An Attention Enhanced Spatial–Temporal Graph Convolutional LSTM Network for Action Recognition in Karate
With the increasing popularity of artificial intelligence applications, artificial intelligence technology has begun to be applied in competitive sports. These applications have promoted the improvement of athletes’ competitive ability, as well as the fitness of the masses. Human action recognition...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 11; číslo 18; s. 8641 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.09.2021
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the increasing popularity of artificial intelligence applications, artificial intelligence technology has begun to be applied in competitive sports. These applications have promoted the improvement of athletes’ competitive ability, as well as the fitness of the masses. Human action recognition technology, based on deep learning, has gradually been applied to the analysis of the technical actions of competitive sports athletes, as well as the analysis of tactics. In this paper, a new graph convolution model is proposed. Delaunay’s partitioning algorithm was used to construct a new spatiotemporal topology which can effectively obtain the structural information and spatiotemporal features of athletes’ technical actions. At the same time, the attention mechanism was integrated into the model, and different weight coefficients were assigned to the joints, which significantly improved the accuracy of technical action recognition. First, a comparison between the current state-of-the-art methods was undertaken using the general datasets of Kinect and NTU-RGB + D. The performance of the new algorithm model was slightly improved in comparison to the general dataset. Then, the performance of our algorithm was compared with spatial temporal graph convolutional networks (ST-GCN) for the karate technique action dataset. We found that the accuracy of our algorithm was significantly improved. |
|---|---|
| AbstractList | With the increasing popularity of artificial intelligence applications, artificial intelligence technology has begun to be applied in competitive sports. These applications have promoted the improvement of athletes’ competitive ability, as well as the fitness of the masses. Human action recognition technology, based on deep learning, has gradually been applied to the analysis of the technical actions of competitive sports athletes, as well as the analysis of tactics. In this paper, a new graph convolution model is proposed. Delaunay’s partitioning algorithm was used to construct a new spatiotemporal topology which can effectively obtain the structural information and spatiotemporal features of athletes’ technical actions. At the same time, the attention mechanism was integrated into the model, and different weight coefficients were assigned to the joints, which significantly improved the accuracy of technical action recognition. First, a comparison between the current state-of-the-art methods was undertaken using the general datasets of Kinect and NTU-RGB + D. The performance of the new algorithm model was slightly improved in comparison to the general dataset. Then, the performance of our algorithm was compared with spatial temporal graph convolutional networks (ST-GCN) for the karate technique action dataset. We found that the accuracy of our algorithm was significantly improved. |
| Author | Zhang, Yihan Liu, Hong Xu, Dahong Li, Xi Guo, Jianping |
| Author_xml | – sequence: 1 givenname: Jianping surname: Guo fullname: Guo, Jianping – sequence: 2 givenname: Hong surname: Liu fullname: Liu, Hong – sequence: 3 givenname: Xi surname: Li fullname: Li, Xi – sequence: 4 givenname: Dahong surname: Xu fullname: Xu, Dahong – sequence: 5 givenname: Yihan surname: Zhang fullname: Zhang, Yihan |
| BookMark | eNptUcFuEzEQtVCRKKUnfsASRxTwrNdr-xhFpVQEkGg4W7O2t3XY2ovXKeLGP_CHfAlOAlKFmMPM6Om9pzeap-QkpugJeQ7sFeeavcZpAgCluhYekdOGyW7BW5AnD_Yn5Hyet6yWBq6AnZLtMtJlKT6WkCK9iLcYrXf0esIScPz14-fG300p40gvM063dJXifRp3e3bF1teb9_SDL99S_kKHlOnSHnw-eZtuYjjsIdJ3mLH4Z-TxgOPsz__MM_L5zcVm9Xax_nh5tVquF5Z3bamdoxVOiEFr58APg4MOFIpeiq7hvWi4lH0vW933AN61oICLQQnesNbLhp-Rq6OvS7g1Uw53mL-bhMEcgJRvDOYS7OhNIzzjjrcdomidtgqkZFL1nQat-gaq14uj15TT152fi9mmXa6nz1UrOy51DVVZcGTZnOY5-8HYUHB_fckYRgPM7D9kHnyoal7-o_mb9H_s34bGkxc |
| CitedBy_id | crossref_primary_10_1142_S0219519425400366 crossref_primary_10_1371_journal_pone_0293313 crossref_primary_10_1177_17543371241273827 crossref_primary_10_3390_s24061940 crossref_primary_10_1007_s42979_023_02476_8 crossref_primary_10_3390_app12010317 crossref_primary_10_1155_2022_2832661 crossref_primary_10_1007_s11276_023_03574_4 crossref_primary_10_1155_2022_1594741 crossref_primary_10_3390_s23052422 crossref_primary_10_3390_app12031028 crossref_primary_10_1038_s41598_022_19484_y crossref_primary_10_1002_int_22855 crossref_primary_10_3390_app112110463 crossref_primary_10_3390_app112412019 crossref_primary_10_1080_10447318_2025_2532709 |
| Cites_doi | 10.1109/CVPR.2019.00371 10.24963/ijcai.2018/109 10.1109/CVPR.2019.01230 10.1109/CVPR.2017.143 10.1109/CVPR.2019.00132 10.1109/CVPR42600.2020.00026 10.1007/978-3-030-01246-5_7 10.1109/ICIP.2019.8802912 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app11188641 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_25e03d346aa54d9c8177078b69198b21 10_3390_app11188641 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c364t-c33ac5d55f99dd1effd1618a5b75623b52377bb749bb11ed418135f853204e723 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000699091400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:02:28 EDT 2025 Mon Jun 30 07:27:13 EDT 2025 Sat Nov 29 07:11:55 EST 2025 Tue Nov 18 22:43:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-c33ac5d55f99dd1effd1618a5b75623b52377bb749bb11ed418135f853204e723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/25e03d346aa54d9c8177078b69198b21 |
| PQID | 2576379756 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_25e03d346aa54d9c8177078b69198b21 proquest_journals_2576379756 crossref_citationtrail_10_3390_app11188641 crossref_primary_10_3390_app11188641 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhao (ref_5) 2017; 21 Ren (ref_7) 2018; 2 ref_14 Guo (ref_1) 2021; 44 ref_13 Yan (ref_11) 2018; 1 ref_12 Yue (ref_4) 2017; 40 ref_21 ref_20 Xie (ref_9) 2019; 2 Feng (ref_10) 2019; 38 ref_2 ref_19 ref_18 ref_17 ref_16 ref_15 ref_8 Zhou (ref_3) 2017; 21 Cao (ref_6) 2018; 03 |
| References_xml | – ident: ref_13 doi: 10.1109/CVPR.2019.00371 – volume: 2 start-page: 54 year: 2019 ident: ref_9 article-title: Study on the mode and system of karate preparation for Olympic Games in Japan publication-title: J. Sports Res. – ident: ref_8 – ident: ref_19 doi: 10.24963/ijcai.2018/109 – volume: 1 start-page: 7444 year: 2018 ident: ref_11 article-title: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition publication-title: Assoc. Adv. Artif. Intell. – ident: ref_12 doi: 10.1109/CVPR.2019.01230 – volume: 21 start-page: 250 year: 2017 ident: ref_5 article-title: The influence of karate sports on athletes’ anaerobic working ability publication-title: Yangtze River Ser. – ident: ref_16 doi: 10.1109/CVPR.2017.143 – volume: 38 start-page: 72 year: 2019 ident: ref_10 article-title: Research on the Competitive Pattern of Chinese Competitive Karate Project under the Background of Entering Olympic Games—Take the 2018 National Karate Championship Finals as an Example publication-title: Sichuan Sports Sci. – ident: ref_2 doi: 10.1109/CVPR.2019.00132 – ident: ref_15 – volume: 2 start-page: 24 year: 2018 ident: ref_7 article-title: Analysis on sports injury characteristics and causes of karate athletes in Henan province publication-title: Sport Style – volume: 21 start-page: 1 year: 2017 ident: ref_3 article-title: Kumite and Kata: Evolution of the Competitive Way of Karate—Evolution of Physical Culture IV publication-title: Sports Sci. Res. – volume: 40 start-page: 83 year: 2017 ident: ref_4 article-title: Colleges Students’ Perception of Karate Program publication-title: J. Beijing Sport Univ. – volume: 03 start-page: 248 year: 2018 ident: ref_6 article-title: Study on the Analysis of the Competition Situation of the National Competitive Karate Championship in 2017 publication-title: Youth Years – ident: ref_17 – ident: ref_18 doi: 10.1109/CVPR42600.2020.00026 – ident: ref_21 – ident: ref_20 doi: 10.1007/978-3-030-01246-5_7 – volume: 44 start-page: 81 year: 2021 ident: ref_1 article-title: The Application of Behavior Recognition Technology Based on Graph Convolutional Network in Karate Tactics Analysis publication-title: J. Nat. Sci. Hunan Norm. Univ. – ident: ref_14 doi: 10.1109/ICIP.2019.8802912 |
| SSID | ssj0000913810 |
| Score | 2.32952 |
| Snippet | With the increasing popularity of artificial intelligence applications, artificial intelligence technology has begun to be applied in competitive sports. These... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 8641 |
| SubjectTerms | Accuracy action recognition Algorithms Artificial intelligence attention mechanism Big Data College students Delaunay Efficiency karate Literature reviews Martial arts Olympic games Research methodology Skills Sports injuries Sports training technical and tactical analysis |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTxQxFH7RxYMeVBAigqQHDmoyYTttp-2JLATQKJuNrgmcJtNfiiGzuDty9n_gP-QvoW-mu2IknLxMJp3OZJL3-vpe-_X7ALbzELwxsVItmC0yrpzPjM9dlltqnI0lheu7VmxCDofq5ESP0vHoWYJVzmNiG6g7tmfEbccgvOMmFlfMdzBNZlJLUexe_MxQQwr3WpOgxkNYQuIt1YOl0Yfj0elizQU5MBXtd8f0WKz2cZc4DnalCk7_mpha_v5_wnM75xw--79_-xyeptyTDDpnWYYHvl6BJ7cYCVdgOY31GXmTCKnfvoAfg5oMmqYDRpKD-nuLGiCoZhy99_r31bjjtzonR0h_TfYn9WXy6Nj26cv4mAw7tDmJKTIZtEcpyOc5dCnen9XkI3KQ-1X4engw3n-fJY2GzLKCN_HKKiucEEFr56gPwSEFfyWMxMzKxDpXSmMk18ZQ6h2PGQUTQaEeBfcyZ2vQqye1fwkkBF0ZXzFLeUzigjBCcxsY8y4U8X23Du_mBiptIjBHHY3zMhYyaM3yljXXYXvR-aLj7bi72x5aetEFybbbhsn0W5nGbpkL32eO8aKqBHfaKiqRI8kUmmpl8viRzbkTlCkCzMo_Nn91_-MNeJwjTqbFrW1Cr5n-8q_hkb1szmbTreTCN2-qBEQ priority: 102 providerName: ProQuest |
| Title | An Attention Enhanced Spatial–Temporal Graph Convolutional LSTM Network for Action Recognition in Karate |
| URI | https://www.proquest.com/docview/2576379756 https://doaj.org/article/25e03d346aa54d9c8177078b69198b21 |
| Volume | 11 |
| WOSCitedRecordID | wos000699091400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPehBfOL6WHLYgwpF2yRtc1xlfaC7LLqCnkrzQkWquNWz_8F_6C9xknaXFQUvXkobprRMZpL5yMw3AK3IWiMlItWYqjhgqTaBNJEOIhVKrRBS6APtm00kvV56cyP6E62-XE5YRQ9cKW4_4uaAasriPOdMC5WGiSOokbFAuCx9CXmEUc8EmPJrsAgddVVVkEcR17vzYHTrNI1Z-G0L8kz9PxZiv7scL8JCHRaSdvU7SzBlimWYnyALXIal2g2HZKfmit5dgYd2QdplWeUskk5x5w_0iWs0jIb1-f4xqKinHsmJY6YmR0_FW21sOHZxNeiSXpUITjB6JW1f5UAuR1lFeH9fkHNHD25W4fq4Mzg6Der2CYGiMSvxSnPFNedWCK1DY6127Pg5l4kLeiRC0CSRMmFCyjA0muFmT7lNXasIZpKIrsF08VSYdSDWilyanKqQYXxlueSCKUup0TbG93UD9kYazVTNLe5aXDxmiDGc-rMJ9TegNRZ-rig1fhc7dFMzFnE82H4ArSOrrSP7yzoasDWa2Kx2zmHmMBZNBGph4z--sQlzkUt08YlnWzBdvryabZhVb-X98KUJM4edXv-y6e0Tn_pn3f7tFzqR6u4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qpkjQBdAColDAiyIBUsQ4tuN4gdBQWjqah0YwSO0qxK9SVGXKTChixz_wH3wUX4JvHkMRiF0XbKLIcbJwju_Dvj4HYDv23mkdMtWEmSTiqXWRdrGNYkO1NSGlsF1biU3I8Tg9OFCTFfjenoXBssrWJlaG2s4MrpE_xcCYSSVF8vz0Y4SqUbi72kpo1LAYuC-fQ8q2eNZ_Gf7vwzje253u7EeNqkBkWMLLcGW5EVYIr5S11HlvkTQ-F1piLKBDZial1pIrrSl1lgcfyIRPUUGBO4lEB8Hkr_IA9rQDq5P-aHK4XNVBls2UduuDgIypLu5DB3OSpgmnv7m-SiHgDwdQebW9a__beFyHq038THo14NdhxRUbsHaOVXED1ht7tSCPGlLtxzfgQ68gvbKsizvJbvG-qnwgqMgcZuCPr9-mNUfXCXmFFN5kZ1acNbMytA3fTEdkXFfMkxDmk151HIS8bsuvwv1xQQbIo-5uwtsLGYFb0ClmhbsNxHuVa5czQ3kIRL3QQnHjGXPWJ-F9uwlPWghkpiFhRy2QkywkY4iX7BxeNmF72fm05h75e7cXiKVlFyQMrxpm86OssT9ZLFyXWcaTPBfcKpNSiTxPOlFUpToOH9lqYZY1VmyR_cLYnX8_fgCX96ejYTbsjwd34UqMdT9VHd4WdMr5J3cPLpmz8ngxv99MGALvLhqTPwEMY1RV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VW4TgALSAKBTwoUiAFHUT20l8QGhpu7DadrWCRSqnEP9BUZUtu0sRN96Bt-FxeBJmEmcpAnHrgUsUOU4OzjfjGfvzNwBbifdOa8xUU27SSOTWRdolNkpMrK3BlMJ2bV1sIhuN8sNDNV6B7-1ZGKJVtj6xdtR2amiNfJsCY56pTKbbPtAixrv9pycfI6ogRTutbTmNBiJD9-Uzpm_zJ4Nd_NcPkqS_N9l5EYUKA5HhqVjglZdGWim9UtbGzntLAvKl1BnFBRqztCzTOhNK6zh2VuB8yKXPqZqCcBmJHqD7X8WQXIgOrI4HB-M3yxUeUtzM425zKJBz1aU9aXQteZ6K-LdpsK4W8MdkUM9w_av_89hcgyshrma9xhDWYMVV63D5jNriOqwFPzZnD4PY9qPr8KFXsd5i0ZA-2V71vmZEMKrUjJb54-u3SaPddcyek7Q325lWp8FasW3_1eSAjRomPcPwn_XqYyLsZUvLwvujig1JX93dgNfnMgI3oVNNK3cLmPeq1K7kJhYYoHqppRLGc-6sT_F9uwGPWzgUJoizU42Q4wKTNMJOcQY7G7C17HzSaJL8vdszwtWyCwmJ1w3T2bsi-KUika7LLRdpWUphlcnjjPSfdKpilesEP7LZQq4I3m1e_MLb7X8_vg8XEYjF_mA0vAOXEqID1fS8TegsZp_cXbhgThdH89m9YDsM3p43JH8CSC1dFg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Attention+Enhanced+Spatial%E2%80%93Temporal+Graph+Convolutional+LSTM+Network+for+Action+Recognition+in+Karate&rft.jtitle=Applied+sciences&rft.au=Jianping+Guo&rft.au=Hong+Liu&rft.au=Xi+Li&rft.au=Dahong+Xu&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=18&rft.spage=8641&rft_id=info:doi/10.3390%2Fapp11188641&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_25e03d346aa54d9c8177078b69198b21 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |