Big Data Mining and Classification of Intelligent Material Science Data Using Machine Learning
There is a high need for a big data repository for material compositions and their derived analytics of metal strength, in the material science community. Currently, many researchers maintain their own excel sheets, prepared manually by their team by tabulating the experimental data collected from s...
Uložené v:
| Vydané v: | Applied sciences Ročník 11; číslo 18; s. 8596 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2021
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | There is a high need for a big data repository for material compositions and their derived analytics of metal strength, in the material science community. Currently, many researchers maintain their own excel sheets, prepared manually by their team by tabulating the experimental data collected from scientific journals, and analyzing the data by performing manual calculations using formulas to determine the strength of the material. In this study, we propose a big data storage for material science data and its processing parameters information to address the laborious process of data tabulation from scientific articles, data mining techniques to retrieve the information from databases to perform big data analytics, and a machine learning prediction model to determine material strength insights. Three models are proposed based on Logistic regression, Support vector Machine SVM and Random Forest Algorithms. These models are trained and tested using a 10-fold cross validation approach. The Random Forest classification model performed better on the independent dataset, with 87% accuracy in comparison to Logistic regression and SVM with 72% and 78%, respectively. |
|---|---|
| AbstractList | There is a high need for a big data repository for material compositions and their derived analytics of metal strength, in the material science community. Currently, many researchers maintain their own excel sheets, prepared manually by their team by tabulating the experimental data collected from scientific journals, and analyzing the data by performing manual calculations using formulas to determine the strength of the material. In this study, we propose a big data storage for material science data and its processing parameters information to address the laborious process of data tabulation from scientific articles, data mining techniques to retrieve the information from databases to perform big data analytics, and a machine learning prediction model to determine material strength insights. Three models are proposed based on Logistic regression, Support vector Machine SVM and Random Forest Algorithms. These models are trained and tested using a 10-fold cross validation approach. The Random Forest classification model performed better on the independent dataset, with 87% accuracy in comparison to Logistic regression and SVM with 72% and 78%, respectively. |
| Author | Gokaraju, Balakrishna Roy, Kaushik Xu, Zhigang Chittam, Swetha Sankar, Jagannathan |
| Author_xml | – sequence: 1 givenname: Swetha orcidid: 0000-0002-5434-2562 surname: Chittam fullname: Chittam, Swetha – sequence: 2 givenname: Balakrishna surname: Gokaraju fullname: Gokaraju, Balakrishna – sequence: 3 givenname: Zhigang orcidid: 0000-0003-4477-7391 surname: Xu fullname: Xu, Zhigang – sequence: 4 givenname: Jagannathan surname: Sankar fullname: Sankar, Jagannathan – sequence: 5 givenname: Kaushik surname: Roy fullname: Roy, Kaushik |
| BookMark | eNptkUtrWzEQhUVwoGmSVf-AoMviRLJ09Vi2bpsabLJIvI0YPa4jcyu5krzov8913IApmc0Mwzkfh5mPaJJyCgh9ouSGMU1uYbejlCrVaXGGLmZEiinjVE5O5g_outYtGUtTpii5QE_f4gZ_hwZ4FVNMGwzJ4_kAtcY-OmgxJ5x7vEgtDEPchNTwClooEQb84GJILhzt63pwr8A9xxTwMkA54K7QeQ9DDdf_-iVa__zxOP81Xd7fLeZfl1PHBG9TbYnohFaWOi65tMxycEwzRnoOQnHFOXWazaziHpiWVgkdAIQUUhGlHbtEiyPXZ9iaXYm_ofw1GaJ5XeSyMVBadEMwkgghfEe19Z6H3oO0nee-72ZcgA1yZH0-snYl_9mH2sw270sa45tZJwVTnDI2quhR5UqutYTeuNhe79UKxMFQYg5fMSdfGT1f_vO8JX1P_QJiFI3W |
| CitedBy_id | crossref_primary_10_1617_s11527_025_02650_9 crossref_primary_10_1016_j_commatsci_2022_111612 crossref_primary_10_3390_machines12120833 crossref_primary_10_1177_09540083251313522 crossref_primary_10_3390_app13064055 crossref_primary_10_3390_info16020079 crossref_primary_10_4274_ArchEpilepsy_2024_24160 crossref_primary_10_1007_s11831_024_10100_y crossref_primary_10_1007_s12206_023_0637_9 |
| Cites_doi | 10.1016/j.jallcom.2018.07.028 10.1007/s11837-020-04343-w 10.1007/s11837-008-0150-8 10.1109/MIC.2011.142 10.1002/jbm.a.31273 10.1016/j.msea.2019.138332 10.1016/j.biomaterials.2004.09.049 10.3390/ma4122197 10.1109/Multi-Temp.2011.6005095 10.1109/IGARSS.2009.5417885 10.1002/9781118062029 10.18653/v1/N18-1170 10.4028/www.scientific.net/MSF.419-422.57 10.1007/s00170-007-1279-2 10.1109/IEIS.2018.8597855 10.1016/j.msea.2020.139332 10.1109/I-SMAC.2017.8058365 10.1155/2020/5093620 10.1016/j.actbio.2014.07.005 10.1016/j.msea.2010.11.037 10.23919/MIPRO.2018.8400041 10.1007/978-3-319-48099-2 10.1109/JSTARS.2010.2103927 10.1016/j.scriptamat.2011.10.008 10.1016/j.biomaterials.2005.10.003 10.1587/transinf.2019EDL8170 10.3390/met11060926 10.1016/S1003-6326(19)65132-0 10.1016/j.jma.2019.08.001 10.3390/info10040150 10.1016/S1003-6326(12)61744-0 10.22224/gistbok/2018.2.10 10.1145/2494444.2494447 10.1109/ICAICTA.2016.7803111 10.1016/j.jma.2013.02.002 10.1016/j.jma.2013.02.006 10.1016/j.jma.2014.11.005 10.1109/WIECON-ECE48653.2019.9019922 10.1016/j.intermet.2007.10.010 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7X5 ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO K6~ PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app11188596 |
| DatabaseName | CrossRef Entrepreneurship Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One ProQuest Central ProQuest Business Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef ProQuest Entrepreneurship Publicly Available Content Database Business Premium Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Business Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef ProQuest Entrepreneurship |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_70666d519bdd4efda7b5d4df5246abe7 10_3390_app11188596 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS 7X5 ABUWG AZQEC BEZIV DWQXO K6~ PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c364t-9b065698b1c4747b3b4ac39330f4a6848441c932b84da397b869eaa67678089c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000699324600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:43:20 EDT 2025 Mon Jun 30 07:30:46 EDT 2025 Sat Nov 29 07:16:02 EST 2025 Tue Nov 18 21:30:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-9b065698b1c4747b3b4ac39330f4a6848441c932b84da397b869eaa67678089c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5434-2562 0000-0003-4477-7391 |
| OpenAccessLink | https://www.proquest.com/docview/2576384133?pq-origsite=%requestingapplication% |
| PQID | 2576384133 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_70666d519bdd4efda7b5d4df5246abe7 proquest_journals_2576384133 crossref_citationtrail_10_3390_app11188596 crossref_primary_10_3390_app11188596 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Sun (ref_6) 2012; 22 ref_50 Gokaraju (ref_20) 2011; 4 Zanchetta (ref_8) 2019; 29 ref_14 ref_13 Xu (ref_1) 2019; 7 ref_12 Staiger (ref_32) 2006; 27 ref_18 ref_17 ref_16 Xu (ref_42) 2020; 72 Luo (ref_30) 2003; 419–422 Luo (ref_4) 2013; 1 Silberstein (ref_39) 2012; 16 Kwon (ref_45) 2021; 4 ref_23 Bae (ref_34) 2018; 766 ref_21 Hong (ref_11) 2014; 2 Cheng (ref_7) 2020; 786 Yan (ref_19) 2020; 2020 Gokaraju (ref_24) 2018; 2018 Kozlov (ref_36) 2008; 16 Chen (ref_25) 2014; 10 Peng (ref_35) 2019; 766 ref_38 ref_37 Witte (ref_27) 2005; 26 Easton (ref_29) 2008; 60 Li (ref_5) 2013; 1 Ullmann (ref_28) 2011; 4 Xu (ref_26) 2007; 83A Kim (ref_33) 2011; 528 ref_47 Kwon (ref_49) 2020; 103 ref_46 ref_44 ref_43 Madhava (ref_15) 2015; 3 Gokaraju (ref_22) 2017; 2017 ref_41 Biswas (ref_10) 2012; 66 ref_40 ref_3 ref_2 ref_48 ref_9 Kulekci (ref_31) 2008; 39 |
| References_xml | – volume: 766 start-page: 748 year: 2018 ident: ref_34 article-title: Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg-Al-Zn alloy through Sn addition publication-title: Alloy. Compd. doi: 10.1016/j.jallcom.2018.07.028 – volume: 72 start-page: 3935 year: 2020 ident: ref_42 article-title: Predicting Tensile Properties of AZ31 Magnesium Alloys by Machine Learning publication-title: JOM doi: 10.1007/s11837-020-04343-w – volume: 60 start-page: 57 year: 2008 ident: ref_29 article-title: Magnesium alloy applications in automotive structures publication-title: JOM doi: 10.1007/s11837-008-0150-8 – volume: 16 start-page: 13 year: 2012 ident: ref_39 article-title: PNUTS in Flight: Web-Scale Data Serving at Yahoo publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2011.142 – volume: 83A start-page: 703 year: 2007 ident: ref_26 article-title: In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.31273 – volume: 766 start-page: 138332 year: 2019 ident: ref_35 article-title: Novel low-cost magnesium alloys with high yield strength and plasticity publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138332 – volume: 26 start-page: 3557 year: 2005 ident: ref_27 article-title: In vivo corrosion of four magnesium alloys and the associated bone response publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.09.049 – volume: 4 start-page: 2197 year: 2011 ident: ref_28 article-title: In vivo degradation behavior of the magnesium alloy LANd442 in rabbit tibiae publication-title: Materials doi: 10.3390/ma4122197 – ident: ref_21 doi: 10.1109/Multi-Temp.2011.6005095 – ident: ref_23 doi: 10.1109/IGARSS.2009.5417885 – ident: ref_3 doi: 10.1002/9781118062029 – ident: ref_48 – ident: ref_41 – ident: ref_46 doi: 10.18653/v1/N18-1170 – volume: 419–422 start-page: 57 year: 2003 ident: ref_30 article-title: Recent magnesium alloy development for automotive powertrain applications publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.419-422.57 – ident: ref_13 – volume: 4 start-page: 99 year: 2021 ident: ref_45 article-title: Friend-Guard Textfooler Attack on Text Classification System publication-title: IEEE Access – volume: 39 start-page: 851 year: 2008 ident: ref_31 article-title: Magnesium and its alloys applications in automotive industry publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-007-1279-2 – ident: ref_43 doi: 10.1109/IEIS.2018.8597855 – volume: 786 start-page: 139332 year: 2020 ident: ref_7 article-title: Effects of single-pass large-strain rolling on microstructure and mechanical properties of Mg-Al-Ca alloy sheet publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139332 – volume: 3 start-page: 943 year: 2015 ident: ref_15 article-title: Big Data Electronic Health Records Data Management and Analysis on Cloud with MongoDB: A NoSQL Database publication-title: Int. J. Adv. Eng. Glob. Technol. – ident: ref_16 doi: 10.1109/I-SMAC.2017.8058365 – volume: 2017 start-page: 1 year: 2017 ident: ref_22 article-title: Data fusion of multi-source satellite data sets for cost-effective disaster management studies publication-title: SoutheastCon – volume: 2020 start-page: 5093620 year: 2020 ident: ref_19 article-title: Research on Sentiment Classification Algorithms on Online Review publication-title: Complexity doi: 10.1155/2020/5093620 – ident: ref_47 – volume: 2018 start-page: 1 year: 2018 ident: ref_24 article-title: Identification of Spatio- Temporal Patterns in Cyber Security for Detecting the Signature Identity of Hacker publication-title: SoutheastCon – volume: 10 start-page: 4561 year: 2014 ident: ref_25 article-title: Recent advances on the development of magnesium alloys for biodegradable implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.07.005 – volume: 528 start-page: 2062 year: 2011 ident: ref_33 article-title: High-strength Mg–Al–Ca alloy with ultrafine grain size sensitive to strain rate publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.11.037 – ident: ref_40 – ident: ref_14 – ident: ref_38 doi: 10.23919/MIPRO.2018.8400041 – ident: ref_2 doi: 10.1007/978-3-319-48099-2 – volume: 4 start-page: 710 year: 2011 ident: ref_20 article-title: A Machine Learning Based Spatio-Temporal Data Mining Approach for Detection of Harmful Algal Blooms in the Gulf of Mexico publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2010.2103927 – volume: 66 start-page: 89 year: 2012 ident: ref_10 article-title: Evolution of sub-micron grain size and weak texture in magnesium alloy Mg–3Al–0.4 Mn by a modified multi-axial forging process publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.10.008 – volume: 27 start-page: 1728 year: 2006 ident: ref_32 article-title: Magnesium and Its Alloys as Orthopedic Biomaterials: A Review publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.10.003 – volume: 103 start-page: 883 year: 2020 ident: ref_49 article-title: Multi-targeted backdoor: Identifying backdoor attack for multiple deep neural networks publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2019EDL8170 – ident: ref_9 doi: 10.3390/met11060926 – volume: 29 start-page: 2262 year: 2019 ident: ref_8 article-title: Effect of asymmetric rolling under high friction co-efficient on recrystallization texture and plastic anisotropy of AA1050 alloy publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(19)65132-0 – volume: 7 start-page: 536 year: 2019 ident: ref_1 article-title: Overview of advancement and development trend on magnesium alloy publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2019.08.001 – ident: ref_50 – ident: ref_18 doi: 10.3390/info10040150 – volume: 22 start-page: s445 year: 2012 ident: ref_6 article-title: Microstructures and mechanical properties of pure magnesium bars by high ratio extrusion and its subsequent annealing treatment publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(12)61744-0 – ident: ref_17 doi: 10.22224/gistbok/2018.2.10 – ident: ref_37 doi: 10.1145/2494444.2494447 – ident: ref_12 doi: 10.1109/ICAICTA.2016.7803111 – volume: 1 start-page: 2 year: 2013 ident: ref_4 article-title: Magnesium casting technology for structural applications publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2013.02.002 – volume: 1 start-page: 54 year: 2013 ident: ref_5 article-title: Enhanced strength and ductility of Mg–Gd–Y–Zr alloys by secondary extrusion publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2013.02.006 – volume: 2 start-page: 317 year: 2014 ident: ref_11 article-title: Ductility enhancement of EW75 alloy by multi-directional forging publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2014.11.005 – ident: ref_44 doi: 10.1109/WIECON-ECE48653.2019.9019922 – volume: 16 start-page: 299 year: 2008 ident: ref_36 article-title: Phase equilibria, thermodynamics and solidification microstructures of Mg–Sn–Ca alloys, Part 1: Experimental investigation and thermodynamic modeling of the ternary Mg–Sn–Ca system publication-title: Intermetallics doi: 10.1016/j.intermet.2007.10.010 |
| SSID | ssj0000913810 |
| Score | 2.2912056 |
| Snippet | There is a high need for a big data repository for material compositions and their derived analytics of metal strength, in the material science community.... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 8596 |
| SubjectTerms | Algorithms Alloys Automation Big Data Classification classification algorithms Data analysis Data mining Data models Datasets Ductility Electronic health records Literature reviews logistic regression Machine learning Metals mongodb No-SQL database Science Structured Query Language-SQL support vector machine SVM Support vector machines Tensile strength Variables Yield stress |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhBbFWsVsmhBxUW2002mxytWhRs8aDQk8vkVQrSSrv6-02yaVlQ8OJ1d_bBPDLf7E6-QagLTKWeNirJOIeEWpknLgvSBCRL-8YBemmDpZ_y8ZhPJuK5NurL94RV9MCV4q5zD7C1wxlSa2qshlxmmmqbpZSBNGEfeS8XtWIqrMGi76mrqg15xNX1_n-wC2vOM0_PX0tBgan_x0IcsstwH-1FWIhvqtdpoi0zb6HdGllgCzVjGK7wReSKvjxAb4PZFN9BCXgUJj1gmGscBl36FqCgdbyw-HFDvFniEZTB63C8X3V5aB1w53xrpcGRdXV6iF6H9y-3D0kcmZAowmiZCOkgBRNc9hV1hYIkkoIi_qOFpcA45Q79KAfZJKcaHBSRnAkD4FnbeI8LRY5QY76Ym2OEOQMQNpPKQRIKRIOxgnFOTZpK40zcRldrLRYq8on7sRbvhasrvMqLmsrbqLsR_qhoNH4XG3hzbEQ893U44DyiiB5R_OURbdRZG7OIAbkqfF1FuMvY5OQ_nnGKdlLf3BKazTqoUS4_zRnaVl_lbLU8D774DTdr47w priority: 102 providerName: Directory of Open Access Journals |
| Title | Big Data Mining and Classification of Intelligent Material Science Data Using Machine Learning |
| URI | https://www.proquest.com/docview/2576384133 https://doaj.org/article/70666d519bdd4efda7b5d4df5246abe7 |
| Volume | 11 |
| WOSCitedRecordID | wos000699324600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1BywEO0BYQgVLtoQeoZNHY6_X4hBpoRSUSRVUrlQvW7IejSigpieH3M7PZpJFAXHq0d21ZejOzb2fHbwAOybhcZKOyEpEy3doq41VQZ2RN3g9M6G0bkf5ajUZ4fV2PU8JtkcoqVzExBmo_c5Ij_yDEuEAOucXH25-ZdI2S09XUQuMhbItSGdv59uB0NL5YZ1lE9RL7x8sf8wre38u5MLs3Yiky_RtLUVTs_ysgx1Xm7Nl9v28HniZ-qU6WBrELD8J0D55sqA7uwW7y54V6l0Sn3z-H74ObifpMHalhbBmhaOpV7JgptUQRPjVr1flawbNTQ-qi-ar0vuXjsQaBx6RGM6gk3zp5AVdnp5efvmSp90LmCqO7rLbMTUyNtu807zhsYTW5QrIfrSaDGplGOeZ-FrUn5jQWTR2IRP4Nj7F2xUvYms6m4RUoNER1W1rH3EZT4Sm0tUHUIc9tYFvpwdEKhsYlYXLpj_Gj4Q2KYNZsYNaDw_Xk26Uex7-nDQTP9RQR0Y43ZvNJk3yyqWTv5pnCWu91aD1VtvTat2WuDdlQ9WB_BXWTPHvR3OH8-v_Db-BxLvUvsR5tH7a6-a_wFh65393NYn6QDPUg5gD4anw-HH_7A8_p9Ho |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFAl6AFpABAr4UCRAWpGsvV7vASFKqRo1iXIoUrmwjD82qoSSkmxB_Kn-xnq83hAJxK0HrmuvpV0_z7yxx28A9lCalGSjkkwpTESl88R7QZGglmnfeUKvqzDTw3w8VqenxWQDLtu7MJRW2drEYKjt3NAe-Rsixlx5k8vfnX9PqGoUna62JTQaWBy7Xz99yLZ8Ozjw8_siTQ8_nnw4SmJVgcRwKeqk0N7rykLpvhGeS2uuBRpOcX0lUCqhPEEwntVoJSx6b62VLBwiCZupnioM9-PegE1BYO_A5mQwmnxe7eqQyqbq95qLgJwXPTqH9uZEqYzKAqy5vlAh4A8HELza4d3_7X_cgzuRP7P3DeC3YcPNdmBrTVVxB7ajvVqyl1FU-9V9-LJ_NmUHWCMbhZIYDGeWhYqglCsV4MnmFRusFEprNsI6LE8Wx2teDzkWvo1yUB2L8rTTB_DpWr76IXRm85l7BExJxKLKtPHcTSC36KpCKiVcmmrn10IXXrfTXpoovE71P76VPgAjjJRrGOnC3qrzeaM38vdu-4SfVRcSCQ8P5otpGW1OmVNsaj1F19YKV1nMdWaFrbJUSNQu78JuC60yWq5l-RtXj__d_BxuHZ2MhuVwMD5-ArdTyvUJuXe70KkXF-4p3DQ_6rPl4llcJAy-XjcOrwAtG0u0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4AC2gBgrsoUiAZDXxrtfrA0KUEBG1iXIAqVxw98tRJZS0iQHx1_h1zKzXIRKIWw9cvR-SvW9m3npn3wAcaGlTko1KMqV0IiqTJxgFRaKNTPseCb2pwkqf5JOJOj0tplvws70LQ2mVrU8MjtotLP0jPyRizBW6XH5YxbSI6WD4-uIyoQpSdNLaltNoIHLsf3zH7dvq1WiAa_0sTYfvPrx9n8QKA4nlUtRJYTACy0KZvhXIqw03QltOe_xKaKmEQrJgkeEYJZzGyG2ULLzWJHKmeqqwHOe9Bts4VKQd2J6OxtNP6z88pLip-r3mUiDnRY_OpNG1KJVRiYCNMBiqBfwRDEKEG975n7_NXbgdeTV70xjCDmz5-S7c2lBb3IWd6MdW7HkU235xDz4fnc_YQNeajUOpDKbnjoVKoZRDFWDLFhUbrZVLazbWdTBbFudrhofcC2yj3FTPomzt7D58vJK3fgCd-WLu94ApqXVRZcYipxOaO-2rQiolfJoajzbShZctBEobBdmpLsiXEjdmhJdyAy9dOFh3vmh0SP7e7YiwtO5C4uHhwWI5K6MvKnPaszqk7sY54Sunc5M54aosFVIbn3dhv4VZGT3aqvyNsYf_bn4KNxB85clocvwIbqaUAhRS8vahUy-_-sdw3X6rz1fLJ9FeGJxdNQx_AdcuVHQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Data+Mining+and+Classification+of+Intelligent+Material+Science+Data+Using+Machine+Learning&rft.jtitle=Applied+sciences&rft.au=Chittam%2C+Swetha&rft.au=Gokaraju%2C+Balakrishna&rft.au=Xu%2C+Zhigang&rft.au=Jagannathan+Sankar&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=18&rft.spage=8596&rft_id=info:doi/10.3390%2Fapp11188596&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |