Positivity in Multifield Effective Field Theories

We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physical review letters Ročník 127; číslo 12; s. 121601
Hlavní autori: Li, Xu, Xu, Hao, Yang, Chengjie, Zhang, Cen, Zhou, Shuang-Yong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: College Park American Physical Society 17.09.2021
Predmet:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three or more low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results that either improve the previous ones or are completely new. We also find that the SDP approach is numerically much more efficient.
AbstractList We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three or more low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results that either improve the previous ones or are completely new. We also find that the SDP approach is numerically much more efficient.
We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three or more low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results that either improve the previous ones or are completely new. We also find that the SDP approach is numerically much more efficient.We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three or more low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results that either improve the previous ones or are completely new. We also find that the SDP approach is numerically much more efficient.
ArticleNumber 121601
Author Zhang, Cen
Li, Xu
Xu, Hao
Yang, Chengjie
Zhou, Shuang-Yong
Author_xml – sequence: 1
  givenname: Xu
  surname: Li
  fullname: Li, Xu
– sequence: 2
  givenname: Hao
  surname: Xu
  fullname: Xu, Hao
– sequence: 3
  givenname: Chengjie
  surname: Yang
  fullname: Yang, Chengjie
– sequence: 4
  givenname: Cen
  surname: Zhang
  fullname: Zhang, Cen
– sequence: 5
  givenname: Shuang-Yong
  orcidid: 0000-0002-8292-2943
  surname: Zhou
  fullname: Zhou, Shuang-Yong
BookMark eNqFkMFKAzEQhoNUsK2-ghS8eNk6ye4mu-BFSqtCxSL1HNLshKZsNzXJFvr2rq0H6cVDGMJ8_8zwDUivcQ0SckthTCmkD4v1IXzgfo4xjikT3aMc6AXpUxBlIijNeqQPkNKkBBBXZBDCBgAo40Wf0IULNtq9jYeRbUZvbR2tsVhXo6kxqLsOjmbH_3KNzlsM1-TSqDrgzW8dks_ZdDl5Sebvz6-Tp3miU57FRFX5ChkvNa_KlDNaZlCULFdCa1SKqcJgCpTzEpiqygx5tTJVbjBjjJusqNIhuT_N3Xn31WKIcmuDxrpWDbo2SJaLQggKOXTo3Rm6ca1vuuuOVCG6PbyjHk-U9i4Ej0ZqG1W0role2VpSkD8-5R-fsvMpTz67OD-L77zdKn_4L_gNmMx_KA
CitedBy_id crossref_primary_10_1007_JHEP12_2023_076
crossref_primary_10_1007_JHEP09_2022_030
crossref_primary_10_1103_37kc_25s3
crossref_primary_10_1088_1475_7516_2025_08_086
crossref_primary_10_1088_1475_7516_2022_06_031
crossref_primary_10_1007_JHEP05_2024_221
crossref_primary_10_1007_JHEP08_2025_175
crossref_primary_10_1007_JHEP05_2024_102
crossref_primary_10_1007_JHEP11_2022_113
crossref_primary_10_1007_JHEP12_2022_096
crossref_primary_10_1007_JHEP03_2024_180
crossref_primary_10_1007_JHEP09_2024_039
crossref_primary_10_1007_JHEP10_2022_107
crossref_primary_10_1007_JHEP08_2022_184
crossref_primary_10_1007_JHEP12_2024_051
crossref_primary_10_1088_1475_7516_2023_11_076
crossref_primary_10_1007_JHEP09_2024_045
crossref_primary_10_1007_JHEP03_2024_058
crossref_primary_10_1007_JHEP05_2024_192
crossref_primary_10_1007_JHEP09_2023_041
crossref_primary_10_1007_JHEP02_2023_199
crossref_primary_10_1007_JHEP02_2025_168
crossref_primary_10_1007_JHEP11_2021_164
crossref_primary_10_1007_JHEP12_2021_115
crossref_primary_10_1103_wt4x_2149
crossref_primary_10_1007_JHEP01_2022_176
crossref_primary_10_1007_JHEP05_2023_230
crossref_primary_10_1007_JHEP03_2022_063
crossref_primary_10_1007_JHEP09_2025_052
crossref_primary_10_1088_1475_7516_2025_01_102
crossref_primary_10_1007_JHEP08_2025_066
crossref_primary_10_1007_JHEP08_2022_151
crossref_primary_10_1088_1475_7516_2023_01_007
crossref_primary_10_1007_JHEP02_2022_167
crossref_primary_10_1007_JHEP01_2023_113
crossref_primary_10_1007_JHEP12_2024_046
crossref_primary_10_1007_JHEP10_2023_135
crossref_primary_10_1007_JHEP01_2024_072
Cites_doi 10.1007/JHEP04(2016)002
10.1103/PhysRevD.101.063518
10.1007/JHEP02(2017)034
10.1007/JHEP11(2011)128
10.1103/PhysRevLett.123.251103
10.1007/JHEP10(2020)174
10.1103/PhysRevD.31.3027
10.1007/JHEP06(2021)088
10.4064/sm-9-1-133-138
10.1103/PhysRevD.94.104001
10.1103/PhysRevD.51.1093
10.1007/JHEP05(2021)259
10.1007/JHEP09(2014)100
10.1007/JHEP05(2021)280
10.1103/PhysRevLett.125.081601
10.1007/JHEP12(2019)032
10.1007/JHEP06(2019)137
10.1007/JHEP04(2021)115
10.1016/j.physletb.2020.135703
10.1007/JHEP11(2020)054
10.1007/JHEP04(2021)217
10.1007/JHEP06(2020)076
10.1103/PhysRevLett.120.161101
10.1007/BF01443605
10.1088/1126-6708/2007/11/054
10.1103/PhysRevLett.118.261802
10.1007/JHEP05(2010)095
10.1007/JHEP01(2021)095
10.1088/1475-7516/2019/11/042
10.1016/j.physletb.2020.135710
10.1103/PhysRevD.77.094019
10.1007/JHEP09(2017)072
10.1103/PhysRevLett.106.231101
10.1007/JHEP03(2019)182
10.1088/1126-6708/2006/10/014
10.1103/PhysRevD.93.064076
10.1088/1674-1137/abcd8c
10.1007/JHEP01(2020)131
10.1103/PhysRevLett.98.041601
10.1103/PhysRevD.98.045003
10.1088/1674-1137/44/6/063106
10.1007/JHEP04(2021)195
10.1007/s11433-020-1617-3
10.1007/BF01100204
10.1103/PhysRevLett.121.041801
10.1103/PhysRevD.100.095003
10.1007/JHEP03(2020)097
10.1103/PhysRevLett.125.201601
10.1007/JHEP03(2021)149
10.1007/JHEP02(2019)123
10.1016/j.physletb.2019.134985
10.1007/JHEP06(2021)076
10.1007/JHEP03(2018)011
10.1007/JHEP07(2020)214
10.1103/PhysRevD.104.036006
10.1103/PhysRevD.102.125023
10.1103/RevModPhys.91.015002
10.1103/PhysRevD.101.021502
10.1103/PhysRevD.96.081702
10.1007/JHEP05(2021)255
10.1103/PhysRevD.98.095021
10.1103/PhysRevLett.118.051601
10.1007/JHEP11(2017)020
10.1103/PhysRevD.100.025016
10.1007/JHEP07(2020)121
ContentType Journal Article
Copyright Copyright American Physical Society Sep 17, 2021
Copyright_xml – notice: Copyright American Physical Society Sep 17, 2021
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
7X8
DOI 10.1103/PhysRevLett.127.121601
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 10_1103_PhysRevLett_127_121601
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
7U5
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c364t-ad5be269c6d936219408925a7cceaa2a8fe30166902ad94e6dbfd5fe4226f48d3
IEDL.DBID 3MX
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704665100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Fri Jul 11 00:05:00 EDT 2025
Mon Jun 30 05:09:28 EDT 2025
Sat Nov 29 05:56:05 EST 2025
Tue Nov 18 22:02:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-ad5be269c6d936219408925a7cceaa2a8fe30166902ad94e6dbfd5fe4226f48d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8292-2943
OpenAccessLink http://link.aps.org/pdf/10.1103/PhysRevLett.127.121601
PQID 2578871666
PQPubID 2048222
ParticipantIDs proquest_miscellaneous_2578771050
proquest_journals_2578871666
crossref_citationtrail_10_1103_PhysRevLett_127_121601
crossref_primary_10_1103_PhysRevLett_127_121601
PublicationCentury 2000
PublicationDate 2021-09-17
PublicationDateYYYYMMDD 2021-09-17
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-17
  day: 17
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review letters
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevLett.127.121601Cc11R1
PhysRevLett.127.121601Cc34R1
PhysRevLett.127.121601Cc57R1
PhysRevLett.127.121601Cc32R1
PhysRevLett.127.121601Cc59R1
PhysRevLett.127.121601Cc15R1
PhysRevLett.127.121601Cc38R1
PhysRevLett.127.121601Cc13R1
PhysRevLett.127.121601Cc36R1
PhysRevLett.127.121601Cc55R1
PhysRevLett.127.121601Cc13R2
PhysRevLett.127.121601Cc17R1
PhysRevLett.127.121601Cc62R1
PhysRevLett.127.121601Cc41R1
PhysRevLett.127.121601Cc22R1
PhysRevLett.127.121601Cc45R1
PhysRevLett.127.121601Cc68R1
PhysRevLett.127.121601Cc20R1
PhysRevLett.127.121601Cc43R1
PhysRevLett.127.121601Cc26R1
PhysRevLett.127.121601Cc64R1
PhysRevLett.127.121601Cc24R1
PhysRevLett.127.121601Cc66R1
PhysRevLett.127.121601Cc7R1
PhysRevLett.127.121601Cc28R1
PhysRevLett.127.121601Cc5R1
PhysRevLett.127.121601Cc9R1
PhysRevLett.127.121601Cc3R1
PhysRevLett.127.121601Cc1R1
PhysRevLett.127.121601Cc71R1
PhysRevLett.127.121601Cc50R1
PhysRevLett.127.121601Cc52R1
PhysRevLett.127.121601Cc12R1
PhysRevLett.127.121601Cc33R1
PhysRevLett.127.121601Cc58R1
PhysRevLett.127.121601Cc10R1
PhysRevLett.127.121601Cc31R1
PhysRevLett.127.121601Cc16R1
PhysRevLett.127.121601Cc37R1
PhysRevLett.127.121601Cc54R1
PhysRevLett.127.121601Cc14R1
PhysRevLett.127.121601Cc35R1
PhysRevLett.127.121601Cc18R1
PhysRevLett.127.121601Cc39R1
PhysRevLett.127.121601Cc61R1
PhysRevLett.127.121601Cc63R1
PhysRevLett.127.121601Cc40R1
PhysRevLett.127.121601Cc23R1
PhysRevLett.127.121601Cc69R1
PhysRevLett.127.121601Cc21R1
PhysRevLett.127.121601Cc42R1
PhysRevLett.127.121601Cc27R1
PhysRevLett.127.121601Cc48R1
PhysRevLett.127.121601Cc65R1
PhysRevLett.127.121601Cc25R1
PhysRevLett.127.121601Cc46R1
PhysRevLett.127.121601Cc67R1
PhysRevLett.127.121601Cc6R1
PhysRevLett.127.121601Cc4R1
PhysRevLett.127.121601Cc29R1
PhysRevLett.127.121601Cc8R1
PhysRevLett.127.121601Cc2R1
PhysRevLett.127.121601Cc51R1
PhysRevLett.127.121601Cc30R1
PhysRevLett.127.121601Cc70R1
References_xml – ident: PhysRevLett.127.121601Cc30R1
  doi: 10.1007/JHEP04(2016)002
– ident: PhysRevLett.127.121601Cc37R1
  doi: 10.1103/PhysRevD.101.063518
– ident: PhysRevLett.127.121601Cc15R1
  doi: 10.1007/JHEP02(2017)034
– ident: PhysRevLett.127.121601Cc13R2
  doi: 10.1007/JHEP11(2011)128
– ident: PhysRevLett.127.121601Cc17R1
  doi: 10.1103/PhysRevLett.123.251103
– ident: PhysRevLett.127.121601Cc61R1
  doi: 10.1007/JHEP10(2020)174
– ident: PhysRevLett.127.121601Cc2R1
  doi: 10.1103/PhysRevD.31.3027
– ident: PhysRevLett.127.121601Cc45R1
  doi: 10.1007/JHEP06(2021)088
– ident: PhysRevLett.127.121601Cc52R1
  doi: 10.4064/sm-9-1-133-138
– ident: PhysRevLett.127.121601Cc32R1
  doi: 10.1103/PhysRevD.94.104001
– ident: PhysRevLett.127.121601Cc3R1
  doi: 10.1103/PhysRevD.51.1093
– ident: PhysRevLett.127.121601Cc9R1
  doi: 10.1007/JHEP05(2021)259
– ident: PhysRevLett.127.121601Cc51R1
  doi: 10.1007/JHEP09(2014)100
– ident: PhysRevLett.127.121601Cc8R1
  doi: 10.1007/JHEP05(2021)280
– ident: PhysRevLett.127.121601Cc43R1
  doi: 10.1103/PhysRevLett.125.081601
– ident: PhysRevLett.127.121601Cc29R1
  doi: 10.1007/JHEP12(2019)032
– ident: PhysRevLett.127.121601Cc21R1
  doi: 10.1007/JHEP06(2019)137
– ident: PhysRevLett.127.121601Cc48R1
  doi: 10.1007/JHEP04(2021)115
– ident: PhysRevLett.127.121601Cc65R1
  doi: 10.1016/j.physletb.2020.135703
– ident: PhysRevLett.127.121601Cc42R1
  doi: 10.1007/JHEP11(2020)054
– ident: PhysRevLett.127.121601Cc27R1
  doi: 10.1007/JHEP04(2021)217
– ident: PhysRevLett.127.121601Cc64R1
  doi: 10.1007/JHEP06(2020)076
– ident: PhysRevLett.127.121601Cc31R1
  doi: 10.1103/PhysRevLett.120.161101
– ident: PhysRevLett.127.121601Cc59R1
  doi: 10.1007/BF01443605
– ident: PhysRevLett.127.121601Cc11R1
  doi: 10.1088/1126-6708/2007/11/054
– ident: PhysRevLett.127.121601Cc66R1
  doi: 10.1103/PhysRevLett.118.261802
– ident: PhysRevLett.127.121601Cc13R1
  doi: 10.1007/JHEP05(2010)095
– ident: PhysRevLett.127.121601Cc22R1
  doi: 10.1007/JHEP01(2021)095
– ident: PhysRevLett.127.121601Cc50R1
  doi: 10.1088/1475-7516/2019/11/042
– ident: PhysRevLett.127.121601Cc63R1
  doi: 10.1016/j.physletb.2020.135710
– ident: PhysRevLett.127.121601Cc12R1
  doi: 10.1103/PhysRevD.77.094019
– ident: PhysRevLett.127.121601Cc24R1
  doi: 10.1007/JHEP09(2017)072
– ident: PhysRevLett.127.121601Cc58R1
  doi: 10.1103/PhysRevLett.106.231101
– ident: PhysRevLett.127.121601Cc25R1
  doi: 10.1007/JHEP03(2019)182
– ident: PhysRevLett.127.121601Cc1R1
  doi: 10.1088/1126-6708/2006/10/014
– ident: PhysRevLett.127.121601Cc14R1
  doi: 10.1103/PhysRevD.93.064076
– ident: PhysRevLett.127.121601Cc23R1
  doi: 10.1088/1674-1137/abcd8c
– ident: PhysRevLett.127.121601Cc57R1
  doi: 10.1007/JHEP01(2020)131
– ident: PhysRevLett.127.121601Cc28R1
  doi: 10.1103/PhysRevLett.98.041601
– ident: PhysRevLett.127.121601Cc34R1
  doi: 10.1103/PhysRevD.98.045003
– ident: PhysRevLett.127.121601Cc68R1
  doi: 10.1088/1674-1137/44/6/063106
– ident: PhysRevLett.127.121601Cc41R1
  doi: 10.1007/JHEP04(2021)195
– ident: PhysRevLett.127.121601Cc69R1
  doi: 10.1007/s11433-020-1617-3
– ident: PhysRevLett.127.121601Cc55R1
  doi: 10.1007/BF01100204
– ident: PhysRevLett.127.121601Cc67R1
  doi: 10.1103/PhysRevLett.121.041801
– ident: PhysRevLett.127.121601Cc20R1
  doi: 10.1103/PhysRevD.100.095003
– ident: PhysRevLett.127.121601Cc38R1
  doi: 10.1007/JHEP03(2020)097
– ident: PhysRevLett.127.121601Cc4R1
  doi: 10.1103/PhysRevLett.125.201601
– ident: PhysRevLett.127.121601Cc46R1
  doi: 10.1007/JHEP03(2021)149
– ident: PhysRevLett.127.121601Cc71R1
  doi: 10.1007/JHEP02(2019)123
– ident: PhysRevLett.127.121601Cc62R1
  doi: 10.1016/j.physletb.2019.134985
– ident: PhysRevLett.127.121601Cc70R1
  doi: 10.1007/JHEP06(2021)076
– ident: PhysRevLett.127.121601Cc6R1
  doi: 10.1007/JHEP03(2018)011
– ident: PhysRevLett.127.121601Cc26R1
  doi: 10.1007/JHEP07(2020)214
– ident: PhysRevLett.127.121601Cc10R1
  doi: 10.1103/PhysRevD.104.036006
– ident: PhysRevLett.127.121601Cc18R1
  doi: 10.1103/PhysRevD.102.125023
– ident: PhysRevLett.127.121601Cc54R1
  doi: 10.1103/RevModPhys.91.015002
– ident: PhysRevLett.127.121601Cc36R1
  doi: 10.1103/PhysRevD.101.021502
– ident: PhysRevLett.127.121601Cc5R1
  doi: 10.1103/PhysRevD.96.081702
– ident: PhysRevLett.127.121601Cc7R1
  doi: 10.1007/JHEP05(2021)255
– ident: PhysRevLett.127.121601Cc35R1
  doi: 10.1103/PhysRevD.98.095021
– ident: PhysRevLett.127.121601Cc16R1
  doi: 10.1103/PhysRevLett.118.051601
– ident: PhysRevLett.127.121601Cc33R1
  doi: 10.1007/JHEP11(2017)020
– ident: PhysRevLett.127.121601Cc40R1
  doi: 10.1103/PhysRevD.100.025016
– ident: PhysRevLett.127.121601Cc39R1
  doi: 10.1007/JHEP07(2020)121
SSID ssj0001268
Score 2.6257346
Snippet We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 121601
SubjectTerms Cosmology
Elastic scattering
Fermions
Gravitons
Parameter identification
Particle physics
Scalars
Semidefinite programming
Title Positivity in Multifield Effective Field Theories
URI https://www.proquest.com/docview/2578871666
https://www.proquest.com/docview/2578771050
Volume 127
WOSCitedRecordID wos000704665100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7GUPDF3-J0SgVf49IkTZpHEYcPOoao9K2kaQoD6WTr9vebH91woMheCqVNW-6au3zk--4AbgmjhcCJQjItKWLEYCRtXkSVBT26IFoFVdrHsxiN0iyT4w7g33fwY0wHjgn5apZO3XIXE-HKIfAg2EqZa1lAX7J16I0JD6GXOt4BFq0k-O_HbGajzWDsM8zwYPtvO4T9djUZ3Qf3H0HH1Mew61mden4C8dhTslx7iGhSR15s6ylrUShabCNdNPTnXqJvQfMpvA8f3x6eUNsjAWnKWYNUmRSGcKl5KW0uiiXDqSSJElobpYhKK2OnMLcYmKhSMsPLoiqTyjgBbcWsf86gW09rcw6RkSWVFo2wQnqYVxChOFFVUug4NVj1IFnZKtdtAXHXx-Iz90AC0_yHOXJrjjyYoweD9bivUELj3xH9lSvydkrNcxdbHLrjvAc368t2MrgdDlWb6SLcI-yaKcEXW7_0EvaI46u49hCiD91mtjBXsKOXzWQ-u_b_mT2KLP0G4vvQPQ
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positivity+in+Multifield+Effective+Field+Theories&rft.jtitle=Physical+review+letters&rft.au=Li%2C+Xu&rft.au=Xu%2C+Hao&rft.au=Yang%2C+Chengjie&rft.au=Zhang%2C+Cen&rft.date=2021-09-17&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=127&rft.issue=12&rft_id=info:doi/10.1103%2FPhysRevLett.127.121601&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevLett_127_121601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon