.2019.00132
– ident: ref_15
– volume: 2
  start-page: 24
  year: 2018
  ident: ref_7
  article-title: Analysis on sports injury characteristics and causes of karate athletes in Henan province
  publication-title: Sport Style
– volume: 21
  start-page: 1
  year: 2017
  ident: ref_3
  article-title: Kumite and Kata: Evolution of the Competitive Way of Karate—Evolution of Physical Culture IV
  publication-title: Sports Sci. Res.
– volume: 40
  start-page: 83
  year: 2017
  ident: ref_4
  article-title: Colleges Students’ Perception of Karate Program
  publication-title: J. Beijing Sport Univ.
– volume: 03
  start-page: 248
  year: 2018
  ident: ref_6
  article-title: Study on the Analysis of the Competition Situation of the National Competitive Karate Championship in 2017
  publication-title: Youth Years
– ident: ref_17
– ident: ref_18
  doi: 10.1109/CVPR42600.2020.00026
– ident: ref_21
– ident: ref_20
  doi: 10.1007/978-3-030-01246-5_7
– volume: 44
  start-page: 81
  year: 2021
  ident: ref_1
  article-title: The Application of Behavior Recognition Technology Based on Graph Convolutional Network in Karate Tactics Analysis
  publication-title: J. Nat. Sci. Hunan Norm. Univ.
– ident: ref_14
  doi: 10.1109/ICIP.2019.8802912
SSID ssj0000913810
Score 2.32952
Snippet With the increasing popularity of artificial intelligence applications, artificial intelligence technology has begun to be applied in competitive sports. These...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8641
SubjectTerms Accuracy
action recognition
Algorithms
Artificial intelligence
attention mechanism
Big Data
College students
Delaunay
Efficiency
karate
Literature reviews
Martial arts
Olympic games
Research methodology
Skills
Sports injuries
Sports training
technical and tactical analysis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsQwEA4iHvQg7qq4ukoOHlQo2jZpkuO6-AOui-gq3krzU1xZqrh1z76Db-iTOJN2ZUXBi1BCCQMtk0lmhnzzDSG7NpJ4-aYCYfIkYAgglMqFgbWZ1SaCx5eP3fVEvy_v79XVTKsvxIRV9MCV4g4j7o5iG7MkyzizyshQIEGNThSky9qXkEcQ9cwkU_4MViFSV1UFeTHk9XgfDNtayoSF31yQZ-r_cRB773K6QpbrsJB2qt9pkDlXNMnSDFlgkzTqbTimezVX9P4qeewUtFOWFWaRnhQP_kKfYqNhMKyPt_dBRT01omfITE27T8WkNjaY690MLmm_AoJTiF5px1c50OspqgjehwW9QHpwt0ZuT08G3fOgbp8QmDhhJYxxZrjlPFfK2tDluUV2_IxrgUGPhhRUCK0FU1qHobMMnH3Mc4mtIpgTUbxO5ounwm0QKgw_sjKXxiYQcXGVZRHPTSidgwDRMd4iB1ONpqbmFscWF6MUcgxUfzqj_hbZ_RJ-rig1fhc7xqX5EkEebD8B1pHW1pH-ZR0t0p4ubFpvznGKOVYsFGhh8z--sUUWIwS6eOBZm8yXL69umyyYSTkcv-x4u_wEWVzmOQ
  priority: 102
  providerName: Directory of Open Access Journals
Title An Attention Enhanced Spatial–Temporal Graph Convolutional LSTM Network for Action Recognition in Karate
URI https://www.proquest.com/docview/2576379756
https://doaj.org/article/25e03d346aa54d9c8177078b69198b21
Volume 11
WOSCitedRecordID wos000699091400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2V3R7oAdoColBWPvTQIkVdJ3Zsn9C22lLUdrUqCyqnKP4ItKqyZTf0zH_gH_JL8DjepQjUE1IURY4VRZrx-Nl-8wZgx6YSD99UIkyVJwwJhFI5mlhbWm1Sf4X0sY-nYjSSFxdqHNOj55FWuYiJIVC3as_I2_ZBeN9ODe6Y7yNMzoQSPH9z8zXBGlJ41hoLajyALgpvyQ50x-_Oxp-Wey6ogSlpv03Ty_xqH0-J_WCXMmf0j4kp6Pf_FZ7DnHP0-P_-7To8itiTDFpn2YAVV2_C2h1Fwk3YiGN9TnajIPXeE7ga1GTQNC0xkgzrL4E1QLCasffen99_TFp9q2vyFuWvyeG0vo0e7dtO30_OyKhlmxMPkckgpFKQ8wV1yT9f1uQENcjdU_hwNJwcHiexRkNispw1_p6VhlvOK6Wspa6qLErwl1wLRFbar3OF0FowpTWlzjKPKDJeSaxHwZxIs2fQqae1ew5EGN63spLG5h7WcVWWKa8Mlc55FOoY34LXCwMVJgqYYx2N68IvZNCaxR1rbsHOsvNNq9vx724HaOllFxTbDg3T2ecijt0i5a6f2YzlZcmZVUZSgRpJOldUSZ36j2wvnKCIEWBe_Lb5i_tfv4SHKfJkAm9tGzrN7Jt7Bavmtrmcz3rQPRiOxue9sFfQiw79CzRXBWo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VWyTgALSAKBTwoUiAFLFO7Ng-oGopLV3tj1awoHIK8U-gqMqW3VDEre_Ae_BQPAmexFmKQNx6QIqiyLFycD7PjO1vvgHYsrHEwzcVCVOkEUMCoVSORtbmVpvYX3X62JuhGI_lwYGarMD3NhcGaZWtTawNtZ0Z3CN_goFxIpTg6fbxpwirRuHpaltCo4HFwH394pdsi6f95_7_Pojjvd3pzn4UqgpEJklZ5e9JbrjlvFDKWuqKwqJofM61wFhA-5WZEFoLprSm1FnmfWDCC4kVFJgTKHTgTf4q82CXHVid9EeTt8tdHVTZlLTbJAImieriObQ3J1KmjP7m-uoKAX84gNqr7V3938bjGlwJ8TPpNYBfgxVXrsPlM6qK67AW7NWCPAyi2o-uw8deSXpV1ZA7yW75oWY-EKzI7Gfgj9Nv00aj64i8QAlvsjMrT8Ks9G3DV9MRGTeMeeLDfNKr00HIy5Z-5Z8PSzJAHXV3A16fywjchE45K90tIMLwrpWFNDb1oSlXeR7zwlDpnI-kHeMb8LiFQGaCCDvWAjnK_GIM8ZKdwcsGbC07HzfaI3_v9gyxtOyCguF1w2z-Pgv2J4u56yY2YWmec2aVkVSgzpNOFVVSx_4jmy3MsmDFFtkvjN3-9-v7cHF_Ohpmw_54cAcuxcj7qXl4m9Cp5p_dXbhgTqrDxfxemDAE3p03Jn8CVG5S7A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VW4TgALSAKBTwoUiAFHWd2LF9QGhpu7Da7WoFC2pPIf4JFFXZshuKuPEOvA2Pw5PgSZylCMStB6QoihwrB-eb8dj-5huALRtLPHxTkTBFGjEkEErlaGRtbrWJ_VWnj70ZifFYHhyoyQp8b3NhkFbZ-sTaUduZwT3ybQyME6EET7eLQIuY7PafnnyMsIIUnrS25TQaiAzdl89--bZ4Mtj1__pBHPf3pjsvolBhIDJJyip_T3LDLeeFUtZSVxQWBeRzrgXGBdqv0oTQWjClNaXOMj8fJryQWE2BOYGiB979r_qQnLEOrE4G-5PD5Q4PKm5K2m2SApNEdfFM2rsWKVNGf5sG62oBf0wG9QzXv_o_j801uBLiatJrDGENVly5DpfPqC2uw1rwYwvyMIhtP7oOH3ol6VVVQ_oke-X7mhFBsFKzt8wfX79NG-2uY_Icpb3Jzqw8Ddbq20avpvtk3DDpiQ__Sa9OEyEvW1qWfz4qyRD11d0NeH0uI3ATOuWsdLeACMO7VhbS2NSHrFzlecwLQ6VzPsJ2jG_A4xYOmQni7Fgj5DjzizTETnYGOxuwtex80miS_L3bM8TVsgsKidcNs_m7LPilLOaum9iEpXnOmVVGUoH6TzpVVEkd-49stpDLgndbZL_wdvvfr-_DRQ_EbDQYD-_ApRjpQDU9bxM61fyTuwsXzGl1tJjfC7ZD4O15Q_InfNFbrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Attention+Enhanced+Spatial%E2%80%93Temporal+Graph+Convolutional+LSTM+Network+for+Action+Recognition+in+Karate&rft.jtitle=Applied+sciences&rft.au=Guo%2C+Jianping&rft.au=Liu%2C+Hong&rft.au=Li%2C+Xi&rft.au=Xu%2C+Dahong&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=18&rft.spage=8641&rft_id=info:doi/10.3390%2Fapp11188641&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon