A Comparison of Feature Selection and Forecasting Machine Learning Algorithms for Predicting Glycaemia in Type 1 Diabetes Mellitus

Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic insulin production resulting in chronic hyperglycemia. DM1 subjects usually have to undertake a number of assessments of blood glucose levels every day, employing capillary glucometers for the monitoring of blood...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 11; číslo 4; s. 1742
Hlavní autoři: Rodríguez-Rodríguez, Ignacio, Rodríguez, José-Víctor, Woo, Wai Lok, Wei, Bo, Pardo-Quiles, Domingo-Javier
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.02.2021
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic insulin production resulting in chronic hyperglycemia. DM1 subjects usually have to undertake a number of assessments of blood glucose levels every day, employing capillary glucometers for the monitoring of blood glucose dynamics. In recent years, advances in technology have allowed for the creation of revolutionary biosensors and continuous glucose monitoring (CGM) techniques. This has enabled the monitoring of a subject’s blood glucose level in real time. On the other hand, few attempts have been made to apply machine learning techniques to predicting glycaemia levels, but dealing with a database containing such a high level of variables is problematic. In this sense, to the best of the authors’ knowledge, the issues of proper feature selection (FS)—the stage before applying predictive algorithms—have not been subject to in-depth discussion and comparison in past research when it comes to forecasting glycaemia. Therefore, in order to assess how a proper FS stage could improve the accuracy of the glycaemia forecasted, this work has developed six FS techniques alongside four predictive algorithms, applying them to a full dataset of biomedical features related to glycaemia. These were harvested through a wide-ranging passive monitoring process involving 25 patients with DM1 in practical real-life scenarios. From the obtained results, we affirm that Random Forest (RF) as both predictive algorithm and FS strategy offers the best average performance (Root Median Square Error, RMSE = 18.54 mg/dL) throughout the 12 considered predictive horizons (up to 60 min in steps of 5 min), showing Support Vector Machines (SVM) to have the best accuracy as a forecasting algorithm when considering, in turn, the average of the six FS techniques applied (RMSE = 20.58 mg/dL).
AbstractList Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic insulin production resulting in chronic hyperglycemia. DM1 subjects usually have to undertake a number of assessments of blood glucose levels every day, employing capillary glucometers for the monitoring of blood glucose dynamics. In recent years, advances in technology have allowed for the creation of revolutionary biosensors and continuous glucose monitoring (CGM) techniques. This has enabled the monitoring of a subject’s blood glucose level in real time. On the other hand, few attempts have been made to apply machine learning techniques to predicting glycaemia levels, but dealing with a database containing such a high level of variables is problematic. In this sense, to the best of the authors’ knowledge, the issues of proper feature selection (FS)—the stage before applying predictive algorithms—have not been subject to in-depth discussion and comparison in past research when it comes to forecasting glycaemia. Therefore, in order to assess how a proper FS stage could improve the accuracy of the glycaemia forecasted, this work has developed six FS techniques alongside four predictive algorithms, applying them to a full dataset of biomedical features related to glycaemia. These were harvested through a wide-ranging passive monitoring process involving 25 patients with DM1 in practical real-life scenarios. From the obtained results, we affirm that Random Forest (RF) as both predictive algorithm and FS strategy offers the best average performance (Root Median Square Error, RMSE = 18.54 mg/dL) throughout the 12 considered predictive horizons (up to 60 min in steps of 5 min), showing Support Vector Machines (SVM) to have the best accuracy as a forecasting algorithm when considering, in turn, the average of the six FS techniques applied (RMSE = 20.58 mg/dL).
Author Rodríguez, José-Víctor
Woo, Wai Lok
Pardo-Quiles, Domingo-Javier
Rodríguez-Rodríguez, Ignacio
Wei, Bo
Author_xml – sequence: 1
  givenname: Ignacio
  orcidid: 0000-0002-0118-3406
  surname: Rodríguez-Rodríguez
  fullname: Rodríguez-Rodríguez, Ignacio
– sequence: 2
  givenname: José-Víctor
  orcidid: 0000-0002-3298-6439
  surname: Rodríguez
  fullname: Rodríguez, José-Víctor
– sequence: 3
  givenname: Wai Lok
  orcidid: 0000-0002-8698-7605
  surname: Woo
  fullname: Woo, Wai Lok
– sequence: 4
  givenname: Bo
  orcidid: 0000-0002-0781-9655
  surname: Wei
  fullname: Wei, Bo
– sequence: 5
  givenname: Domingo-Javier
  orcidid: 0000-0003-3240-2568
  surname: Pardo-Quiles
  fullname: Pardo-Quiles, Domingo-Javier
BookMark eNptkUFvEzEQhS1UJErpiT9giSMKjNf2en2MAimVUoFEOVteezZ1tLEX2znkyi9n06CqqvBlPE_fvBnpvSUXMUUk5D2DT5xr-GyniTEQTInmFblsQLULPncXz_5vyHUpO5ifZrxjcEn-LOkq7SebQ0mRpoGu0dZDRvoTR3Q1zKKNnq5TRmdLDXFL76x7CBHpBm2OJ2E5blMO9WFf6JAy_ZHRB_eI3oxHZ3EfLA2R3h8npIx-CbbHioXe4TiGeijvyOvBjgWv_9Ur8mv99X71bbH5fnO7Wm4WjreiLixXEqVA2QsQ0msQqle-461vnIaOSw-uUcB61fqeK6Fx8NIxhUPTA0jgV-T27OuT3Zkph73NR5NsMI9Cyltjcw1uRIN6aDXz2DHXiQ4bzQWAAwSvW9UyOXt9OHtNOf0-YKlmlw45zuebRnLRgpZKzdTHM-VyKiXj8LSVgTllZp5lNtPsBe1CtacIarZh_O_MX4pMmoo
CitedBy_id crossref_primary_10_1109_JBHI_2022_3175862
crossref_primary_10_1186_s13098_022_00969_9
crossref_primary_10_3390_ijerph181910265
crossref_primary_10_3390_s21134620
crossref_primary_10_1016_j_chemolab_2022_104731
crossref_primary_10_3389_fmed_2024_1425305
crossref_primary_10_1038_s41598_024_70277_x
crossref_primary_10_1016_j_bspc_2022_103869
crossref_primary_10_1109_ACCESS_2023_3299332
crossref_primary_10_3390_s23073665
crossref_primary_10_1007_s11042_024_19766_9
crossref_primary_10_1177_20552076251355127
crossref_primary_10_2196_47833
crossref_primary_10_3390_app15105652
crossref_primary_10_1177_19322968221092785
crossref_primary_10_51889_2959_5894_2023_83_3_015
Cites_doi 10.1109/AEEICB.2017.7972337
10.2196/14195
10.2298/YJOR1101119N
10.1089/dia.2009.0031
10.3390/app10124381
10.1007/11430919_60
10.1016/j.asoc.2015.01.035
10.1016/j.ins.2011.12.028
10.3390/s19204482
10.3390/app10228244
10.1016/j.knosys.2019.04.013
10.1109/4235.585893
10.1016/j.neucom.2010.01.017
10.1109/ICASSP.2018.8462413
10.1145/3109761.3158404
10.3390/s19204538
10.1007/3-540-36434-X_2
10.1089/dia.2016.0421
10.1145/3398329.3398356
10.1109/DASA51403.2020.9317124
10.1007/978-3-030-46147-8_35
10.3390/sym11091164
10.1007/978-3-319-25913-0_9
10.1007/978-3-030-05318-5_4
10.1111/pedi.12731
10.1016/j.imu.2018.09.003
10.2337/diaclin.25.1.25
10.1109/TBME.2020.2975959
10.1109/ASCC.2017.8287323
10.1109/ICTTA.2008.4529940
10.1016/j.patcog.2016.11.003
10.1142/S0129065704001899
10.1186/s41601-018-0103-3
10.23919/ACC.2019.8815258
10.1001/jama.289.17.2254
10.14778/3229863.3229878
10.1109/THMS.2015.2453203
10.1016/j.jestch.2020.10.005
10.1007/3-540-57868-4_57
10.1002/sam.11446
10.1002/wics.101
10.1155/2015/265637
10.1007/978-3-642-61564-1_4
10.1016/j.patcog.2005.09.002
10.1080/17446651.2018.1523713
10.3390/s20092625
10.1016/j.neucom.2017.11.077
10.1016/S0004-3702(97)00043-X
10.1109/ICSMC.2008.4811692
10.1007/978-1-4614-6849-3
10.1007/978-3-642-31537-4_13
10.1007/BF00153759
10.1007/978-0-387-09823-4_66
10.1145/2350716.2350742
10.1016/j.inffus.2017.12.003
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11041742
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_e9f691de81c848e293400c0e0d967615
10_3390_app11041742
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-a375e54e5b4045d9047b7d836d2c90835d0c2701b76db3749efd5c17ef2b00503
IEDL.DBID DOA
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632092600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:28:02 EDT 2025
Mon Jun 30 08:06:17 EDT 2025
Sat Nov 29 07:15:49 EST 2025
Tue Nov 18 21:40:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-a375e54e5b4045d9047b7d836d2c90835d0c2701b76db3749efd5c17ef2b00503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0118-3406
0000-0002-3298-6439
0000-0002-0781-9655
0000-0003-3240-2568
0000-0002-8698-7605
OpenAccessLink https://doaj.org/article/e9f691de81c848e293400c0e0d967615
PQID 2534609577
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_e9f691de81c848e293400c0e0d967615
proquest_journals_2534609577
crossref_primary_10_3390_app11041742
crossref_citationtrail_10_3390_app11041742
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Sage (ref_23) 2020; 13
Gasca (ref_63) 2006; 39
Westman (ref_5) 2018; 13
ref_12
ref_56
ref_55
ref_53
Kiranmai (ref_59) 2018; 3
ref_52
ref_51
ref_19
ref_17
ref_16
ref_15
Wolpert (ref_42) 1997; 1
Kohavi (ref_11) 1997; 97
Sherr (ref_4) 2018; 19
Novakovic (ref_62) 2011; 21
DeWitt (ref_2) 2003; 289
Fierrez (ref_49) 2018; 44
ref_61
ref_25
ref_69
ref_24
Aha (ref_64) 1991; 6
ref_22
Nguyen (ref_70) 2015; 45
ref_21
ref_65
ref_20
Lang (ref_60) 2019; 178
Chatzigiannakis (ref_33) 2020; 10
ref_29
ref_28
ref_27
ref_26
Crone (ref_36) 2010; 73
Hussain (ref_58) 2018; 9
ref_72
Cai (ref_10) 2018; 300
Sheikhpour (ref_31) 2017; 64
Tomar (ref_13) 2015; 2015
Karegowda (ref_34) 2010; 1
ref_35
ref_32
Guyon (ref_30) 2003; 3
Abdi (ref_66) 2010; 2
ref_39
Fowler (ref_1) 2007; 25
Faloutsos (ref_44) 2018; 11
ref_37
(ref_40) 2012; 34
Xie (ref_18) 2020; 67
Seeger (ref_54) 2004; 14
(ref_41) 2015; 30
ref_47
Liaw (ref_50) 2002; 2
ref_46
Chui (ref_8) 2013; Volume 39
ref_45
ref_43
ref_3
(ref_14) 2018; 2018
ref_48
ref_9
Fonti (ref_38) 2017; 30
Garg (ref_57) 2017; 19
Snijders (ref_68) 1988; Volume 307
Dubosson (ref_71) 2018; 13
ref_7
Bergmeir (ref_67) 2012; 191
Kowalski (ref_6) 2009; 11
References_xml – ident: ref_32
– ident: ref_24
  doi: 10.1109/AEEICB.2017.7972337
– ident: ref_55
  doi: 10.2196/14195
– volume: 21
  start-page: 119
  year: 2011
  ident: ref_62
  article-title: Toward optimal feature selection using ranking methods and classification algorithms
  publication-title: Yugosl. J. Oper. Res.
  doi: 10.2298/YJOR1101119N
– volume: 11
  start-page: S113
  year: 2009
  ident: ref_6
  article-title: Can We Really Close the Loop and How Soon? Accelerating the Availability of an Artificial Pancreas: A Roadmap to Better Diabetes Outcomes
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2009.0031
– ident: ref_17
  doi: 10.3390/app10124381
– ident: ref_35
  doi: 10.1007/11430919_60
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_50
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 30
  start-page: 136
  year: 2015
  ident: ref_41
  article-title: Distributed feature selection: An application to microarray data classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.035
– volume: 191
  start-page: 192
  year: 2012
  ident: ref_67
  article-title: On the use of cross-validation for time series predictor evaluation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.12.028
– ident: ref_16
  doi: 10.3390/s19204482
– volume: 10
  start-page: 8244
  year: 2020
  ident: ref_33
  article-title: Modeling and Forecasting Gender-Based Violence through Machine Learning Techniques
  publication-title: Appl. Sci.
  doi: 10.3390/app10228244
– volume: 178
  start-page: 48
  year: 2019
  ident: ref_60
  article-title: WekaDeeplearning4j: A deep learning package for Weka based on Deeplearning4j
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.04.013
– volume: 1
  start-page: 67
  year: 1997
  ident: ref_42
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 73
  start-page: 1923
  year: 2010
  ident: ref_36
  article-title: Feature selection for time series prediction—A combined filter and wrapper approach for neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.017
– ident: ref_39
  doi: 10.1109/ICASSP.2018.8462413
– ident: ref_26
  doi: 10.1145/3109761.3158404
– volume: 30
  start-page: 1
  year: 2017
  ident: ref_38
  article-title: Feature Selection Using Lasso
  publication-title: VU Amst. Res. Pap. Bus. Anal.
– ident: ref_53
  doi: 10.3390/s19204538
– ident: ref_47
  doi: 10.1007/3-540-36434-X_2
– volume: 19
  start-page: 155
  year: 2017
  ident: ref_57
  article-title: Glucose Outcomes with the In-Home Use of a Hybrid Closed-Loop Insulin Delivery System in Adolescents and Adults with Type 1 Diabetes
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2016.0421
– ident: ref_72
  doi: 10.1145/3398329.3398356
– ident: ref_29
  doi: 10.1109/DASA51403.2020.9317124
– ident: ref_52
  doi: 10.1007/978-3-030-46147-8_35
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_14
  article-title: Variables to Be Monitored via Biomedical Sensors for Complete Type 1 Diabetes Mellitus Management: An Extension of the “On-Board” Concept
  publication-title: J. Diabetes Res.
– ident: ref_15
  doi: 10.3390/sym11091164
– ident: ref_56
  doi: 10.1007/978-3-319-25913-0_9
– ident: ref_61
  doi: 10.1007/978-3-030-05318-5_4
– volume: 19
  start-page: 302
  year: 2018
  ident: ref_4
  article-title: ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes technologies
  publication-title: Pediatr. Diabetes
  doi: 10.1111/pedi.12731
– ident: ref_45
– volume: 13
  start-page: 92
  year: 2018
  ident: ref_71
  article-title: The open D1NAMO dataset: A multi-modal dataset for research on non-invasive type 1 diabetes management
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2018.09.003
– volume: 25
  start-page: 25
  year: 2007
  ident: ref_1
  article-title: Diabetes: Magnitude and Mechanisms
  publication-title: Clin. Diabetes
  doi: 10.2337/diaclin.25.1.25
– volume: 67
  start-page: 3101
  year: 2020
  ident: ref_18
  article-title: Benchmarking Machine Learning Algorithms on Blood Glucose Prediction for Type I Diabetes in Comparison with Classical Time-Series Models
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.2975959
– ident: ref_20
  doi: 10.1109/ASCC.2017.8287323
– ident: ref_9
  doi: 10.1109/ICTTA.2008.4529940
– volume: 64
  start-page: 141
  year: 2017
  ident: ref_31
  article-title: A Survey on semi-supervised feature selection methods
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.11.003
– volume: 14
  start-page: 69
  year: 2004
  ident: ref_54
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065704001899
– volume: 3
  start-page: 29
  year: 2018
  ident: ref_59
  article-title: Data mining for classification of power quality problems using WEKA and the effect of attributes on classification accuracy
  publication-title: Prot. Control. Mod. Power Syst.
  doi: 10.1186/s41601-018-0103-3
– ident: ref_3
– ident: ref_21
  doi: 10.23919/ACC.2019.8815258
– volume: 289
  start-page: 2254
  year: 2003
  ident: ref_2
  article-title: Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: Scientific review
  publication-title: JAMA
  doi: 10.1001/jama.289.17.2254
– volume: 11
  start-page: 2102
  year: 2018
  ident: ref_44
  article-title: Forecasting big time series: Old and new
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3229863.3229878
– volume: 45
  start-page: 799
  year: 2015
  ident: ref_70
  article-title: Robust Biometric Recognition from Palm Depth Images for Gloved Hands
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2015.2453203
– ident: ref_27
  doi: 10.1016/j.jestch.2020.10.005
– ident: ref_65
  doi: 10.1007/3-540-57868-4_57
– volume: 13
  start-page: 134
  year: 2020
  ident: ref_23
  article-title: Tree aggregation for random forest class probability estimation
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.11446
– ident: ref_37
– volume: 2
  start-page: 433
  year: 2010
  ident: ref_66
  article-title: Principal component analysis. Wiley interdisciplinary reviews
  publication-title: Comput. Stat.
  doi: 10.1002/wics.101
– volume: 2015
  start-page: 1
  year: 2015
  ident: ref_13
  article-title: Hybrid Feature Selection Based Weighted Least Squares Twin Support Vector Machine Approach for Diagnosing Breast Cancer, Hepatitis, and Diabetes
  publication-title: Adv. Artif. Neural Syst.
  doi: 10.1155/2015/265637
– volume: Volume 307
  start-page: 56
  year: 1988
  ident: ref_68
  article-title: On Cross-Validation for Predictor Evaluation in Time Series
  publication-title: Lecture Notes in Economics and Mathematical Systems
  doi: 10.1007/978-3-642-61564-1_4
– volume: 39
  start-page: 313
  year: 2006
  ident: ref_63
  article-title: Eliminating redundancy and irrelevance using a new MLP-based feature selection method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.09.002
– volume: 13
  start-page: 263
  year: 2018
  ident: ref_5
  article-title: Implementing a low-carbohydrate, ketogenic diet to manage type 2 diabetes mellitus
  publication-title: Expert Rev. Endocrinol. Metab.
  doi: 10.1080/17446651.2018.1523713
– ident: ref_28
  doi: 10.3390/s20092625
– volume: 9
  start-page: 447
  year: 2018
  ident: ref_58
  article-title: Educational Data Mining and Analysis of Students’ Academic Performance Using WEKA
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– volume: 300
  start-page: 70
  year: 2018
  ident: ref_10
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– volume: 97
  start-page: 273
  year: 1997
  ident: ref_11
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– ident: ref_25
– ident: ref_12
  doi: 10.1109/ICSMC.2008.4811692
– ident: ref_48
  doi: 10.1007/978-1-4614-6849-3
– ident: ref_46
– volume: Volume 39
  start-page: 1437
  year: 2013
  ident: ref_8
  article-title: Embedded Real-Time Model Predictive Control for Glucose Regulation
  publication-title: XXVI Brazilian Congress on Biomedical Engineering
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_30
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 13
  year: 2010
  ident: ref_34
  article-title: Feature Subset Selection Problem using Wrapper Approach in Supervised Learning
  publication-title: Int. J. Comput. Appl.
– ident: ref_51
  doi: 10.1007/978-3-642-31537-4_13
– volume: 6
  start-page: 37
  year: 1991
  ident: ref_64
  article-title: Instance-based learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1007/BF00153759
– ident: ref_69
  doi: 10.1007/978-0-387-09823-4_66
– volume: 34
  start-page: 483
  year: 2012
  ident: ref_40
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowl. Inf. Syst.
– ident: ref_19
– ident: ref_43
– ident: ref_7
  doi: 10.1145/2350716.2350742
– ident: ref_22
– volume: 44
  start-page: 57
  year: 2018
  ident: ref_49
  article-title: Multiple classifiers in biometrics. part 1: Fundamentals and review
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.12.003
SSID ssj0000913810
Score 2.285858
Snippet Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic insulin production resulting in chronic hyperglycemia. DM1 subjects...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1742
SubjectTerms Algorithms
Datasets
Diabetes
diabetes mellitus
Feature selection
Forecasting
Forecasting techniques
Glucose monitoring
Homeostasis
Hyperglycemia
Hypoglycemia
Insulin
Machine learning
Pancreas
Physiology
time series forecasting
Variables
Wearable computers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BlgMcgBYQCwXNoQdAikhix3ZOaFu1cKCrFR9Sb1H8kWWlbbYkWSSu_HI8Xu9SBOLCNZmD5RmP39jj9wCOlDNFZgue6DzlCRepSjST1idDovvOmVMiPBR-L6dTdXFRzuKBWx_bKrc5MSRquzJ0Rv46LxgncjQp31x9TUg1im5Xo4TGTdgjpjI-gr3j0-nsw-6UhVgvVZZuHuYxX9_TvbDf8bgH4vlvW1Fg7P8jIYdd5uze_47vPtyN-BInm4DYhxuuPYA711gHD2A_ruceX0TS6ZcP4McET3aShLhqkLDhunP4MQjleO9h3VokJU9T99QrjeehD9NhpGid42Q59yMavlz26KEwzjq6BAqmb5ffTe0uFzUuWqTSFzOMvTg9nhMn6LDuH8Lns9NPJ--SqM-QGCb4kNRMFq7grtDcA0NbplxqaRUTNjclQTubmlymmZbC-gDgpWtsYTLpmlwHHppHMGpXrXsMyJivvOraNZr5EsoILVitdWMETSlXegyvtq6qTCQvJw2NZeWLGPJrdc2vYzjaGV9tODv-bnZMPt-ZENF2-LDq5lVct5UrG1Fm1qnMKK6cB0c-6ZnUpbYU0qPBMRxuw6GKq7-vfsXCk3__fgq3c-qRCV3ghzAaurV7BrfMt2HRd89jMP8ExO_96A
  priority: 102
  providerName: ProQuest
Title A Comparison of Feature Selection and Forecasting Machine Learning Algorithms for Predicting Glycaemia in Type 1 Diabetes Mellitus
URI https://www.proquest.com/docview/2534609577
https://doaj.org/article/e9f691de81c848e293400c0e0d967615
Volume 11
WOSCitedRecordID wos000632092600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhyaE9lCZt6TYfzCGHtGBqW7IkHzchSQPZxSQppCdjfThd2HiL7Q302l9ejawsW1rIpUebAQnNSPMeGr0h5EhanSUmY5FKYxYxHstIUWHcYYhy3ym1kvuHwldiOpV3d3mx1uoLa8IGeeBh4T7bvOZ5YqxMtGTSuuzkok7HNjY5dxTcq5c61LNGpvwZnCcoXTU8yKOO1-N9sMt0zAHw9I8U5JX6_zqIfXY5f01eBVgI42E6O2TDNrvk5ZpY4C7ZCduwg-OgFf3xDfk1htNVJ0FY1ICQbtlauPH9bdyiQ9UYwAacuuqwxBkmvnzSQlBWvYfx_H7RzvrvDx04BAtFi3c33vRi_lNX9mFWwawBZKyQQCih6WCCUp79sntLvp6f3Z5-iUJbhUhTzvqooiKzGbOZYg7PmTxmQgkjKTepzhGRmVinIk6U4Mb5jeW2NplOhK1T5eVj3pHNZtHY9wQodYSpqmytqGM-mitOK6VqzVHGjkk1Ip-eVrrUQXMcW1_MS8c90C3lmltG5Ghl_GOQ2vi32Qm6bGWC-tj-h4uaMkRN-VzUjMj-k8PLsGm7Ms0ow4kL8eF_jLFHXqRYAONLvPfJZt8u7QHZ1o_9rGsPydbJ2bS4PvRx676Ky0nx7Tf65PDS
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHRJwADZAFAb4MCRAikhsx3YOCJXBWLW2qsSQtlOIf6RU6tKRtKBd-YP4G_FLkzIE4rYD18SKIufLe9-zn78PYFc5E0c25oGmIQ-4CFWgmbQ-GKLcN2VOifqg8ECORur4OBlvwI_2LAy2VbYxsQ7Udm5wjfwljRlHcTQpX599CdA1CndXWwuNFSwO3fk3X7JVr_pv_fd9Sun-u6O9g6BxFQgME3wRZEzGLuYu1tzTGZuEXGppFROWmgQJiQ0NlWGkpbD-tXnichubSLqc6lo9xT_3CmxyD3bVgc1xfzg-Wa_qoMqmisLVQUDGkhD3oX2G5Z74099SX-0Q8EcCqLPa_q3_bT5uw82GP5PeCvBbsOGKbbhxQVVxG7aaeFWRZ42o9vM78L1H9taWi2SeE-S-y9KRD7URkEcnyQpL0KnUZBX2gpNh3WfqSCNBOyG92cTPwOLzaUU81SfjEje56qHvZ-cmc6fTjEwLgqU9iUjTa1SRIWqeLpbVXfh4KTNzDzrFvHD3gTDmK8ssc7lmvkQ0QguWaZ0bgZ-QK92FFy00UtOIs6NHyCz1RRriKL2Aoy7srgefrTRJ_j7sDWJsPQSFxOsL83KSNnEpdUkuksg6FRnFlfPkzwd1E7rQJkJ6ttuFnRZ-aRPdqvQX9h78-_YTuHZwNBykg_7o8CFcp9gPVHe870BnUS7dI7hqvi6mVfm4-ZEIfLpsrP4E8x5ZBw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLbGhhAcgA3QCgN8GBIgRUtix3YOCJWNQrW1igRI2ynEH-kqdelIUtCu_Cx-HX5dpwyBuO3ANXkVKfbj98N-_TwI7QqjkkgnNJBxSAPKQhFIwrV1hkD3HRMjmLsofMTHY3F8nGZr6Ed3FwbaKjuf6By1nivYI9-LE0KBHI3zvdK3RWQHg9fnXwJQkIKT1k5OYwmRQ3PxzZZvzavhgZ3rZ3E8ePtx_33gFQYCRRhtg4LwxCTUJJLa1EanIeWSa0GYjlUKyYkOVczDSHKm7S_Q1JQ6URE3ZSwdk4r97jW0YVNyatfYRjYcZSerHR5g3BRRuLwUSEgawpm0jbbUFgHxb2HQqQX8EQxchBvc-Z_H5i667fNq3F8uhE20ZqotdOsS2-IW2vR-rMHPPdn2i3voex_vr6QY8bzEkBMvaoM_OIEgi1pcVBqDgqkqGugRxyPXf2qwp6ad4P5sYkegPT1rsC0BcFbD4ZczfTe7UIU5mxZ4WmEo-XGEfQ9Sg0fAhdoumvvo05WMzAO0Xs0rs40wIbbiLApTSmJLR8UkI4WUpWIwnVTIHnrZwSRXnrQdtENmuS3eAFP5JUz10O7K-HzJVfJ3szeAt5UJEIy7B_N6knt_lZu0ZGmkjYiUoMLYpNA6exWaUKeM2yy4h3Y6KObe6zX5Lxw-_Pfrp-iGBWh-NBwfPkI3Y2gTco3wO2i9rRfmMbquvrbTpn7i1xRGn68aqj8B1odhxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+Feature+Selection+and+Forecasting+Machine+Learning+Algorithms+for+Predicting+Glycaemia+in+Type+1+Diabetes+Mellitus&rft.jtitle=Applied+sciences&rft.au=Ignacio+Rodr%C3%ADguez-Rodr%C3%ADguez&rft.au=Jos%C3%A9-V%C3%ADctor+Rodr%C3%ADguez&rft.au=Wai+Lok+Woo&rft.au=Bo+Wei&rft.date=2021-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=4&rft.spage=1742&rft_id=info:doi/10.3390%2Fapp11041742&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e9f691de81c848e293400c0e0d967615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon