Positivity in Multifield Effective Field Theories
We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three o...
Uložené v:
| Vydané v: | Physical review letters Ročník 127; číslo 12; s. 121601 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
College Park
American Physical Society
17.09.2021
|
| Predmet: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three or more low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results that either improve the previous ones or are completely new. We also find that the SDP approach is numerically much more efficient. |
|---|---|
| AbstractList | We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three or more low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results that either improve the previous ones or are completely new. We also find that the SDP approach is numerically much more efficient. We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three or more low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results that either improve the previous ones or are completely new. We also find that the SDP approach is numerically much more efficient.We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three or more low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results that either improve the previous ones or are completely new. We also find that the SDP approach is numerically much more efficient. |
| ArticleNumber | 121601 |
| Author | Zhang, Cen Li, Xu Xu, Hao Yang, Chengjie Zhou, Shuang-Yong |
| Author_xml | – sequence: 1 givenname: Xu surname: Li fullname: Li, Xu – sequence: 2 givenname: Hao surname: Xu fullname: Xu, Hao – sequence: 3 givenname: Chengjie surname: Yang fullname: Yang, Chengjie – sequence: 4 givenname: Cen surname: Zhang fullname: Zhang, Cen – sequence: 5 givenname: Shuang-Yong orcidid: 0000-0002-8292-2943 surname: Zhou fullname: Zhou, Shuang-Yong |
| BookMark | eNqFkMFKAzEQhoNUsK2-ghS8eNk6ye4mu-BFSqtCxSL1HNLshKZsNzXJFvr2rq0H6cVDGMJ8_8zwDUivcQ0SckthTCmkD4v1IXzgfo4xjikT3aMc6AXpUxBlIijNeqQPkNKkBBBXZBDCBgAo40Wf0IULNtq9jYeRbUZvbR2tsVhXo6kxqLsOjmbH_3KNzlsM1-TSqDrgzW8dks_ZdDl5Sebvz6-Tp3miU57FRFX5ChkvNa_KlDNaZlCULFdCa1SKqcJgCpTzEpiqygx5tTJVbjBjjJusqNIhuT_N3Xn31WKIcmuDxrpWDbo2SJaLQggKOXTo3Rm6ca1vuuuOVCG6PbyjHk-U9i4Ej0ZqG1W0role2VpSkD8-5R-fsvMpTz67OD-L77zdKn_4L_gNmMx_KA |
| CitedBy_id | crossref_primary_10_1007_JHEP12_2023_076 crossref_primary_10_1007_JHEP09_2022_030 crossref_primary_10_1103_37kc_25s3 crossref_primary_10_1088_1475_7516_2025_08_086 crossref_primary_10_1088_1475_7516_2022_06_031 crossref_primary_10_1007_JHEP05_2024_221 crossref_primary_10_1007_JHEP08_2025_175 crossref_primary_10_1007_JHEP05_2024_102 crossref_primary_10_1007_JHEP11_2022_113 crossref_primary_10_1007_JHEP12_2022_096 crossref_primary_10_1007_JHEP03_2024_180 crossref_primary_10_1007_JHEP09_2024_039 crossref_primary_10_1007_JHEP10_2022_107 crossref_primary_10_1007_JHEP08_2022_184 crossref_primary_10_1007_JHEP12_2024_051 crossref_primary_10_1088_1475_7516_2023_11_076 crossref_primary_10_1007_JHEP09_2024_045 crossref_primary_10_1007_JHEP03_2024_058 crossref_primary_10_1007_JHEP05_2024_192 crossref_primary_10_1007_JHEP09_2023_041 crossref_primary_10_1007_JHEP02_2023_199 crossref_primary_10_1007_JHEP02_2025_168 crossref_primary_10_1007_JHEP11_2021_164 crossref_primary_10_1007_JHEP12_2021_115 crossref_primary_10_1103_wt4x_2149 crossref_primary_10_1007_JHEP01_2022_176 crossref_primary_10_1007_JHEP05_2023_230 crossref_primary_10_1007_JHEP03_2022_063 crossref_primary_10_1007_JHEP09_2025_052 crossref_primary_10_1088_1475_7516_2025_01_102 crossref_primary_10_1007_JHEP08_2025_066 crossref_primary_10_1007_JHEP08_2022_151 crossref_primary_10_1088_1475_7516_2023_01_007 crossref_primary_10_1007_JHEP02_2022_167 crossref_primary_10_1007_JHEP01_2023_113 crossref_primary_10_1007_JHEP12_2024_046 crossref_primary_10_1007_JHEP10_2023_135 crossref_primary_10_1007_JHEP01_2024_072 |
| Cites_doi | 10.1007/JHEP04(2016)002 10.1103/PhysRevD.101.063518 10.1007/JHEP02(2017)034 10.1007/JHEP11(2011)128 10.1103/PhysRevLett.123.251103 10.1007/JHEP10(2020)174 10.1103/PhysRevD.31.3027 10.1007/JHEP06(2021)088 10.4064/sm-9-1-133-138 10.1103/PhysRevD.94.104001 10.1103/PhysRevD.51.1093 10.1007/JHEP05(2021)259 10.1007/JHEP09(2014)100 10.1007/JHEP05(2021)280 10.1103/PhysRevLett.125.081601 10.1007/JHEP12(2019)032 10.1007/JHEP06(2019)137 10.1007/JHEP04(2021)115 10.1016/j.physletb.2020.135703 10.1007/JHEP11(2020)054 10.1007/JHEP04(2021)217 10.1007/JHEP06(2020)076 10.1103/PhysRevLett.120.161101 10.1007/BF01443605 10.1088/1126-6708/2007/11/054 10.1103/PhysRevLett.118.261802 10.1007/JHEP05(2010)095 10.1007/JHEP01(2021)095 10.1088/1475-7516/2019/11/042 10.1016/j.physletb.2020.135710 10.1103/PhysRevD.77.094019 10.1007/JHEP09(2017)072 10.1103/PhysRevLett.106.231101 10.1007/JHEP03(2019)182 10.1088/1126-6708/2006/10/014 10.1103/PhysRevD.93.064076 10.1088/1674-1137/abcd8c 10.1007/JHEP01(2020)131 10.1103/PhysRevLett.98.041601 10.1103/PhysRevD.98.045003 10.1088/1674-1137/44/6/063106 10.1007/JHEP04(2021)195 10.1007/s11433-020-1617-3 10.1007/BF01100204 10.1103/PhysRevLett.121.041801 10.1103/PhysRevD.100.095003 10.1007/JHEP03(2020)097 10.1103/PhysRevLett.125.201601 10.1007/JHEP03(2021)149 10.1007/JHEP02(2019)123 10.1016/j.physletb.2019.134985 10.1007/JHEP06(2021)076 10.1007/JHEP03(2018)011 10.1007/JHEP07(2020)214 10.1103/PhysRevD.104.036006 10.1103/PhysRevD.102.125023 10.1103/RevModPhys.91.015002 10.1103/PhysRevD.101.021502 10.1103/PhysRevD.96.081702 10.1007/JHEP05(2021)255 10.1103/PhysRevD.98.095021 10.1103/PhysRevLett.118.051601 10.1007/JHEP11(2017)020 10.1103/PhysRevD.100.025016 10.1007/JHEP07(2020)121 |
| ContentType | Journal Article |
| Copyright | Copyright American Physical Society Sep 17, 2021 |
| Copyright_xml | – notice: Copyright American Physical Society Sep 17, 2021 |
| DBID | AAYXX CITATION 7U5 8FD H8D L7M 7X8 |
| DOI | 10.1103/PhysRevLett.127.121601 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | 10_1103_PhysRevLett_127_121601 |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 7U5 8FD H8D L7M 7X8 |
| ID | FETCH-LOGICAL-c364t-ad5be269c6d936219408925a7cceaa2a8fe30166902ad94e6dbfd5fe4226f48d3 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 97 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704665100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Fri Jul 11 00:05:00 EDT 2025 Mon Jun 30 05:09:28 EDT 2025 Sat Nov 29 05:56:05 EST 2025 Tue Nov 18 22:02:16 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-ad5be269c6d936219408925a7cceaa2a8fe30166902ad94e6dbfd5fe4226f48d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8292-2943 |
| OpenAccessLink | http://link.aps.org/pdf/10.1103/PhysRevLett.127.121601 |
| PQID | 2578871666 |
| PQPubID | 2048222 |
| ParticipantIDs | proquest_miscellaneous_2578771050 proquest_journals_2578871666 crossref_citationtrail_10_1103_PhysRevLett_127_121601 crossref_primary_10_1103_PhysRevLett_127_121601 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-17 |
| PublicationDateYYYYMMDD | 2021-09-17 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | College Park |
| PublicationPlace_xml | – name: College Park |
| PublicationTitle | Physical review letters |
| PublicationYear | 2021 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevLett.127.121601Cc11R1 PhysRevLett.127.121601Cc34R1 PhysRevLett.127.121601Cc57R1 PhysRevLett.127.121601Cc32R1 PhysRevLett.127.121601Cc59R1 PhysRevLett.127.121601Cc15R1 PhysRevLett.127.121601Cc38R1 PhysRevLett.127.121601Cc13R1 PhysRevLett.127.121601Cc36R1 PhysRevLett.127.121601Cc55R1 PhysRevLett.127.121601Cc13R2 PhysRevLett.127.121601Cc17R1 PhysRevLett.127.121601Cc62R1 PhysRevLett.127.121601Cc41R1 PhysRevLett.127.121601Cc22R1 PhysRevLett.127.121601Cc45R1 PhysRevLett.127.121601Cc68R1 PhysRevLett.127.121601Cc20R1 PhysRevLett.127.121601Cc43R1 PhysRevLett.127.121601Cc26R1 PhysRevLett.127.121601Cc64R1 PhysRevLett.127.121601Cc24R1 PhysRevLett.127.121601Cc66R1 PhysRevLett.127.121601Cc7R1 PhysRevLett.127.121601Cc28R1 PhysRevLett.127.121601Cc5R1 PhysRevLett.127.121601Cc9R1 PhysRevLett.127.121601Cc3R1 PhysRevLett.127.121601Cc1R1 PhysRevLett.127.121601Cc71R1 PhysRevLett.127.121601Cc50R1 PhysRevLett.127.121601Cc52R1 PhysRevLett.127.121601Cc12R1 PhysRevLett.127.121601Cc33R1 PhysRevLett.127.121601Cc58R1 PhysRevLett.127.121601Cc10R1 PhysRevLett.127.121601Cc31R1 PhysRevLett.127.121601Cc16R1 PhysRevLett.127.121601Cc37R1 PhysRevLett.127.121601Cc54R1 PhysRevLett.127.121601Cc14R1 PhysRevLett.127.121601Cc35R1 PhysRevLett.127.121601Cc18R1 PhysRevLett.127.121601Cc39R1 PhysRevLett.127.121601Cc61R1 PhysRevLett.127.121601Cc63R1 PhysRevLett.127.121601Cc40R1 PhysRevLett.127.121601Cc23R1 PhysRevLett.127.121601Cc69R1 PhysRevLett.127.121601Cc21R1 PhysRevLett.127.121601Cc42R1 PhysRevLett.127.121601Cc27R1 PhysRevLett.127.121601Cc48R1 PhysRevLett.127.121601Cc65R1 PhysRevLett.127.121601Cc25R1 PhysRevLett.127.121601Cc46R1 PhysRevLett.127.121601Cc67R1 PhysRevLett.127.121601Cc6R1 PhysRevLett.127.121601Cc4R1 PhysRevLett.127.121601Cc29R1 PhysRevLett.127.121601Cc8R1 PhysRevLett.127.121601Cc2R1 PhysRevLett.127.121601Cc51R1 PhysRevLett.127.121601Cc30R1 PhysRevLett.127.121601Cc70R1 |
| References_xml | – ident: PhysRevLett.127.121601Cc30R1 doi: 10.1007/JHEP04(2016)002 – ident: PhysRevLett.127.121601Cc37R1 doi: 10.1103/PhysRevD.101.063518 – ident: PhysRevLett.127.121601Cc15R1 doi: 10.1007/JHEP02(2017)034 – ident: PhysRevLett.127.121601Cc13R2 doi: 10.1007/JHEP11(2011)128 – ident: PhysRevLett.127.121601Cc17R1 doi: 10.1103/PhysRevLett.123.251103 – ident: PhysRevLett.127.121601Cc61R1 doi: 10.1007/JHEP10(2020)174 – ident: PhysRevLett.127.121601Cc2R1 doi: 10.1103/PhysRevD.31.3027 – ident: PhysRevLett.127.121601Cc45R1 doi: 10.1007/JHEP06(2021)088 – ident: PhysRevLett.127.121601Cc52R1 doi: 10.4064/sm-9-1-133-138 – ident: PhysRevLett.127.121601Cc32R1 doi: 10.1103/PhysRevD.94.104001 – ident: PhysRevLett.127.121601Cc3R1 doi: 10.1103/PhysRevD.51.1093 – ident: PhysRevLett.127.121601Cc9R1 doi: 10.1007/JHEP05(2021)259 – ident: PhysRevLett.127.121601Cc51R1 doi: 10.1007/JHEP09(2014)100 – ident: PhysRevLett.127.121601Cc8R1 doi: 10.1007/JHEP05(2021)280 – ident: PhysRevLett.127.121601Cc43R1 doi: 10.1103/PhysRevLett.125.081601 – ident: PhysRevLett.127.121601Cc29R1 doi: 10.1007/JHEP12(2019)032 – ident: PhysRevLett.127.121601Cc21R1 doi: 10.1007/JHEP06(2019)137 – ident: PhysRevLett.127.121601Cc48R1 doi: 10.1007/JHEP04(2021)115 – ident: PhysRevLett.127.121601Cc65R1 doi: 10.1016/j.physletb.2020.135703 – ident: PhysRevLett.127.121601Cc42R1 doi: 10.1007/JHEP11(2020)054 – ident: PhysRevLett.127.121601Cc27R1 doi: 10.1007/JHEP04(2021)217 – ident: PhysRevLett.127.121601Cc64R1 doi: 10.1007/JHEP06(2020)076 – ident: PhysRevLett.127.121601Cc31R1 doi: 10.1103/PhysRevLett.120.161101 – ident: PhysRevLett.127.121601Cc59R1 doi: 10.1007/BF01443605 – ident: PhysRevLett.127.121601Cc11R1 doi: 10.1088/1126-6708/2007/11/054 – ident: PhysRevLett.127.121601Cc66R1 doi: 10.1103/PhysRevLett.118.261802 – ident: PhysRevLett.127.121601Cc13R1 doi: 10.1007/JHEP05(2010)095 – ident: PhysRevLett.127.121601Cc22R1 doi: 10.1007/JHEP01(2021)095 – ident: PhysRevLett.127.121601Cc50R1 doi: 10.1088/1475-7516/2019/11/042 – ident: PhysRevLett.127.121601Cc63R1 doi: 10.1016/j.physletb.2020.135710 – ident: PhysRevLett.127.121601Cc12R1 doi: 10.1103/PhysRevD.77.094019 – ident: PhysRevLett.127.121601Cc24R1 doi: 10.1007/JHEP09(2017)072 – ident: PhysRevLett.127.121601Cc58R1 doi: 10.1103/PhysRevLett.106.231101 – ident: PhysRevLett.127.121601Cc25R1 doi: 10.1007/JHEP03(2019)182 – ident: PhysRevLett.127.121601Cc1R1 doi: 10.1088/1126-6708/2006/10/014 – ident: PhysRevLett.127.121601Cc14R1 doi: 10.1103/PhysRevD.93.064076 – ident: PhysRevLett.127.121601Cc23R1 doi: 10.1088/1674-1137/abcd8c – ident: PhysRevLett.127.121601Cc57R1 doi: 10.1007/JHEP01(2020)131 – ident: PhysRevLett.127.121601Cc28R1 doi: 10.1103/PhysRevLett.98.041601 – ident: PhysRevLett.127.121601Cc34R1 doi: 10.1103/PhysRevD.98.045003 – ident: PhysRevLett.127.121601Cc68R1 doi: 10.1088/1674-1137/44/6/063106 – ident: PhysRevLett.127.121601Cc41R1 doi: 10.1007/JHEP04(2021)195 – ident: PhysRevLett.127.121601Cc69R1 doi: 10.1007/s11433-020-1617-3 – ident: PhysRevLett.127.121601Cc55R1 doi: 10.1007/BF01100204 – ident: PhysRevLett.127.121601Cc67R1 doi: 10.1103/PhysRevLett.121.041801 – ident: PhysRevLett.127.121601Cc20R1 doi: 10.1103/PhysRevD.100.095003 – ident: PhysRevLett.127.121601Cc38R1 doi: 10.1007/JHEP03(2020)097 – ident: PhysRevLett.127.121601Cc4R1 doi: 10.1103/PhysRevLett.125.201601 – ident: PhysRevLett.127.121601Cc46R1 doi: 10.1007/JHEP03(2021)149 – ident: PhysRevLett.127.121601Cc71R1 doi: 10.1007/JHEP02(2019)123 – ident: PhysRevLett.127.121601Cc62R1 doi: 10.1016/j.physletb.2019.134985 – ident: PhysRevLett.127.121601Cc70R1 doi: 10.1007/JHEP06(2021)076 – ident: PhysRevLett.127.121601Cc6R1 doi: 10.1007/JHEP03(2018)011 – ident: PhysRevLett.127.121601Cc26R1 doi: 10.1007/JHEP07(2020)214 – ident: PhysRevLett.127.121601Cc10R1 doi: 10.1103/PhysRevD.104.036006 – ident: PhysRevLett.127.121601Cc18R1 doi: 10.1103/PhysRevD.102.125023 – ident: PhysRevLett.127.121601Cc54R1 doi: 10.1103/RevModPhys.91.015002 – ident: PhysRevLett.127.121601Cc36R1 doi: 10.1103/PhysRevD.101.021502 – ident: PhysRevLett.127.121601Cc5R1 doi: 10.1103/PhysRevD.96.081702 – ident: PhysRevLett.127.121601Cc7R1 doi: 10.1007/JHEP05(2021)255 – ident: PhysRevLett.127.121601Cc35R1 doi: 10.1103/PhysRevD.98.095021 – ident: PhysRevLett.127.121601Cc16R1 doi: 10.1103/PhysRevLett.118.051601 – ident: PhysRevLett.127.121601Cc33R1 doi: 10.1007/JHEP11(2017)020 – ident: PhysRevLett.127.121601Cc40R1 doi: 10.1103/PhysRevD.100.025016 – ident: PhysRevLett.127.121601Cc39R1 doi: 10.1007/JHEP07(2020)121 |
| SSID | ssj0001268 |
| Score | 2.6257346 |
| Snippet | We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 121601 |
| SubjectTerms | Cosmology Elastic scattering Fermions Gravitons Parameter identification Particle physics Scalars Semidefinite programming |
| Title | Positivity in Multifield Effective Field Theories |
| URI | https://www.proquest.com/docview/2578871666 https://www.proquest.com/docview/2578771050 |
| Volume | 127 |
| WOSCitedRecordID | wos000704665100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7GUPDF3-J0SgVf49IkTZpHEYcPOoao9K2kaQoD6WTr9vebH91woMheCqVNW-6au3zk--4AbgmjhcCJQjItKWLEYCRtXkSVBT26IFoFVdrHsxiN0iyT4w7g33fwY0wHjgn5apZO3XIXE-HKIfAg2EqZa1lAX7J16I0JD6GXOt4BFq0k-O_HbGajzWDsM8zwYPtvO4T9djUZ3Qf3H0HH1Mew61mden4C8dhTslx7iGhSR15s6ylrUShabCNdNPTnXqJvQfMpvA8f3x6eUNsjAWnKWYNUmRSGcKl5KW0uiiXDqSSJElobpYhKK2OnMLcYmKhSMsPLoiqTyjgBbcWsf86gW09rcw6RkSWVFo2wQnqYVxChOFFVUug4NVj1IFnZKtdtAXHXx-Iz90AC0_yHOXJrjjyYoweD9bivUELj3xH9lSvydkrNcxdbHLrjvAc368t2MrgdDlWb6SLcI-yaKcEXW7_0EvaI46u49hCiD91mtjBXsKOXzWQ-u_b_mT2KLP0G4vvQPQ |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positivity+in+Multifield+Effective+Field+Theories&rft.jtitle=Physical+review+letters&rft.au=Li%2C+Xu&rft.au=Xu%2C+Hao&rft.au=Yang%2C+Chengjie&rft.au=Zhang%2C+Cen&rft.date=2021-09-17&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=127&rft.issue=12&rft_id=info:doi/10.1103%2FPhysRevLett.127.121601&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevLett_127_121601 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |