An open-source power balance model for the estimation of tokamak net electrical power output
One of the largest hurdles for commercialisation of magnetic confinement fusion has historically been achieving net power — existing experiments require more electricity to keep the tokamak running than it could theoretically generate, and none have been equipped with thermal to electric conversion...
Gespeichert in:
| Veröffentlicht in: | Fusion engineering and design Jg. 191; S. 113563 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.06.2023
|
| Schlagworte: | |
| ISSN: | 0920-3796, 1873-7196 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | One of the largest hurdles for commercialisation of magnetic confinement fusion has historically been achieving net power — existing experiments require more electricity to keep the tokamak running than it could theoretically generate, and none have been equipped with thermal to electric conversion equipment. When designing a machine that intends to overcome this, there must be a cheap and robust way for the designer to estimate what the net power will be, preferably with the ability to perform parametric sweeps, without having to know the detailed design of each system. The work presented in this paper is an integrated time-dependent model, describing the power demands of the major tokamak components (magnets, cryogenics, heating and current drive, etc.), as well as the power generated, with a focus on the steady-state operation. The physics are implemented in OpenModelica and make use of a Python API (Application Programming Interface) to collect inputs, run studies and record outputs. The model cannot be validated against real world data, since there is no operational tokamak in the world designed for electrical power generation. Therefore, the correctness of each submodule (i.e., the magnet model, the cryogenics model) has been validated either from first principles or via validation against data from JET (Joint European Torus) where possible. The model has been used extensively as part of the work on the UK’s Spherical Tokamak for Energy Production (STEP) and has informed decisions on the STEP concept. It is publicly available on GitHub.
•Multi-system power consumption and generation.•Python API with OpenModelica back-end.•Open-source code. |
|---|---|
| AbstractList | One of the largest hurdles for commercialisation of magnetic confinement fusion has historically been achieving net power — existing experiments require more electricity to keep the tokamak running than it could theoretically generate, and none have been equipped with thermal to electric conversion equipment. When designing a machine that intends to overcome this, there must be a cheap and robust way for the designer to estimate what the net power will be, preferably with the ability to perform parametric sweeps, without having to know the detailed design of each system. The work presented in this paper is an integrated time-dependent model, describing the power demands of the major tokamak components (magnets, cryogenics, heating and current drive, etc.), as well as the power generated, with a focus on the steady-state operation. The physics are implemented in OpenModelica and make use of a Python API (Application Programming Interface) to collect inputs, run studies and record outputs. The model cannot be validated against real world data, since there is no operational tokamak in the world designed for electrical power generation. Therefore, the correctness of each submodule (i.e., the magnet model, the cryogenics model) has been validated either from first principles or via validation against data from JET (Joint European Torus) where possible. The model has been used extensively as part of the work on the UK’s Spherical Tokamak for Energy Production (STEP) and has informed decisions on the STEP concept. It is publicly available on GitHub.
•Multi-system power consumption and generation.•Python API with OpenModelica back-end.•Open-source code. |
| ArticleNumber | 113563 |
| Author | Acres, Jack Brewer, Nicholas Cannon, Marius Laksharam, Vignesh Christie, Finlay Stewart, Samuel Wray, Steven Zarebski, Kristian Blackburn, Daniel Griffiths, Rhys Gribben, Sophie Stroud, Tom Jackson, Timothy Owoeye, Taiwo Clements, Chris Abdallah, Mohamad Petrov, Alexander Rochford, Katherine |
| Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0003-4820-5227 surname: Petrov fullname: Petrov, Alexander email: alexander.petrov@ukaea.uk – sequence: 2 givenname: Tom surname: Stroud fullname: Stroud, Tom – sequence: 3 givenname: Daniel surname: Blackburn fullname: Blackburn, Daniel – sequence: 4 givenname: Taiwo surname: Owoeye fullname: Owoeye, Taiwo – sequence: 5 givenname: Steven surname: Wray fullname: Wray, Steven – sequence: 6 givenname: Kristian surname: Zarebski fullname: Zarebski, Kristian – sequence: 7 givenname: Jack surname: Acres fullname: Acres, Jack – sequence: 8 givenname: Mohamad surname: Abdallah fullname: Abdallah, Mohamad – sequence: 9 givenname: Chris surname: Clements fullname: Clements, Chris – sequence: 10 givenname: Marius surname: Cannon fullname: Cannon, Marius – sequence: 11 givenname: Finlay surname: Christie fullname: Christie, Finlay – sequence: 12 givenname: Timothy surname: Jackson fullname: Jackson, Timothy – sequence: 13 givenname: Vignesh surname: Laksharam fullname: Laksharam, Vignesh – sequence: 14 givenname: Samuel surname: Stewart fullname: Stewart, Samuel – sequence: 15 givenname: Rhys surname: Griffiths fullname: Griffiths, Rhys – sequence: 16 givenname: Nicholas surname: Brewer fullname: Brewer, Nicholas – sequence: 17 givenname: Katherine surname: Rochford fullname: Rochford, Katherine – sequence: 18 givenname: Sophie surname: Gribben fullname: Gribben, Sophie |
| BookMark | eNqNkM1KAzEURoNUsK0-g3mBqclkJplZuCjFPyi40Z0QMskdTTudDElG8e1NbXHhRuHC5S7Ox_3ODE161wNCl5QsKKH8arNoxwD9q4GwyEnOFpSykrMTNKWVYJmgNZ-gKalzkjFR8zM0C2FDCBVppuhl2WM3QJ8FN3oNeHAf4HGjOtWna-cMdLh1Hsc3wBCi3aloXUJaHN1W7dQW9xAxdKCjt1p1xwA3xmGM5-i0VV2Ai-Oeo-fbm6fVfbZ-vHtYLdeZZryImSrKkpEWqMi1rgphuGFcF3WbN6w0ujWNIBXkmpi8IooQVguoaAMNr5lShrE5Eodc7V0IHlo5-PSp_5SUyL0kuZE_kuRekjxISuT1L1Lb-F0xemW7f_DLAw-p3rsFL4O2kNQZ65MSaZz9M-MLr4ONDg |
| CitedBy_id | crossref_primary_10_1016_j_fusengdes_2024_114238 |
| Cites_doi | 10.1109/TASC.2011.2174560 10.13182/FST11-A12674 10.1016/j.fusengdes.2008.07.021 10.1088/1741-4326/ab22c2 10.1016/j.jiec.2016.07.053 10.1109/TPS.2014.2305251 10.13182/FST02-A22745 10.1016/j.fusengdes.2020.111759 10.1016/S0920-3796(97)00024-0 10.1016/0022-3115(84)90301-5 10.4173/mic.2020.4.1 10.1088/0029-5515/41/2/309 10.1016/j.fusengdes.2010.09.013 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors |
| Copyright_xml | – notice: 2023 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.fusengdes.2023.113563 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7196 |
| ExternalDocumentID | 10_1016_j_fusengdes_2023_113563 S0920379623001473 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 LZ3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SPC SPCBC SSR SST SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c364t-a45530fe172cc847d6d36c49f2b35dcfdb708e2c0d280a00397e81beb693aad33 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947302500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-3796 |
| IngestDate | Sat Nov 29 07:13:16 EST 2025 Tue Nov 18 20:56:35 EST 2025 Fri Feb 23 02:33:34 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Tokamak Power balance Python modelling Net power |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c364t-a45530fe172cc847d6d36c49f2b35dcfdb708e2c0d280a00397e81beb693aad33 |
| ORCID | 0000-0003-4820-5227 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.fusengdes.2023.113563 |
| ParticipantIDs | crossref_primary_10_1016_j_fusengdes_2023_113563 crossref_citationtrail_10_1016_j_fusengdes_2023_113563 elsevier_sciencedirect_doi_10_1016_j_fusengdes_2023_113563 |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Fusion engineering and design |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Oda, Ikeda, Kajiwara, Kobayashi, Hayashi, Takahashi, Moriyama, Sakamoto, Eguchi, Kawakami, Mitsunaka, Darbos, Henderson (b26) 2019; 59 EUROfusion (b1) 2022 Hemsworth, Boilson (b31) 2019 Tsuneoka, Fujita, Sakamoto, Kasugai, Imai, Nagashima, Asaka, Kamioka, Yasuda, Iiyama, Yoshida, Nara, Ishibashi (b27) 1997; 36 Ciazynski, Duchateau, Decool, Libeyre, Turck (b29) 2001 ITER Organization (b2) 2022 Boniface, Castillo, Everatt, Ryland (b21) 2011; 60 Borgognoni, Rizzello, Tosti (b17) 2008; 83 Hussein, Ateeq, Homod (b23) 2022 Winkler (b11) 2011 Sood, Fong, Kalyanam, Woodall (b15) 1997 Fritzson, Pop, Abdelhak, Adeel (b10) 2020; 41 Noh, Fulgueras, Sebastian, Lee, Kim, Cho (b22) 2017; 46 OpenModelica (b9) 2022 Kalaria, Kartikeyan, Thumm (b28) 2014; 42 Tokamak Energy (b3) 2022 Fossheim, Sudboe (b12) 2005 Kunyi, Weiduo (b4) 2021 Malozemoff, Yuan, Rey (b13) 2015 Mitchell, Devred, Libeyre, Lim, Savary (b7) 2012; 22 Fukada, Nishikawa, Sagara, Terai (b16) 2002; 41 Henderson, Alberti, Bird, Doane, Elzendoorn, Flemming, Goodman, Hoekzema, Hogge, Magnin, Pioscyk, Porte, Tran, Verhoeven (b30) 2003; 43 Santucci, Incelli, Noschese, Moreno, Fonzo, Utili, Tosti, Day (b19) 2020; 158 ITER Organization (b8) 2022 National Research Council of Science & Technology (b5) 2020 Technologies (b25) 2009 Lehner, Tichler, Steinmuller, Koppe (b20) 2014 Le Claire (b14) 1984; 122 & 123 Sigma Aldrich (b18) 2021 Merola, Loesser, Martin, Chappuis, Mitteau, Komarov, Pitts, Gicquel, Barabash, Giancarli, Palmer, Nakahira, Loarte, Campbell, Eaton, Kukushkin, Sugihara, Zhang, Kim, Raffray, Ferrand, Yao, Sadakov, Furmanek, Rozov, Hirai, Escourbiac, Jokinen, Calcagno, Mori (b6) 2010; 85 Sinnott, Coulson, Richardson (b24) 1999 National Research Council of Science & Technology (10.1016/j.fusengdes.2023.113563_b5) 2020 ITER Organization (10.1016/j.fusengdes.2023.113563_b8) 2022 Borgognoni (10.1016/j.fusengdes.2023.113563_b17) 2008; 83 Hemsworth (10.1016/j.fusengdes.2023.113563_b31) 2019 Sinnott (10.1016/j.fusengdes.2023.113563_b24) 1999 Winkler (10.1016/j.fusengdes.2023.113563_b11) 2011 Santucci (10.1016/j.fusengdes.2023.113563_b19) 2020; 158 Lehner (10.1016/j.fusengdes.2023.113563_b20) 2014 Merola (10.1016/j.fusengdes.2023.113563_b6) 2010; 85 Mitchell (10.1016/j.fusengdes.2023.113563_b7) 2012; 22 Fossheim (10.1016/j.fusengdes.2023.113563_b12) 2005 Technologies (10.1016/j.fusengdes.2023.113563_b25) 2009 Kunyi (10.1016/j.fusengdes.2023.113563_b4) 2021 Ciazynski (10.1016/j.fusengdes.2023.113563_b29) 2001 Tsuneoka (10.1016/j.fusengdes.2023.113563_b27) 1997; 36 Oda (10.1016/j.fusengdes.2023.113563_b26) 2019; 59 OpenModelica (10.1016/j.fusengdes.2023.113563_b9) 2022 Fritzson (10.1016/j.fusengdes.2023.113563_b10) 2020; 41 Noh (10.1016/j.fusengdes.2023.113563_b22) 2017; 46 Henderson (10.1016/j.fusengdes.2023.113563_b30) 2003; 43 Fukada (10.1016/j.fusengdes.2023.113563_b16) 2002; 41 Le Claire (10.1016/j.fusengdes.2023.113563_b14) 1984; 122 & 123 Kalaria (10.1016/j.fusengdes.2023.113563_b28) 2014; 42 Sood (10.1016/j.fusengdes.2023.113563_b15) 1997 Malozemoff (10.1016/j.fusengdes.2023.113563_b13) 2015 Hussein (10.1016/j.fusengdes.2023.113563_b23) 2022 EUROfusion (10.1016/j.fusengdes.2023.113563_b1) 2022 Sigma Aldrich (10.1016/j.fusengdes.2023.113563_b18) 2021 Boniface (10.1016/j.fusengdes.2023.113563_b21) 2011; 60 ITER Organization (10.1016/j.fusengdes.2023.113563_b2) 2022 Tokamak Energy (10.1016/j.fusengdes.2023.113563_b3) 2022 |
| References_xml | – start-page: 145 year: 2015 end-page: 150 ident: b13 article-title: 5 - high-temperature superconducting (HTS) AC cables for power grid applications publication-title: Superconductors in the Power Grid – year: 1999 ident: b24 article-title: Chemical Engineering Design, Vol. 6 – year: 2022 ident: b1 article-title: European researchers achieve fusion energy record – year: 2009 ident: b25 article-title: Cooling Tower Fundamentals – volume: 43 start-page: 1 year: 2003 end-page: 14 ident: b30 article-title: An ITER-relevant evacuated waveguide transmission system for the JET-EP ECRH project publication-title: Nucl. Fussion – year: 2021 ident: b4 article-title: China maintains ‘artificial sun’ at 120 million celsius for over 100 seconds, setting new world record – year: 2020 ident: b5 article-title: Korean artificial sun sets the new world record of 20-sec-long operation at 100 million degrees – volume: 59 year: 2019 ident: b26 article-title: Development of the first ITER gyrotron in QST publication-title: Nucl. Fusion – volume: 83 start-page: 1375 year: 2008 end-page: 1379 ident: b17 article-title: Experimental study of detritiation catalyst poisoning publication-title: Fusion Eng. Des. – volume: 42 start-page: 1522 year: 2014 end-page: 1528 ident: b28 article-title: Design of 170 GHz, 1.5-MW conventional cavity gyrotron for plasma heating publication-title: IEEE Trans. Plasma Sci. – year: 2022 ident: b8 article-title: What will ITER do? – year: 2022 ident: b23 article-title: Energy saving by reinforcement learning for multi-chillers of HVAC systems publication-title: IMDC-IST 2021, Sakarya, Turkey – volume: 122 & 123 start-page: 1558 year: 1984 end-page: 1559 ident: b14 article-title: Permeation of hydrogen isotopes in structural alloys publication-title: J. Nucl. Mater. – volume: 41 start-page: 241 year: 2020 end-page: 285 ident: b10 article-title: The OpenModelica integrated environment for modeling, simulation, and model-based development publication-title: Model. Identif. Control – year: 2021 ident: b18 article-title: Molecular sieves - technical information bulletin – volume: 41 start-page: 1054 year: 2002 end-page: 1058 ident: b16 article-title: Mass-transport properties to estimate rates of tritium recovery from flibe blanket publication-title: Fusion Sci. Technol. – year: 2022 ident: b9 article-title: Open-source modelica-based modeling and simulation environment – year: 1997 ident: b15 article-title: A compact, low cost, tritium removal plant for CANDU-6 reactors publication-title: Applied Nuclear Research and Development, Ontario – volume: 60 start-page: 1327 year: 2011 end-page: 1330 ident: b21 article-title: A light-water detritiation project at chalk river laboratories publication-title: Fusion Sci. Technol. – year: 2022 ident: b3 article-title: Tokamak energy moves closer to commercial fusion: 100 m degree plasma a world record for a spherical tokamak – year: 2011 ident: b11 article-title: Transient Behaviour of ITER Poloidal Field Coils – year: 2001 ident: b29 article-title: Large superconducting conductors and joints for fusion magnets: from conceptual design to test at full size scale publication-title: Nucl. Fusion – year: 2019 ident: b31 article-title: Research, design, and development needed to realise a neutral beam injection system for a fusion reactor publication-title: Fusion Energy – year: 2022 ident: b2 article-title: 60 Years of progress – volume: 22 year: 2012 ident: b7 article-title: The ITER magnets: Design and construction status publication-title: IEEE Trans. Appl. Supercond. – year: 2005 ident: b12 article-title: Superconductivity: Physics and Applications – year: 2014 ident: b20 article-title: Power-to-Gas: Technology and Business Models – volume: 85 start-page: 2312 year: 2010 end-page: 2322 ident: b6 article-title: ITER plasma-facing components publication-title: Fusion Eng. Des. – volume: 46 start-page: 1 year: 2017 end-page: 8 ident: b22 article-title: Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using aspen plus simulator publication-title: J. Ind. Eng. Chem. – volume: 158 year: 2020 ident: b19 article-title: The issue of tritium in DEMO coolant mitigation strategies publication-title: Fusion Eng. Des. – volume: 36 start-page: 461 year: 1997 end-page: 469 ident: b27 article-title: Development of d.c. power supply for gyrotron with energy recovery system publication-title: Fusion Eng. Des. – year: 2005 ident: 10.1016/j.fusengdes.2023.113563_b12 – year: 2020 ident: 10.1016/j.fusengdes.2023.113563_b5 – volume: 22 issue: 3 year: 2012 ident: 10.1016/j.fusengdes.2023.113563_b7 article-title: The ITER magnets: Design and construction status publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2011.2174560 – volume: 60 start-page: 1327 year: 2011 ident: 10.1016/j.fusengdes.2023.113563_b21 article-title: A light-water detritiation project at chalk river laboratories publication-title: Fusion Sci. Technol. doi: 10.13182/FST11-A12674 – year: 2014 ident: 10.1016/j.fusengdes.2023.113563_b20 – year: 2022 ident: 10.1016/j.fusengdes.2023.113563_b9 – volume: 43 start-page: 1 year: 2003 ident: 10.1016/j.fusengdes.2023.113563_b30 article-title: An ITER-relevant evacuated waveguide transmission system for the JET-EP ECRH project publication-title: Nucl. Fussion – volume: 83 start-page: 1375 year: 2008 ident: 10.1016/j.fusengdes.2023.113563_b17 article-title: Experimental study of detritiation catalyst poisoning publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2008.07.021 – volume: 59 year: 2019 ident: 10.1016/j.fusengdes.2023.113563_b26 article-title: Development of the first ITER gyrotron in QST publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab22c2 – year: 2011 ident: 10.1016/j.fusengdes.2023.113563_b11 – volume: 46 start-page: 1 year: 2017 ident: 10.1016/j.fusengdes.2023.113563_b22 article-title: Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using aspen plus simulator publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.07.053 – start-page: 145 year: 2015 ident: 10.1016/j.fusengdes.2023.113563_b13 article-title: 5 - high-temperature superconducting (HTS) AC cables for power grid applications – year: 2021 ident: 10.1016/j.fusengdes.2023.113563_b18 – year: 2022 ident: 10.1016/j.fusengdes.2023.113563_b2 – volume: 42 start-page: 1522 year: 2014 ident: 10.1016/j.fusengdes.2023.113563_b28 article-title: Design of 170 GHz, 1.5-MW conventional cavity gyrotron for plasma heating publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2014.2305251 – volume: 41 start-page: 1054 year: 2002 ident: 10.1016/j.fusengdes.2023.113563_b16 article-title: Mass-transport properties to estimate rates of tritium recovery from flibe blanket publication-title: Fusion Sci. Technol. doi: 10.13182/FST02-A22745 – year: 1997 ident: 10.1016/j.fusengdes.2023.113563_b15 article-title: A compact, low cost, tritium removal plant for CANDU-6 reactors – year: 2022 ident: 10.1016/j.fusengdes.2023.113563_b23 article-title: Energy saving by reinforcement learning for multi-chillers of HVAC systems – volume: 158 year: 2020 ident: 10.1016/j.fusengdes.2023.113563_b19 article-title: The issue of tritium in DEMO coolant mitigation strategies publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2020.111759 – volume: 36 start-page: 461 year: 1997 ident: 10.1016/j.fusengdes.2023.113563_b27 article-title: Development of d.c. power supply for gyrotron with energy recovery system publication-title: Fusion Eng. Des. doi: 10.1016/S0920-3796(97)00024-0 – volume: 122 & 123 start-page: 1558 year: 1984 ident: 10.1016/j.fusengdes.2023.113563_b14 article-title: Permeation of hydrogen isotopes in structural alloys publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(84)90301-5 – year: 2022 ident: 10.1016/j.fusengdes.2023.113563_b3 – year: 2022 ident: 10.1016/j.fusengdes.2023.113563_b8 – year: 1999 ident: 10.1016/j.fusengdes.2023.113563_b24 – year: 2009 ident: 10.1016/j.fusengdes.2023.113563_b25 – volume: 41 start-page: 241 year: 2020 ident: 10.1016/j.fusengdes.2023.113563_b10 article-title: The OpenModelica integrated environment for modeling, simulation, and model-based development publication-title: Model. Identif. Control doi: 10.4173/mic.2020.4.1 – year: 2001 ident: 10.1016/j.fusengdes.2023.113563_b29 article-title: Large superconducting conductors and joints for fusion magnets: from conceptual design to test at full size scale publication-title: Nucl. Fusion doi: 10.1088/0029-5515/41/2/309 – volume: 85 start-page: 2312 issue: 10 year: 2010 ident: 10.1016/j.fusengdes.2023.113563_b6 article-title: ITER plasma-facing components publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2010.09.013 – year: 2022 ident: 10.1016/j.fusengdes.2023.113563_b1 – year: 2021 ident: 10.1016/j.fusengdes.2023.113563_b4 – year: 2019 ident: 10.1016/j.fusengdes.2023.113563_b31 article-title: Research, design, and development needed to realise a neutral beam injection system for a fusion reactor |
| SSID | ssj0017017 |
| Score | 2.3749058 |
| Snippet | One of the largest hurdles for commercialisation of magnetic confinement fusion has historically been achieving net power — existing experiments require more... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 113563 |
| SubjectTerms | Net power Power balance Python modelling Tokamak |
| Title | An open-source power balance model for the estimation of tokamak net electrical power output |
| URI | https://dx.doi.org/10.1016/j.fusengdes.2023.113563 |
| Volume | 191 |
| WOSCitedRecordID | wos000947302500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017017 issn: 0920-3796 databaseCode: AIEXJ dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELa2mx7aQ9SnmiatfOgNsWIxz95WUaK2qqIettIeKiEb21VeBqWwSX5E_nPHNpiljbTNoRcErDwszIcZPmbmQ-iD1CJFrBQ-RKuhH3ES-HkS6yoQIaJEMkqYKRT-mp6cZKtV_m0yuetrYdYXqVLZzU1e_1dXwz5wti6dfYC7nVHYAevgdFiC22H5T45fQABYC-VbWt6rtQyax3QGI2wZ4RuXWqg7bFy6mLGpzuklPfeUaDyrjmMcaA1UbVO3Ix7_uNVEmyeGhobmQwQfpYRowa5qPaqkcZwO_NIafC3tVTCsgOYTwc9qKH93NPB1JW5tj2B6el1t0hUhGdKqet5Rl2ynVsbWTcFWsaubROdzEttZ76_53VINZzOp-amfcEYzfYzZMGLcUfuPJ53LP-xT284KZ6jQhgpr6BHaCdM4z6ZoZ_H5aPXFfZZKAyPh7M5hlDB473-6P9zZCGGWz9Bu9-6BFxYzz9FEqBfo6UZHypfox0LhDfRg43zcoQcb9GBADwb04AE9uJK4Qw8G9OABPZ0Bi55X6Pvx0fLwk98JcPglSaLGp5EWlZICgtyyhDAG7muSlFEuQ0ZiXkrO0iATYRnwMAuoLvNOBbwGCZbkhFJOyGs0VZUSbxDmIhCcyjiKIB5MQgrWmJzHGWMJ2OZyDyX9dSrKrju9Fkm5KLb4ag8FbmBtG7RsH_Kxd0TRxZk2fiwAZtsGv3348fbRk-FOOEDT5qoV79Djct2c_rp632HsNxTlqQI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+open-source+power+balance+model+for+the+estimation+of+tokamak+net+electrical+power+output&rft.jtitle=Fusion+engineering+and+design&rft.au=Petrov%2C+Alexander&rft.au=Stroud%2C+Tom&rft.au=Blackburn%2C+Daniel&rft.au=Owoeye%2C+Taiwo&rft.date=2023-06-01&rft.issn=0920-3796&rft.volume=191&rft.spage=113563&rft_id=info:doi/10.1016%2Fj.fusengdes.2023.113563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fusengdes_2023_113563 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon |