Big Data Mining and Classification of Intelligent Material Science Data Using Machine Learning

There is a high need for a big data repository for material compositions and their derived analytics of metal strength, in the material science community. Currently, many researchers maintain their own excel sheets, prepared manually by their team by tabulating the experimental data collected from s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 11; číslo 18; s. 8596
Hlavní autori: Chittam, Swetha, Gokaraju, Balakrishna, Xu, Zhigang, Sankar, Jagannathan, Roy, Kaushik
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2021
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract There is a high need for a big data repository for material compositions and their derived analytics of metal strength, in the material science community. Currently, many researchers maintain their own excel sheets, prepared manually by their team by tabulating the experimental data collected from scientific journals, and analyzing the data by performing manual calculations using formulas to determine the strength of the material. In this study, we propose a big data storage for material science data and its processing parameters information to address the laborious process of data tabulation from scientific articles, data mining techniques to retrieve the information from databases to perform big data analytics, and a machine learning prediction model to determine material strength insights. Three models are proposed based on Logistic regression, Support vector Machine SVM and Random Forest Algorithms. These models are trained and tested using a 10-fold cross validation approach. The Random Forest classification model performed better on the independent dataset, with 87% accuracy in comparison to Logistic regression and SVM with 72% and 78%, respectively.
AbstractList There is a high need for a big data repository for material compositions and their derived analytics of metal strength, in the material science community. Currently, many researchers maintain their own excel sheets, prepared manually by their team by tabulating the experimental data collected from scientific journals, and analyzing the data by performing manual calculations using formulas to determine the strength of the material. In this study, we propose a big data storage for material science data and its processing parameters information to address the laborious process of data tabulation from scientific articles, data mining techniques to retrieve the information from databases to perform big data analytics, and a machine learning prediction model to determine material strength insights. Three models are proposed based on Logistic regression, Support vector Machine SVM and Random Forest Algorithms. These models are trained and tested using a 10-fold cross validation approach. The Random Forest classification model performed better on the independent dataset, with 87% accuracy in comparison to Logistic regression and SVM with 72% and 78%, respectively.
Author Gokaraju, Balakrishna
Roy, Kaushik
Xu, Zhigang
Chittam, Swetha
Sankar, Jagannathan
Author_xml – sequence: 1
  givenname: Swetha
  orcidid: 0000-0002-5434-2562
  surname: Chittam
  fullname: Chittam, Swetha
– sequence: 2
  givenname: Balakrishna
  surname: Gokaraju
  fullname: Gokaraju, Balakrishna
– sequence: 3
  givenname: Zhigang
  orcidid: 0000-0003-4477-7391
  surname: Xu
  fullname: Xu, Zhigang
– sequence: 4
  givenname: Jagannathan
  surname: Sankar
  fullname: Sankar, Jagannathan
– sequence: 5
  givenname: Kaushik
  surname: Roy
  fullname: Roy, Kaushik
BookMark eNptkUtrWzEQhUVwoGmSVf-AoMviRLJ09Vi2bpsabLJIvI0YPa4jcyu5krzov8913IApmc0Mwzkfh5mPaJJyCgh9ouSGMU1uYbejlCrVaXGGLmZEiinjVE5O5g_outYtGUtTpii5QE_f4gZ_hwZ4FVNMGwzJ4_kAtcY-OmgxJ5x7vEgtDEPchNTwClooEQb84GJILhzt63pwr8A9xxTwMkA54K7QeQ9DDdf_-iVa__zxOP81Xd7fLeZfl1PHBG9TbYnohFaWOi65tMxycEwzRnoOQnHFOXWazaziHpiWVgkdAIQUUhGlHbtEiyPXZ9iaXYm_ofw1GaJ5XeSyMVBadEMwkgghfEe19Z6H3oO0nee-72ZcgA1yZH0-snYl_9mH2sw270sa45tZJwVTnDI2quhR5UqutYTeuNhe79UKxMFQYg5fMSdfGT1f_vO8JX1P_QJiFI3W
CitedBy_id crossref_primary_10_1617_s11527_025_02650_9
crossref_primary_10_1016_j_commatsci_2022_111612
crossref_primary_10_3390_machines12120833
crossref_primary_10_1177_09540083251313522
crossref_primary_10_3390_app13064055
crossref_primary_10_3390_info16020079
crossref_primary_10_4274_ArchEpilepsy_2024_24160
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1007_s12206_023_0637_9
Cites_doi 10.1016/j.jallcom.2018.07.028
10.1007/s11837-020-04343-w
10.1007/s11837-008-0150-8
10.1109/MIC.2011.142
10.1002/jbm.a.31273
10.1016/j.msea.2019.138332
10.1016/j.biomaterials.2004.09.049
10.3390/ma4122197
10.1109/Multi-Temp.2011.6005095
10.1109/IGARSS.2009.5417885
10.1002/9781118062029
10.18653/v1/N18-1170
10.4028/www.scientific.net/MSF.419-422.57
10.1007/s00170-007-1279-2
10.1109/IEIS.2018.8597855
10.1016/j.msea.2020.139332
10.1109/I-SMAC.2017.8058365
10.1155/2020/5093620
10.1016/j.actbio.2014.07.005
10.1016/j.msea.2010.11.037
10.23919/MIPRO.2018.8400041
10.1007/978-3-319-48099-2
10.1109/JSTARS.2010.2103927
10.1016/j.scriptamat.2011.10.008
10.1016/j.biomaterials.2005.10.003
10.1587/transinf.2019EDL8170
10.3390/met11060926
10.1016/S1003-6326(19)65132-0
10.1016/j.jma.2019.08.001
10.3390/info10040150
10.1016/S1003-6326(12)61744-0
10.22224/gistbok/2018.2.10
10.1145/2494444.2494447
10.1109/ICAICTA.2016.7803111
10.1016/j.jma.2013.02.002
10.1016/j.jma.2013.02.006
10.1016/j.jma.2014.11.005
10.1109/WIECON-ECE48653.2019.9019922
10.1016/j.intermet.2007.10.010
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7X5
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
K6~
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11188596
DatabaseName CrossRef
Entrepreneurship Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One
ProQuest Central
ProQuest Business Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Entrepreneurship
Publicly Available Content Database
Business Premium Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Business Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
ProQuest Entrepreneurship
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_70666d519bdd4efda7b5d4df5246abe7
10_3390_app11188596
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
7X5
ABUWG
AZQEC
BEZIV
DWQXO
K6~
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-9b065698b1c4747b3b4ac39330f4a6848441c932b84da397b869eaa67678089c3
IEDL.DBID BENPR
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000699324600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:43:20 EDT 2025
Mon Jun 30 07:30:46 EDT 2025
Sat Nov 29 07:16:02 EST 2025
Tue Nov 18 21:30:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-9b065698b1c4747b3b4ac39330f4a6848441c932b84da397b869eaa67678089c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5434-2562
0000-0003-4477-7391
OpenAccessLink https://www.proquest.com/docview/2576384133?pq-origsite=%requestingapplication%
PQID 2576384133
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_70666d519bdd4efda7b5d4df5246abe7
proquest_journals_2576384133
crossref_citationtrail_10_3390_app11188596
crossref_primary_10_3390_app11188596
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Sun (ref_6) 2012; 22
ref_50
Gokaraju (ref_20) 2011; 4
Zanchetta (ref_8) 2019; 29
ref_14
ref_13
Xu (ref_1) 2019; 7
ref_12
Staiger (ref_32) 2006; 27
ref_18
ref_17
ref_16
Xu (ref_42) 2020; 72
Luo (ref_30) 2003; 419–422
Luo (ref_4) 2013; 1
Silberstein (ref_39) 2012; 16
Kwon (ref_45) 2021; 4
ref_23
Bae (ref_34) 2018; 766
ref_21
Hong (ref_11) 2014; 2
Cheng (ref_7) 2020; 786
Yan (ref_19) 2020; 2020
Gokaraju (ref_24) 2018; 2018
Kozlov (ref_36) 2008; 16
Chen (ref_25) 2014; 10
Peng (ref_35) 2019; 766
ref_38
ref_37
Witte (ref_27) 2005; 26
Easton (ref_29) 2008; 60
Li (ref_5) 2013; 1
Ullmann (ref_28) 2011; 4
Xu (ref_26) 2007; 83A
Kim (ref_33) 2011; 528
ref_47
Kwon (ref_49) 2020; 103
ref_46
ref_44
ref_43
Madhava (ref_15) 2015; 3
Gokaraju (ref_22) 2017; 2017
ref_41
Biswas (ref_10) 2012; 66
ref_40
ref_3
ref_2
ref_48
ref_9
Kulekci (ref_31) 2008; 39
References_xml – volume: 766
  start-page: 748
  year: 2018
  ident: ref_34
  article-title: Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg-Al-Zn alloy through Sn addition
  publication-title: Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.07.028
– volume: 72
  start-page: 3935
  year: 2020
  ident: ref_42
  article-title: Predicting Tensile Properties of AZ31 Magnesium Alloys by Machine Learning
  publication-title: JOM
  doi: 10.1007/s11837-020-04343-w
– volume: 60
  start-page: 57
  year: 2008
  ident: ref_29
  article-title: Magnesium alloy applications in automotive structures
  publication-title: JOM
  doi: 10.1007/s11837-008-0150-8
– volume: 16
  start-page: 13
  year: 2012
  ident: ref_39
  article-title: PNUTS in Flight: Web-Scale Data Serving at Yahoo
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2011.142
– volume: 83A
  start-page: 703
  year: 2007
  ident: ref_26
  article-title: In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.31273
– volume: 766
  start-page: 138332
  year: 2019
  ident: ref_35
  article-title: Novel low-cost magnesium alloys with high yield strength and plasticity
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138332
– volume: 26
  start-page: 3557
  year: 2005
  ident: ref_27
  article-title: In vivo corrosion of four magnesium alloys and the associated bone response
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.09.049
– volume: 4
  start-page: 2197
  year: 2011
  ident: ref_28
  article-title: In vivo degradation behavior of the magnesium alloy LANd442 in rabbit tibiae
  publication-title: Materials
  doi: 10.3390/ma4122197
– ident: ref_21
  doi: 10.1109/Multi-Temp.2011.6005095
– ident: ref_23
  doi: 10.1109/IGARSS.2009.5417885
– ident: ref_3
  doi: 10.1002/9781118062029
– ident: ref_48
– ident: ref_41
– ident: ref_46
  doi: 10.18653/v1/N18-1170
– volume: 419–422
  start-page: 57
  year: 2003
  ident: ref_30
  article-title: Recent magnesium alloy development for automotive powertrain applications
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.419-422.57
– ident: ref_13
– volume: 4
  start-page: 99
  year: 2021
  ident: ref_45
  article-title: Friend-Guard Textfooler Attack on Text Classification System
  publication-title: IEEE Access
– volume: 39
  start-page: 851
  year: 2008
  ident: ref_31
  article-title: Magnesium and its alloys applications in automotive industry
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-007-1279-2
– ident: ref_43
  doi: 10.1109/IEIS.2018.8597855
– volume: 786
  start-page: 139332
  year: 2020
  ident: ref_7
  article-title: Effects of single-pass large-strain rolling on microstructure and mechanical properties of Mg-Al-Ca alloy sheet
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139332
– volume: 3
  start-page: 943
  year: 2015
  ident: ref_15
  article-title: Big Data Electronic Health Records Data Management and Analysis on Cloud with MongoDB: A NoSQL Database
  publication-title: Int. J. Adv. Eng. Glob. Technol.
– ident: ref_16
  doi: 10.1109/I-SMAC.2017.8058365
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref_22
  article-title: Data fusion of multi-source satellite data sets for cost-effective disaster management studies
  publication-title: SoutheastCon
– volume: 2020
  start-page: 5093620
  year: 2020
  ident: ref_19
  article-title: Research on Sentiment Classification Algorithms on Online Review
  publication-title: Complexity
  doi: 10.1155/2020/5093620
– ident: ref_47
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_24
  article-title: Identification of Spatio- Temporal Patterns in Cyber Security for Detecting the Signature Identity of Hacker
  publication-title: SoutheastCon
– volume: 10
  start-page: 4561
  year: 2014
  ident: ref_25
  article-title: Recent advances on the development of magnesium alloys for biodegradable implants
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.07.005
– volume: 528
  start-page: 2062
  year: 2011
  ident: ref_33
  article-title: High-strength Mg–Al–Ca alloy with ultrafine grain size sensitive to strain rate
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.11.037
– ident: ref_40
– ident: ref_14
– ident: ref_38
  doi: 10.23919/MIPRO.2018.8400041
– ident: ref_2
  doi: 10.1007/978-3-319-48099-2
– volume: 4
  start-page: 710
  year: 2011
  ident: ref_20
  article-title: A Machine Learning Based Spatio-Temporal Data Mining Approach for Detection of Harmful Algal Blooms in the Gulf of Mexico
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2010.2103927
– volume: 66
  start-page: 89
  year: 2012
  ident: ref_10
  article-title: Evolution of sub-micron grain size and weak texture in magnesium alloy Mg–3Al–0.4 Mn by a modified multi-axial forging process
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.10.008
– volume: 27
  start-page: 1728
  year: 2006
  ident: ref_32
  article-title: Magnesium and Its Alloys as Orthopedic Biomaterials: A Review
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.10.003
– volume: 103
  start-page: 883
  year: 2020
  ident: ref_49
  article-title: Multi-targeted backdoor: Identifying backdoor attack for multiple deep neural networks
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.2019EDL8170
– ident: ref_9
  doi: 10.3390/met11060926
– volume: 29
  start-page: 2262
  year: 2019
  ident: ref_8
  article-title: Effect of asymmetric rolling under high friction co-efficient on recrystallization texture and plastic anisotropy of AA1050 alloy
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(19)65132-0
– volume: 7
  start-page: 536
  year: 2019
  ident: ref_1
  article-title: Overview of advancement and development trend on magnesium alloy
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2019.08.001
– ident: ref_50
– ident: ref_18
  doi: 10.3390/info10040150
– volume: 22
  start-page: s445
  year: 2012
  ident: ref_6
  article-title: Microstructures and mechanical properties of pure magnesium bars by high ratio extrusion and its subsequent annealing treatment
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(12)61744-0
– ident: ref_17
  doi: 10.22224/gistbok/2018.2.10
– ident: ref_37
  doi: 10.1145/2494444.2494447
– ident: ref_12
  doi: 10.1109/ICAICTA.2016.7803111
– volume: 1
  start-page: 2
  year: 2013
  ident: ref_4
  article-title: Magnesium casting technology for structural applications
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2013.02.002
– volume: 1
  start-page: 54
  year: 2013
  ident: ref_5
  article-title: Enhanced strength and ductility of Mg–Gd–Y–Zr alloys by secondary extrusion
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2013.02.006
– volume: 2
  start-page: 317
  year: 2014
  ident: ref_11
  article-title: Ductility enhancement of EW75 alloy by multi-directional forging
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2014.11.005
– ident: ref_44
  doi: 10.1109/WIECON-ECE48653.2019.9019922
– volume: 16
  start-page: 299
  year: 2008
  ident: ref_36
  article-title: Phase equilibria, thermodynamics and solidification microstructures of Mg–Sn–Ca alloys, Part 1: Experimental investigation and thermodynamic modeling of the ternary Mg–Sn–Ca system
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2007.10.010
SSID ssj0000913810
Score 2.2912056
Snippet There is a high need for a big data repository for material compositions and their derived analytics of metal strength, in the material science community....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8596
SubjectTerms Algorithms
Alloys
Automation
Big Data
Classification
classification algorithms
Data analysis
Data mining
Data models
Datasets
Ductility
Electronic health records
Literature reviews
logistic regression
Machine learning
Metals
mongodb
No-SQL database
Science
Structured Query Language-SQL
support vector machine SVM
Support vector machines
Tensile strength
Variables
Yield stress
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhBbFWsVsmhBxUW2002mxytWhRs8aDQk8vkVQrSSrv6-02yaVlQ8OJ1d_bBPDLf7E6-QagLTKWeNirJOIeEWpknLgvSBCRL-8YBemmDpZ_y8ZhPJuK5NurL94RV9MCV4q5zD7C1wxlSa2qshlxmmmqbpZSBNGEfeS8XtWIqrMGi76mrqg15xNX1_n-wC2vOM0_PX0tBgan_x0IcsstwH-1FWIhvqtdpoi0zb6HdGllgCzVjGK7wReSKvjxAb4PZFN9BCXgUJj1gmGscBl36FqCgdbyw-HFDvFniEZTB63C8X3V5aB1w53xrpcGRdXV6iF6H9y-3D0kcmZAowmiZCOkgBRNc9hV1hYIkkoIi_qOFpcA45Q79KAfZJKcaHBSRnAkD4FnbeI8LRY5QY76Ym2OEOQMQNpPKQRIKRIOxgnFOTZpK40zcRldrLRYq8on7sRbvhasrvMqLmsrbqLsR_qhoNH4XG3hzbEQ893U44DyiiB5R_OURbdRZG7OIAbkqfF1FuMvY5OQ_nnGKdlLf3BKazTqoUS4_zRnaVl_lbLU8D774DTdr47w
  priority: 102
  providerName: Directory of Open Access Journals
Title Big Data Mining and Classification of Intelligent Material Science Data Using Machine Learning
URI https://www.proquest.com/docview/2576384133
https://doaj.org/article/70666d519bdd4efda7b5d4df5246abe7
Volume 11
WOSCitedRecordID wos000699324600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1BywEO0BYQgVLtoQeoZNHY6_X4hBpoRSUSRVUrlQvW7IejSigpieH3M7PZpJFAXHq0d21ZejOzb2fHbwAOybhcZKOyEpEy3doq41VQZ2RN3g9M6G0bkf5ajUZ4fV2PU8JtkcoqVzExBmo_c5Ij_yDEuEAOucXH25-ZdI2S09XUQuMhbItSGdv59uB0NL5YZ1lE9RL7x8sf8wre38u5MLs3Yiky_RtLUVTs_ysgx1Xm7Nl9v28HniZ-qU6WBrELD8J0D55sqA7uwW7y54V6l0Sn3z-H74ObifpMHalhbBmhaOpV7JgptUQRPjVr1flawbNTQ-qi-ar0vuXjsQaBx6RGM6gk3zp5AVdnp5efvmSp90LmCqO7rLbMTUyNtu807zhsYTW5QrIfrSaDGplGOeZ-FrUn5jQWTR2IRP4Nj7F2xUvYms6m4RUoNER1W1rH3EZT4Sm0tUHUIc9tYFvpwdEKhsYlYXLpj_Gj4Q2KYNZsYNaDw_Xk26Uex7-nDQTP9RQR0Y43ZvNJk3yyqWTv5pnCWu91aD1VtvTat2WuDdlQ9WB_BXWTPHvR3OH8-v_Db-BxLvUvsR5tH7a6-a_wFh65393NYn6QDPUg5gD4anw-HH_7A8_p9Ho
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFAl6AFpABAr4UCRAWpGsvV7vASFKqRo1iXIoUrmwjD82qoSSkmxB_Kn-xnq83hAJxK0HrmuvpV0_z7yxx28A9lCalGSjkkwpTESl88R7QZGglmnfeUKvqzDTw3w8VqenxWQDLtu7MJRW2drEYKjt3NAe-Rsixlx5k8vfnX9PqGoUna62JTQaWBy7Xz99yLZ8Ozjw8_siTQ8_nnw4SmJVgcRwKeqk0N7rykLpvhGeS2uuBRpOcX0lUCqhPEEwntVoJSx6b62VLBwiCZupnioM9-PegE1BYO_A5mQwmnxe7eqQyqbq95qLgJwXPTqH9uZEqYzKAqy5vlAh4A8HELza4d3_7X_cgzuRP7P3DeC3YcPNdmBrTVVxB7ajvVqyl1FU-9V9-LJ_NmUHWCMbhZIYDGeWhYqglCsV4MnmFRusFEprNsI6LE8Wx2teDzkWvo1yUB2L8rTTB_DpWr76IXRm85l7BExJxKLKtPHcTSC36KpCKiVcmmrn10IXXrfTXpoovE71P76VPgAjjJRrGOnC3qrzeaM38vdu-4SfVRcSCQ8P5otpGW1OmVNsaj1F19YKV1nMdWaFrbJUSNQu78JuC60yWq5l-RtXj__d_BxuHZ2MhuVwMD5-ArdTyvUJuXe70KkXF-4p3DQ_6rPl4llcJAy-XjcOrwAtG0u0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4AC2gBgrsoUiAZDXxrtfrA0KUEBG1iXIAqVxw98tRJZS0iQHx1_h1zKzXIRKIWw9cvR-SvW9m3npn3wAcaGlTko1KMqV0IiqTJxgFRaKNTPseCb2pwkqf5JOJOj0tplvws70LQ2mVrU8MjtotLP0jPyRizBW6XH5YxbSI6WD4-uIyoQpSdNLaltNoIHLsf3zH7dvq1WiAa_0sTYfvPrx9n8QKA4nlUtRJYTACy0KZvhXIqw03QltOe_xKaKmEQrJgkeEYJZzGyG2ULLzWJHKmeqqwHOe9Bts4VKQd2J6OxtNP6z88pLip-r3mUiDnRY_OpNG1KJVRiYCNMBiqBfwRDEKEG975n7_NXbgdeTV70xjCDmz5-S7c2lBb3IWd6MdW7HkU235xDz4fnc_YQNeajUOpDKbnjoVKoZRDFWDLFhUbrZVLazbWdTBbFudrhofcC2yj3FTPomzt7D58vJK3fgCd-WLu94ApqXVRZcYipxOaO-2rQiolfJoajzbShZctBEobBdmpLsiXEjdmhJdyAy9dOFh3vmh0SP7e7YiwtO5C4uHhwWI5K6MvKnPaszqk7sY54Sunc5M54aosFVIbn3dhv4VZGT3aqvyNsYf_bn4KNxB85clocvwIbqaUAhRS8vahUy-_-sdw3X6rz1fLJ9FeGJxdNQx_AdcuVHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Data+Mining+and+Classification+of+Intelligent+Material+Science+Data+Using+Machine+Learning&rft.jtitle=Applied+sciences&rft.au=Chittam%2C+Swetha&rft.au=Gokaraju%2C+Balakrishna&rft.au=Xu%2C+Zhigang&rft.au=Jagannathan+Sankar&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=18&rft.spage=8596&rft_id=info:doi/10.3390%2Fapp11188596&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon