Convergence Theorems for Modified Inertial Viscosity Splitting Methods in Banach Spaces

In this article, we study a modified viscosity splitting method combined with inertial extrapolation for accretive operators in Banach spaces and then establish a strong convergence theorem for such iterations under some suitable assumptions on the sequences of parameters. As an application, we exte...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 7; no. 2; p. 156
Main Authors: Pan, Chanjuan, Wang, Yuanheng
Format: Journal Article
Language:English
Published: Basel MDPI AG 08.02.2019
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, we study a modified viscosity splitting method combined with inertial extrapolation for accretive operators in Banach spaces and then establish a strong convergence theorem for such iterations under some suitable assumptions on the sequences of parameters. As an application, we extend our main results to solve the convex minimization problem. Moreover, the numerical experiments are presented to support the feasibility and efficiency of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math7020156