Convergence Theorems for Modified Inertial Viscosity Splitting Methods in Banach Spaces

In this article, we study a modified viscosity splitting method combined with inertial extrapolation for accretive operators in Banach spaces and then establish a strong convergence theorem for such iterations under some suitable assumptions on the sequences of parameters. As an application, we exte...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 7; číslo 2; s. 156
Hlavní autoři: Pan, Chanjuan, Wang, Yuanheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 08.02.2019
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we study a modified viscosity splitting method combined with inertial extrapolation for accretive operators in Banach spaces and then establish a strong convergence theorem for such iterations under some suitable assumptions on the sequences of parameters. As an application, we extend our main results to solve the convex minimization problem. Moreover, the numerical experiments are presented to support the feasibility and efficiency of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math7020156