An open-source power balance model for the estimation of tokamak net electrical power output

One of the largest hurdles for commercialisation of magnetic confinement fusion has historically been achieving net power — existing experiments require more electricity to keep the tokamak running than it could theoretically generate, and none have been equipped with thermal to electric conversion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design Jg. 191; S. 113563
Hauptverfasser: Petrov, Alexander, Stroud, Tom, Blackburn, Daniel, Owoeye, Taiwo, Wray, Steven, Zarebski, Kristian, Acres, Jack, Abdallah, Mohamad, Clements, Chris, Cannon, Marius, Christie, Finlay, Jackson, Timothy, Laksharam, Vignesh, Stewart, Samuel, Griffiths, Rhys, Brewer, Nicholas, Rochford, Katherine, Gribben, Sophie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2023
Schlagworte:
ISSN:0920-3796, 1873-7196
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract One of the largest hurdles for commercialisation of magnetic confinement fusion has historically been achieving net power — existing experiments require more electricity to keep the tokamak running than it could theoretically generate, and none have been equipped with thermal to electric conversion equipment. When designing a machine that intends to overcome this, there must be a cheap and robust way for the designer to estimate what the net power will be, preferably with the ability to perform parametric sweeps, without having to know the detailed design of each system. The work presented in this paper is an integrated time-dependent model, describing the power demands of the major tokamak components (magnets, cryogenics, heating and current drive, etc.), as well as the power generated, with a focus on the steady-state operation. The physics are implemented in OpenModelica and make use of a Python API (Application Programming Interface) to collect inputs, run studies and record outputs. The model cannot be validated against real world data, since there is no operational tokamak in the world designed for electrical power generation. Therefore, the correctness of each submodule (i.e., the magnet model, the cryogenics model) has been validated either from first principles or via validation against data from JET (Joint European Torus) where possible. The model has been used extensively as part of the work on the UK’s Spherical Tokamak for Energy Production (STEP) and has informed decisions on the STEP concept. It is publicly available on GitHub. •Multi-system power consumption and generation.•Python API with OpenModelica back-end.•Open-source code.
AbstractList One of the largest hurdles for commercialisation of magnetic confinement fusion has historically been achieving net power — existing experiments require more electricity to keep the tokamak running than it could theoretically generate, and none have been equipped with thermal to electric conversion equipment. When designing a machine that intends to overcome this, there must be a cheap and robust way for the designer to estimate what the net power will be, preferably with the ability to perform parametric sweeps, without having to know the detailed design of each system. The work presented in this paper is an integrated time-dependent model, describing the power demands of the major tokamak components (magnets, cryogenics, heating and current drive, etc.), as well as the power generated, with a focus on the steady-state operation. The physics are implemented in OpenModelica and make use of a Python API (Application Programming Interface) to collect inputs, run studies and record outputs. The model cannot be validated against real world data, since there is no operational tokamak in the world designed for electrical power generation. Therefore, the correctness of each submodule (i.e., the magnet model, the cryogenics model) has been validated either from first principles or via validation against data from JET (Joint European Torus) where possible. The model has been used extensively as part of the work on the UK’s Spherical Tokamak for Energy Production (STEP) and has informed decisions on the STEP concept. It is publicly available on GitHub. •Multi-system power consumption and generation.•Python API with OpenModelica back-end.•Open-source code.
ArticleNumber 113563
Author Acres, Jack
Brewer, Nicholas
Cannon, Marius
Laksharam, Vignesh
Christie, Finlay
Stewart, Samuel
Wray, Steven
Zarebski, Kristian
Blackburn, Daniel
Griffiths, Rhys
Gribben, Sophie
Stroud, Tom
Jackson, Timothy
Owoeye, Taiwo
Clements, Chris
Abdallah, Mohamad
Petrov, Alexander
Rochford, Katherine
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0003-4820-5227
  surname: Petrov
  fullname: Petrov, Alexander
  email: alexander.petrov@ukaea.uk
– sequence: 2
  givenname: Tom
  surname: Stroud
  fullname: Stroud, Tom
– sequence: 3
  givenname: Daniel
  surname: Blackburn
  fullname: Blackburn, Daniel
– sequence: 4
  givenname: Taiwo
  surname: Owoeye
  fullname: Owoeye, Taiwo
– sequence: 5
  givenname: Steven
  surname: Wray
  fullname: Wray, Steven
– sequence: 6
  givenname: Kristian
  surname: Zarebski
  fullname: Zarebski, Kristian
– sequence: 7
  givenname: Jack
  surname: Acres
  fullname: Acres, Jack
– sequence: 8
  givenname: Mohamad
  surname: Abdallah
  fullname: Abdallah, Mohamad
– sequence: 9
  givenname: Chris
  surname: Clements
  fullname: Clements, Chris
– sequence: 10
  givenname: Marius
  surname: Cannon
  fullname: Cannon, Marius
– sequence: 11
  givenname: Finlay
  surname: Christie
  fullname: Christie, Finlay
– sequence: 12
  givenname: Timothy
  surname: Jackson
  fullname: Jackson, Timothy
– sequence: 13
  givenname: Vignesh
  surname: Laksharam
  fullname: Laksharam, Vignesh
– sequence: 14
  givenname: Samuel
  surname: Stewart
  fullname: Stewart, Samuel
– sequence: 15
  givenname: Rhys
  surname: Griffiths
  fullname: Griffiths, Rhys
– sequence: 16
  givenname: Nicholas
  surname: Brewer
  fullname: Brewer, Nicholas
– sequence: 17
  givenname: Katherine
  surname: Rochford
  fullname: Rochford, Katherine
– sequence: 18
  givenname: Sophie
  surname: Gribben
  fullname: Gribben, Sophie
BookMark eNqNkM1KAzEURoNUsK0-g3mBqclkJplZuCjFPyi40Z0QMskdTTudDElG8e1NbXHhRuHC5S7Ox_3ODE161wNCl5QsKKH8arNoxwD9q4GwyEnOFpSykrMTNKWVYJmgNZ-gKalzkjFR8zM0C2FDCBVppuhl2WM3QJ8FN3oNeHAf4HGjOtWna-cMdLh1Hsc3wBCi3aloXUJaHN1W7dQW9xAxdKCjt1p1xwA3xmGM5-i0VV2Ai-Oeo-fbm6fVfbZ-vHtYLdeZZryImSrKkpEWqMi1rgphuGFcF3WbN6w0ujWNIBXkmpi8IooQVguoaAMNr5lShrE5Eodc7V0IHlo5-PSp_5SUyL0kuZE_kuRekjxISuT1L1Lb-F0xemW7f_DLAw-p3rsFL4O2kNQZ65MSaZz9M-MLr4ONDg
CitedBy_id crossref_primary_10_1016_j_fusengdes_2024_114238
Cites_doi 10.1109/TASC.2011.2174560
10.13182/FST11-A12674
10.1016/j.fusengdes.2008.07.021
10.1088/1741-4326/ab22c2
10.1016/j.jiec.2016.07.053
10.1109/TPS.2014.2305251
10.13182/FST02-A22745
10.1016/j.fusengdes.2020.111759
10.1016/S0920-3796(97)00024-0
10.1016/0022-3115(84)90301-5
10.4173/mic.2020.4.1
10.1088/0029-5515/41/2/309
10.1016/j.fusengdes.2010.09.013
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.fusengdes.2023.113563
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7196
ExternalDocumentID 10_1016_j_fusengdes_2023_113563
S0920379623001473
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
LZ3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SHN
SPC
SPCBC
SSR
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c364t-a45530fe172cc847d6d36c49f2b35dcfdb708e2c0d280a00397e81beb693aad33
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947302500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-3796
IngestDate Sat Nov 29 07:13:16 EST 2025
Tue Nov 18 20:56:35 EST 2025
Fri Feb 23 02:33:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tokamak
Power balance
Python modelling
Net power
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c364t-a45530fe172cc847d6d36c49f2b35dcfdb708e2c0d280a00397e81beb693aad33
ORCID 0000-0003-4820-5227
OpenAccessLink https://dx.doi.org/10.1016/j.fusengdes.2023.113563
ParticipantIDs crossref_primary_10_1016_j_fusengdes_2023_113563
crossref_citationtrail_10_1016_j_fusengdes_2023_113563
elsevier_sciencedirect_doi_10_1016_j_fusengdes_2023_113563
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Fusion engineering and design
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Oda, Ikeda, Kajiwara, Kobayashi, Hayashi, Takahashi, Moriyama, Sakamoto, Eguchi, Kawakami, Mitsunaka, Darbos, Henderson (b26) 2019; 59
EUROfusion (b1) 2022
Hemsworth, Boilson (b31) 2019
Tsuneoka, Fujita, Sakamoto, Kasugai, Imai, Nagashima, Asaka, Kamioka, Yasuda, Iiyama, Yoshida, Nara, Ishibashi (b27) 1997; 36
Ciazynski, Duchateau, Decool, Libeyre, Turck (b29) 2001
ITER Organization (b2) 2022
Boniface, Castillo, Everatt, Ryland (b21) 2011; 60
Borgognoni, Rizzello, Tosti (b17) 2008; 83
Hussein, Ateeq, Homod (b23) 2022
Winkler (b11) 2011
Sood, Fong, Kalyanam, Woodall (b15) 1997
Fritzson, Pop, Abdelhak, Adeel (b10) 2020; 41
Noh, Fulgueras, Sebastian, Lee, Kim, Cho (b22) 2017; 46
OpenModelica (b9) 2022
Kalaria, Kartikeyan, Thumm (b28) 2014; 42
Tokamak Energy (b3) 2022
Fossheim, Sudboe (b12) 2005
Kunyi, Weiduo (b4) 2021
Malozemoff, Yuan, Rey (b13) 2015
Mitchell, Devred, Libeyre, Lim, Savary (b7) 2012; 22
Fukada, Nishikawa, Sagara, Terai (b16) 2002; 41
Henderson, Alberti, Bird, Doane, Elzendoorn, Flemming, Goodman, Hoekzema, Hogge, Magnin, Pioscyk, Porte, Tran, Verhoeven (b30) 2003; 43
Santucci, Incelli, Noschese, Moreno, Fonzo, Utili, Tosti, Day (b19) 2020; 158
ITER Organization (b8) 2022
National Research Council of Science & Technology (b5) 2020
Technologies (b25) 2009
Lehner, Tichler, Steinmuller, Koppe (b20) 2014
Le Claire (b14) 1984; 122 & 123
Sigma Aldrich (b18) 2021
Merola, Loesser, Martin, Chappuis, Mitteau, Komarov, Pitts, Gicquel, Barabash, Giancarli, Palmer, Nakahira, Loarte, Campbell, Eaton, Kukushkin, Sugihara, Zhang, Kim, Raffray, Ferrand, Yao, Sadakov, Furmanek, Rozov, Hirai, Escourbiac, Jokinen, Calcagno, Mori (b6) 2010; 85
Sinnott, Coulson, Richardson (b24) 1999
National Research Council of Science & Technology (10.1016/j.fusengdes.2023.113563_b5) 2020
ITER Organization (10.1016/j.fusengdes.2023.113563_b8) 2022
Borgognoni (10.1016/j.fusengdes.2023.113563_b17) 2008; 83
Hemsworth (10.1016/j.fusengdes.2023.113563_b31) 2019
Sinnott (10.1016/j.fusengdes.2023.113563_b24) 1999
Winkler (10.1016/j.fusengdes.2023.113563_b11) 2011
Santucci (10.1016/j.fusengdes.2023.113563_b19) 2020; 158
Lehner (10.1016/j.fusengdes.2023.113563_b20) 2014
Merola (10.1016/j.fusengdes.2023.113563_b6) 2010; 85
Mitchell (10.1016/j.fusengdes.2023.113563_b7) 2012; 22
Fossheim (10.1016/j.fusengdes.2023.113563_b12) 2005
Technologies (10.1016/j.fusengdes.2023.113563_b25) 2009
Kunyi (10.1016/j.fusengdes.2023.113563_b4) 2021
Ciazynski (10.1016/j.fusengdes.2023.113563_b29) 2001
Tsuneoka (10.1016/j.fusengdes.2023.113563_b27) 1997; 36
Oda (10.1016/j.fusengdes.2023.113563_b26) 2019; 59
OpenModelica (10.1016/j.fusengdes.2023.113563_b9) 2022
Fritzson (10.1016/j.fusengdes.2023.113563_b10) 2020; 41
Noh (10.1016/j.fusengdes.2023.113563_b22) 2017; 46
Henderson (10.1016/j.fusengdes.2023.113563_b30) 2003; 43
Fukada (10.1016/j.fusengdes.2023.113563_b16) 2002; 41
Le Claire (10.1016/j.fusengdes.2023.113563_b14) 1984; 122 & 123
Kalaria (10.1016/j.fusengdes.2023.113563_b28) 2014; 42
Sood (10.1016/j.fusengdes.2023.113563_b15) 1997
Malozemoff (10.1016/j.fusengdes.2023.113563_b13) 2015
Hussein (10.1016/j.fusengdes.2023.113563_b23) 2022
EUROfusion (10.1016/j.fusengdes.2023.113563_b1) 2022
Sigma Aldrich (10.1016/j.fusengdes.2023.113563_b18) 2021
Boniface (10.1016/j.fusengdes.2023.113563_b21) 2011; 60
ITER Organization (10.1016/j.fusengdes.2023.113563_b2) 2022
Tokamak Energy (10.1016/j.fusengdes.2023.113563_b3) 2022
References_xml – start-page: 145
  year: 2015
  end-page: 150
  ident: b13
  article-title: 5 - high-temperature superconducting (HTS) AC cables for power grid applications
  publication-title: Superconductors in the Power Grid
– year: 1999
  ident: b24
  article-title: Chemical Engineering Design, Vol. 6
– year: 2022
  ident: b1
  article-title: European researchers achieve fusion energy record
– year: 2009
  ident: b25
  article-title: Cooling Tower Fundamentals
– volume: 43
  start-page: 1
  year: 2003
  end-page: 14
  ident: b30
  article-title: An ITER-relevant evacuated waveguide transmission system for the JET-EP ECRH project
  publication-title: Nucl. Fussion
– year: 2021
  ident: b4
  article-title: China maintains ‘artificial sun’ at 120 million celsius for over 100 seconds, setting new world record
– year: 2020
  ident: b5
  article-title: Korean artificial sun sets the new world record of 20-sec-long operation at 100 million degrees
– volume: 59
  year: 2019
  ident: b26
  article-title: Development of the first ITER gyrotron in QST
  publication-title: Nucl. Fusion
– volume: 83
  start-page: 1375
  year: 2008
  end-page: 1379
  ident: b17
  article-title: Experimental study of detritiation catalyst poisoning
  publication-title: Fusion Eng. Des.
– volume: 42
  start-page: 1522
  year: 2014
  end-page: 1528
  ident: b28
  article-title: Design of 170 GHz, 1.5-MW conventional cavity gyrotron for plasma heating
  publication-title: IEEE Trans. Plasma Sci.
– year: 2022
  ident: b8
  article-title: What will ITER do?
– year: 2022
  ident: b23
  article-title: Energy saving by reinforcement learning for multi-chillers of HVAC systems
  publication-title: IMDC-IST 2021, Sakarya, Turkey
– volume: 122 & 123
  start-page: 1558
  year: 1984
  end-page: 1559
  ident: b14
  article-title: Permeation of hydrogen isotopes in structural alloys
  publication-title: J. Nucl. Mater.
– volume: 41
  start-page: 241
  year: 2020
  end-page: 285
  ident: b10
  article-title: The OpenModelica integrated environment for modeling, simulation, and model-based development
  publication-title: Model. Identif. Control
– year: 2021
  ident: b18
  article-title: Molecular sieves - technical information bulletin
– volume: 41
  start-page: 1054
  year: 2002
  end-page: 1058
  ident: b16
  article-title: Mass-transport properties to estimate rates of tritium recovery from flibe blanket
  publication-title: Fusion Sci. Technol.
– year: 2022
  ident: b9
  article-title: Open-source modelica-based modeling and simulation environment
– year: 1997
  ident: b15
  article-title: A compact, low cost, tritium removal plant for CANDU-6 reactors
  publication-title: Applied Nuclear Research and Development, Ontario
– volume: 60
  start-page: 1327
  year: 2011
  end-page: 1330
  ident: b21
  article-title: A light-water detritiation project at chalk river laboratories
  publication-title: Fusion Sci. Technol.
– year: 2022
  ident: b3
  article-title: Tokamak energy moves closer to commercial fusion: 100 m degree plasma a world record for a spherical tokamak
– year: 2011
  ident: b11
  article-title: Transient Behaviour of ITER Poloidal Field Coils
– year: 2001
  ident: b29
  article-title: Large superconducting conductors and joints for fusion magnets: from conceptual design to test at full size scale
  publication-title: Nucl. Fusion
– year: 2019
  ident: b31
  article-title: Research, design, and development needed to realise a neutral beam injection system for a fusion reactor
  publication-title: Fusion Energy
– year: 2022
  ident: b2
  article-title: 60 Years of progress
– volume: 22
  year: 2012
  ident: b7
  article-title: The ITER magnets: Design and construction status
  publication-title: IEEE Trans. Appl. Supercond.
– year: 2005
  ident: b12
  article-title: Superconductivity: Physics and Applications
– year: 2014
  ident: b20
  article-title: Power-to-Gas: Technology and Business Models
– volume: 85
  start-page: 2312
  year: 2010
  end-page: 2322
  ident: b6
  article-title: ITER plasma-facing components
  publication-title: Fusion Eng. Des.
– volume: 46
  start-page: 1
  year: 2017
  end-page: 8
  ident: b22
  article-title: Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using aspen plus simulator
  publication-title: J. Ind. Eng. Chem.
– volume: 158
  year: 2020
  ident: b19
  article-title: The issue of tritium in DEMO coolant mitigation strategies
  publication-title: Fusion Eng. Des.
– volume: 36
  start-page: 461
  year: 1997
  end-page: 469
  ident: b27
  article-title: Development of d.c. power supply for gyrotron with energy recovery system
  publication-title: Fusion Eng. Des.
– year: 2005
  ident: 10.1016/j.fusengdes.2023.113563_b12
– year: 2020
  ident: 10.1016/j.fusengdes.2023.113563_b5
– volume: 22
  issue: 3
  year: 2012
  ident: 10.1016/j.fusengdes.2023.113563_b7
  article-title: The ITER magnets: Design and construction status
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2011.2174560
– volume: 60
  start-page: 1327
  year: 2011
  ident: 10.1016/j.fusengdes.2023.113563_b21
  article-title: A light-water detritiation project at chalk river laboratories
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST11-A12674
– year: 2014
  ident: 10.1016/j.fusengdes.2023.113563_b20
– year: 2022
  ident: 10.1016/j.fusengdes.2023.113563_b9
– volume: 43
  start-page: 1
  year: 2003
  ident: 10.1016/j.fusengdes.2023.113563_b30
  article-title: An ITER-relevant evacuated waveguide transmission system for the JET-EP ECRH project
  publication-title: Nucl. Fussion
– volume: 83
  start-page: 1375
  year: 2008
  ident: 10.1016/j.fusengdes.2023.113563_b17
  article-title: Experimental study of detritiation catalyst poisoning
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2008.07.021
– volume: 59
  year: 2019
  ident: 10.1016/j.fusengdes.2023.113563_b26
  article-title: Development of the first ITER gyrotron in QST
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab22c2
– year: 2011
  ident: 10.1016/j.fusengdes.2023.113563_b11
– volume: 46
  start-page: 1
  year: 2017
  ident: 10.1016/j.fusengdes.2023.113563_b22
  article-title: Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using aspen plus simulator
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.07.053
– start-page: 145
  year: 2015
  ident: 10.1016/j.fusengdes.2023.113563_b13
  article-title: 5 - high-temperature superconducting (HTS) AC cables for power grid applications
– year: 2021
  ident: 10.1016/j.fusengdes.2023.113563_b18
– year: 2022
  ident: 10.1016/j.fusengdes.2023.113563_b2
– volume: 42
  start-page: 1522
  year: 2014
  ident: 10.1016/j.fusengdes.2023.113563_b28
  article-title: Design of 170 GHz, 1.5-MW conventional cavity gyrotron for plasma heating
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2014.2305251
– volume: 41
  start-page: 1054
  year: 2002
  ident: 10.1016/j.fusengdes.2023.113563_b16
  article-title: Mass-transport properties to estimate rates of tritium recovery from flibe blanket
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST02-A22745
– year: 1997
  ident: 10.1016/j.fusengdes.2023.113563_b15
  article-title: A compact, low cost, tritium removal plant for CANDU-6 reactors
– year: 2022
  ident: 10.1016/j.fusengdes.2023.113563_b23
  article-title: Energy saving by reinforcement learning for multi-chillers of HVAC systems
– volume: 158
  year: 2020
  ident: 10.1016/j.fusengdes.2023.113563_b19
  article-title: The issue of tritium in DEMO coolant mitigation strategies
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2020.111759
– volume: 36
  start-page: 461
  year: 1997
  ident: 10.1016/j.fusengdes.2023.113563_b27
  article-title: Development of d.c. power supply for gyrotron with energy recovery system
  publication-title: Fusion Eng. Des.
  doi: 10.1016/S0920-3796(97)00024-0
– volume: 122 & 123
  start-page: 1558
  year: 1984
  ident: 10.1016/j.fusengdes.2023.113563_b14
  article-title: Permeation of hydrogen isotopes in structural alloys
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(84)90301-5
– year: 2022
  ident: 10.1016/j.fusengdes.2023.113563_b3
– year: 2022
  ident: 10.1016/j.fusengdes.2023.113563_b8
– year: 1999
  ident: 10.1016/j.fusengdes.2023.113563_b24
– year: 2009
  ident: 10.1016/j.fusengdes.2023.113563_b25
– volume: 41
  start-page: 241
  year: 2020
  ident: 10.1016/j.fusengdes.2023.113563_b10
  article-title: The OpenModelica integrated environment for modeling, simulation, and model-based development
  publication-title: Model. Identif. Control
  doi: 10.4173/mic.2020.4.1
– year: 2001
  ident: 10.1016/j.fusengdes.2023.113563_b29
  article-title: Large superconducting conductors and joints for fusion magnets: from conceptual design to test at full size scale
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/41/2/309
– volume: 85
  start-page: 2312
  issue: 10
  year: 2010
  ident: 10.1016/j.fusengdes.2023.113563_b6
  article-title: ITER plasma-facing components
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2010.09.013
– year: 2022
  ident: 10.1016/j.fusengdes.2023.113563_b1
– year: 2021
  ident: 10.1016/j.fusengdes.2023.113563_b4
– year: 2019
  ident: 10.1016/j.fusengdes.2023.113563_b31
  article-title: Research, design, and development needed to realise a neutral beam injection system for a fusion reactor
SSID ssj0017017
Score 2.3749058
Snippet One of the largest hurdles for commercialisation of magnetic confinement fusion has historically been achieving net power — existing experiments require more...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113563
SubjectTerms Net power
Power balance
Python modelling
Tokamak
Title An open-source power balance model for the estimation of tokamak net electrical power output
URI https://dx.doi.org/10.1016/j.fusengdes.2023.113563
Volume 191
WOSCitedRecordID wos000947302500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017017
  issn: 0920-3796
  databaseCode: AIEXJ
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELa2mx7aQ9SnmiatfOgNsWIxz95WUaK2qqIettIeKiEb21VeBqWwSX5E_nPHNpiljbTNoRcErDwszIcZPmbmQ-iD1CJFrBQ-RKuhH3ES-HkS6yoQIaJEMkqYKRT-mp6cZKtV_m0yuetrYdYXqVLZzU1e_1dXwz5wti6dfYC7nVHYAevgdFiC22H5T45fQABYC-VbWt6rtQyax3QGI2wZ4RuXWqg7bFy6mLGpzuklPfeUaDyrjmMcaA1UbVO3Ix7_uNVEmyeGhobmQwQfpYRowa5qPaqkcZwO_NIafC3tVTCsgOYTwc9qKH93NPB1JW5tj2B6el1t0hUhGdKqet5Rl2ynVsbWTcFWsaubROdzEttZ76_53VINZzOp-amfcEYzfYzZMGLcUfuPJ53LP-xT284KZ6jQhgpr6BHaCdM4z6ZoZ_H5aPXFfZZKAyPh7M5hlDB473-6P9zZCGGWz9Bu9-6BFxYzz9FEqBfo6UZHypfox0LhDfRg43zcoQcb9GBADwb04AE9uJK4Qw8G9OABPZ0Bi55X6Pvx0fLwk98JcPglSaLGp5EWlZICgtyyhDAG7muSlFEuQ0ZiXkrO0iATYRnwMAuoLvNOBbwGCZbkhFJOyGs0VZUSbxDmIhCcyjiKIB5MQgrWmJzHGWMJ2OZyDyX9dSrKrju9Fkm5KLb4ag8FbmBtG7RsH_Kxd0TRxZk2fiwAZtsGv3348fbRk-FOOEDT5qoV79Djct2c_rp632HsNxTlqQI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+open-source+power+balance+model+for+the+estimation+of+tokamak+net+electrical+power+output&rft.jtitle=Fusion+engineering+and+design&rft.au=Petrov%2C+Alexander&rft.au=Stroud%2C+Tom&rft.au=Blackburn%2C+Daniel&rft.au=Owoeye%2C+Taiwo&rft.date=2023-06-01&rft.issn=0920-3796&rft.volume=191&rft.spage=113563&rft_id=info:doi/10.1016%2Fj.fusengdes.2023.113563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fusengdes_2023_113563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon