SSMD: Semi-Supervised medical image detection with adaptive consistency and heterogeneous perturbation

•We propose a semi-supervised medical image detector with a novel adaptive consistency cost function which takes into account the confidence of proposals at each spatial position.•We develop novel heterogeneous perturbation strategies that consist of two novel components: a noisy residual block for...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical image analysis Ročník 72; s. 102117
Hlavní autori: Zhou, Hong-Yu, Wang, Chengdi, Li, Haofeng, Wang, Gang, Zhang, Shu, Li, Weimin, Yu, Yizhou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.08.2021
Elsevier BV
Predmet:
ISSN:1361-8415, 1361-8423, 1361-8423
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •We propose a semi-supervised medical image detector with a novel adaptive consistency cost function which takes into account the confidence of proposals at each spatial position.•We develop novel heterogeneous perturbation strategies that consist of two novel components: a noisy residual block for feature space, and an instance-level adversarial perturbation strategy for image space. The proposed heterogeneous perturbation strategies can improve the detection accuracy by enhancing the robustness of image features.•We experimentally verify the effectiveness of the proposed modules. The experiments suggest that the proposed detector outperforms the existing state-of-the-arts considerably. [Display omitted] Semi-Supervised classification and segmentation methods have been widely investigated in medical image analysis. Both approaches can improve the performance of fully-supervised methods with additional unlabeled data. However, as a fundamental task, semi-supervised object detection has not gained enough attention in the field of medical image analysis. In this paper, we propose a novel Semi-Supervised Medical image Detector (SSMD). The motivation behind SSMD is to provide free yet effective supervision for unlabeled data, by regularizing the predictions at each position to be consistent. To achieve the above idea, we develop a novel adaptive consistency cost function to regularize different components in the predictions. Moreover, we introduce heterogeneous perturbation strategies that work in both feature space and image space, so that the proposed detector is promising to produce powerful image representations and robust predictions. Extensive experimental results show that the proposed SSMD achieves the state-of-the-art performance at a wide range of settings. We also demonstrate the strength of each proposed module with comprehensive ablation studies.
AbstractList •We propose a semi-supervised medical image detector with a novel adaptive consistency cost function which takes into account the confidence of proposals at each spatial position.•We develop novel heterogeneous perturbation strategies that consist of two novel components: a noisy residual block for feature space, and an instance-level adversarial perturbation strategy for image space. The proposed heterogeneous perturbation strategies can improve the detection accuracy by enhancing the robustness of image features.•We experimentally verify the effectiveness of the proposed modules. The experiments suggest that the proposed detector outperforms the existing state-of-the-arts considerably. [Display omitted] Semi-Supervised classification and segmentation methods have been widely investigated in medical image analysis. Both approaches can improve the performance of fully-supervised methods with additional unlabeled data. However, as a fundamental task, semi-supervised object detection has not gained enough attention in the field of medical image analysis. In this paper, we propose a novel Semi-Supervised Medical image Detector (SSMD). The motivation behind SSMD is to provide free yet effective supervision for unlabeled data, by regularizing the predictions at each position to be consistent. To achieve the above idea, we develop a novel adaptive consistency cost function to regularize different components in the predictions. Moreover, we introduce heterogeneous perturbation strategies that work in both feature space and image space, so that the proposed detector is promising to produce powerful image representations and robust predictions. Extensive experimental results show that the proposed SSMD achieves the state-of-the-art performance at a wide range of settings. We also demonstrate the strength of each proposed module with comprehensive ablation studies.
Semi-Supervised classification and segmentation methods have been widely investigated in medical image analysis. Both approaches can improve the performance of fully-supervised methods with additional unlabeled data. However, as a fundamental task, semi-supervised object detection has not gained enough attention in the field of medical image analysis. In this paper, we propose a novel Semi-Supervised Medical image Detector (SSMD). The motivation behind SSMD is to provide free yet effective supervision for unlabeled data, by regularizing the predictions at each position to be consistent. To achieve the above idea, we develop a novel adaptive consistency cost function to regularize different components in the predictions. Moreover, we introduce heterogeneous perturbation strategies that work in both feature space and image space, so that the proposed detector is promising to produce powerful image representations and robust predictions. Extensive experimental results show that the proposed SSMD achieves the state-of-the-art performance at a wide range of settings. We also demonstrate the strength of each proposed module with comprehensive ablation studies.Semi-Supervised classification and segmentation methods have been widely investigated in medical image analysis. Both approaches can improve the performance of fully-supervised methods with additional unlabeled data. However, as a fundamental task, semi-supervised object detection has not gained enough attention in the field of medical image analysis. In this paper, we propose a novel Semi-Supervised Medical image Detector (SSMD). The motivation behind SSMD is to provide free yet effective supervision for unlabeled data, by regularizing the predictions at each position to be consistent. To achieve the above idea, we develop a novel adaptive consistency cost function to regularize different components in the predictions. Moreover, we introduce heterogeneous perturbation strategies that work in both feature space and image space, so that the proposed detector is promising to produce powerful image representations and robust predictions. Extensive experimental results show that the proposed SSMD achieves the state-of-the-art performance at a wide range of settings. We also demonstrate the strength of each proposed module with comprehensive ablation studies.
Semi-Supervised classification and segmentation methods have been widely investigated in medical image analysis. Both approaches can improve the performance of fully-supervised methods with additional unlabeled data. However, as a fundamental task, semi-supervised object detection has not gained enough attention in the field of medical image analysis. In this paper, we propose a novel Semi-Supervised Medical image Detector (SSMD). The motivation behind SSMD is to provide free yet effective supervision for unlabeled data, by regularizing the predictions at each position to be consistent. To achieve the above idea, we develop a novel adaptive consistency cost function to regularize different components in the predictions. Moreover, we introduce heterogeneous perturbation strategies that work in both feature space and image space, so that the proposed detector is promising to produce powerful image representations and robust predictions. Extensive experimental results show that the proposed SSMD achieves the state-of-the-art performance at a wide range of settings. We also demonstrate the strength of each proposed module with comprehensive ablation studies.
ArticleNumber 102117
Author Li, Haofeng
Zhou, Hong-Yu
Li, Weimin
Wang, Chengdi
Wang, Gang
Zhang, Shu
Yu, Yizhou
Author_xml – sequence: 1
  givenname: Hong-Yu
  surname: Zhou
  fullname: Zhou, Hong-Yu
  organization: Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
– sequence: 2
  givenname: Chengdi
  surname: Wang
  fullname: Wang, Chengdi
  organization: Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
– sequence: 3
  givenname: Haofeng
  orcidid: 0000-0001-9120-9843
  surname: Li
  fullname: Li, Haofeng
  organization: Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen 518000, P.R. China
– sequence: 4
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  organization: Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
– sequence: 5
  givenname: Shu
  orcidid: 0000-0002-2049-0970
  surname: Zhang
  fullname: Zhang, Shu
  organization: AI Lab, Deepwise Healthcare, Beijing 100080, P.R. China
– sequence: 6
  givenname: Weimin
  surname: Li
  fullname: Li, Weimin
  email: weimi003@scu.edu.cn
  organization: Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
– sequence: 7
  givenname: Yizhou
  orcidid: 0000-0002-0470-5548
  surname: Yu
  fullname: Yu, Yizhou
  email: yizhouy@acm.org
  organization: Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
BookMark eNqFkU1PIyEYgIlxE7XrL_BC4sXLVGAoMCYejK4fiZs9dPdMKLxTaaZDBaab_ntpazx40BOEPM-bNw8n6LAPPSB0RsmYEiouF-MlOG_GjDBaXhil8gAd01rQSnFWH37c6eQInaS0IIRIzskxaqfT33dXeApLX02HFcS1T-Dwdpw1HfZLMwfsIIPNPvT4v88v2Dizyn4N2IY--ZShtxtseodfChfDHHoIQ8JlWB7izGzFn-hHa7oEp-_nCP27__X39rF6_vPwdHvzXNla8FzJVhEhgEnXOKVmUjZWWUNAOGiJZKppheBctLNG0hmTjQIqBXcTQ7icWGPqEbrYz13F8DpAynrpk4WuM7udNJtwrqSSNSvo-Sd0EYbYl-0KJZmgnFBeqHpP2RhSitDqVSxR4kZTorft9ULv2utte71vX6zmk2V93oXI0fjuG_d670LptPYQdbK-JC5gLL-gXfBf-m8oBaLX
CitedBy_id crossref_primary_10_1038_s41392_025_02256_1
crossref_primary_10_3390_bioengineering10020225
crossref_primary_10_1145_3702638
crossref_primary_10_1109_TCSVT_2024_3427645
crossref_primary_10_3390_app13063752
crossref_primary_10_1038_s41598_022_17843_3
crossref_primary_10_1109_JBHI_2025_3527706
crossref_primary_10_1109_TMI_2024_3388328
crossref_primary_10_1109_JBHI_2024_3375889
crossref_primary_10_1016_j_bspc_2022_104502
crossref_primary_10_1109_TMI_2025_3548919
crossref_primary_10_1002_jmri_29212
crossref_primary_10_1007_s10278_025_01650_z
crossref_primary_10_1016_j_compbiomed_2023_107320
crossref_primary_10_1016_j_jfranklin_2025_107546
crossref_primary_10_1016_j_bbe_2022_09_005
crossref_primary_10_1016_j_rineng_2025_106174
crossref_primary_10_1038_s41598_024_81842_9
crossref_primary_10_1109_JBHI_2024_3360102
crossref_primary_10_1016_j_media_2022_102506
crossref_primary_10_1148_radiol_210817
crossref_primary_10_1109_TMI_2024_3366940
crossref_primary_10_1039_D3MH01500A
crossref_primary_10_1109_TIP_2025_3573516
crossref_primary_10_1109_TMI_2022_3221666
crossref_primary_10_1002_tee_23902
crossref_primary_10_1007_s00521_023_09214_4
crossref_primary_10_1016_j_semcancer_2023_02_006
crossref_primary_10_1007_s11042_023_16383_w
crossref_primary_10_1016_j_compbiomed_2023_107751
crossref_primary_10_1016_j_pccm_2023_05_001
crossref_primary_10_1016_j_compbiomed_2022_106120
crossref_primary_10_1109_TNNLS_2023_3282809
crossref_primary_10_1016_j_compbiomed_2023_107471
crossref_primary_10_46632_jeae_1_2_12
Cites_doi 10.1109/TNNLS.2019.2892409
10.1117/1.JMI.5.3.036501
10.1109/JBHI.2018.2879449
10.1016/j.media.2019.101539
10.1038/s41746-018-0065-x
10.1109/TPAMI.2018.2858821
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Aug 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Aug 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
DBID AAYXX
CITATION
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2021.102117
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 10_1016_j_media_2021_102117
S1361841521001638
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c364t-7f8066e27d9d88b779c8ca0e6def07289f66446fb971b2798e1764d5a0475caa3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681131600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Sun Sep 28 10:05:58 EDT 2025
Tue Oct 07 07:14:24 EDT 2025
Tue Nov 18 22:16:41 EST 2025
Sat Nov 29 06:59:52 EST 2025
Fri Feb 23 02:47:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nuclei detection
41A10
65D05
Semi-Supervised learning
65D17
Lesion detection
41A05
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c364t-7f8066e27d9d88b779c8ca0e6def07289f66446fb971b2798e1764d5a0475caa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0470-5548
0000-0002-2049-0970
0000-0001-9120-9843
PQID 2572614014
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2544878732
proquest_journals_2572614014
crossref_primary_10_1016_j_media_2021_102117
crossref_citationtrail_10_1016_j_media_2021_102117
elsevier_sciencedirect_doi_10_1016_j_media_2021_102117
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Medical image analysis
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Laine, Aila (bib0017) 2016
Zhang, Yang, Chen, Fredericksen, Hughes, Chen (bib0043) 2017
Zhu, Liu, Fan, Xie (bib0047) 2018
Nie, Gao, Wang, Shen (bib0031) 2018
Wang, Zhang, Zhang, Wang (bib0037) 2020
Verma, Lamb, Kannala, Bengio, Lopez-Paz (bib0036) 2019
Zhou, Yu, Bian, Hu, Ma, Zheng (bib0044) 2020
Chang, Yan, Lou, Axel, Metaxas (bib0004) 2020
Yan, Wang, Lu, Summers (bib0039) 2018; 5
Li, Zhang, Zhang, Huang, Wang, Yu (bib0022) 2019
Pezeshk, Hamidian, Petrick, Sahiner (bib0032) 2018; 23
Lin, Goyal, Girshick, He, Dollár (bib0025) 2017
Berthelot, Carlini, Goodfellow, Papernot, Oliver, Raffel (bib0003) 2019
Ding, Li, Hu, Wang (bib0008) 2017
He, Zhang, Ren, Sun (bib0013) 2016
Zhou, He, Huang, Liu, Zhu, Cui, Shao (bib0045) 2019
Athiwaratkun, Finzi, Izmailov, Wilson (bib0001) 2018
Li, Yu, Chen, Fu, Xing, Heng (bib0021) 2020
Berthelot, Carlini, Cubuk, Kurakin, Sohn, Zhang, Raffel (bib0002) 2019
He, Gkioxari, Dollár, Girshick (bib0012) 2017
Khosravan, Bagci (bib0016) 2018
Sohn, Zhang, Li, Zhang, Lee, Pfister (bib0033) 2020
Yi, Walia, Babyn (bib0040) 2018
Zlocha, Dou, Glocker (bib0048) 2019
Yu, Wang, Li, Fu, Heng (bib0041) 2019
Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0024) 2017
Ghiasi, Lin, Le (bib0009) 2018
Girshick (bib0010) 2015
Liu, Cao, Akin, Tian (bib0026) 2019
Lee (bib0019) 2013
Ke, Wang, Yan, Ren, Lau (bib0015) 2019
Lecouat, Chang, Foo, Unnikrishnan, Brown, Zenati, Beers, Chandrasekhar, Kalpathy-Cramer, Krishnaswamy (bib0018) 2018
Jeong, Lee, Kim, Kwak (bib0014) 2019
DeVries, Taylor (bib0007) 2017
Goodfellow, Shlens, Szegedy (bib0011) 2014
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0034) 2014; 15
Liao, Liang, Li, Hu, Song (bib0023) 2019; 30
Wang, Wu (bib0038) 2019
Chen, Bortsova, Juárez, van Tulder, de Bruijne (bib0006) 2019
Li, Yu, Chen, Fu, Heng (bib0020) 2018
Liu, Yu, Luo, Dou, Heng (bib0027) 2020
Tarvainen, Valpola (bib0035) 2017
Madani, Moradi, Karargyris, Syeda-Mahmood (bib0028) 2018
Madani, Ong, Tibrewal, Mofrad (bib0029) 2018; 1
Miyato, Maeda, Koyama, Ishii (bib0030) 2018; 41
Zhang, Cisse, Dauphin, Lopez-Paz (bib0042) 2017
Chen, Bentley, Mori, Misawa, Fujiwara, Rueckert (bib0005) 2019; 58
Zhou, Sodha, Siddiquee, Feng, Tajbakhsh, Gotway, Liang (bib0046) 2019
Zhang (10.1016/j.media.2021.102117_bib0043) 2017
Madani (10.1016/j.media.2021.102117_bib0029) 2018; 1
Zhou (10.1016/j.media.2021.102117_bib0046) 2019
Zlocha (10.1016/j.media.2021.102117_bib0048) 2019
Verma (10.1016/j.media.2021.102117_bib0036) 2019
Berthelot (10.1016/j.media.2021.102117_bib0003) 2019
Yu (10.1016/j.media.2021.102117_bib0041) 2019
Laine (10.1016/j.media.2021.102117_bib0017) 2016
Liao (10.1016/j.media.2021.102117_bib0023) 2019; 30
Athiwaratkun (10.1016/j.media.2021.102117_bib0001) 2018
Goodfellow (10.1016/j.media.2021.102117_bib0011) 2014
Lin (10.1016/j.media.2021.102117_bib0024) 2017
Yan (10.1016/j.media.2021.102117_bib0039) 2018; 5
Chen (10.1016/j.media.2021.102117_bib0005) 2019; 58
He (10.1016/j.media.2021.102117_bib0012) 2017
Chang (10.1016/j.media.2021.102117_bib0004) 2020
Ding (10.1016/j.media.2021.102117_bib0008) 2017
Madani (10.1016/j.media.2021.102117_bib0028) 2018
Chen (10.1016/j.media.2021.102117_bib0006) 2019
Tarvainen (10.1016/j.media.2021.102117_bib0035) 2017
Li (10.1016/j.media.2021.102117_bib0021) 2020
Berthelot (10.1016/j.media.2021.102117_bib0002) 2019
Li (10.1016/j.media.2021.102117_bib0022) 2019
Zhou (10.1016/j.media.2021.102117_bib0044) 2020
DeVries (10.1016/j.media.2021.102117_bib0007) 2017
Srivastava (10.1016/j.media.2021.102117_bib0034) 2014; 15
Nie (10.1016/j.media.2021.102117_bib0031) 2018
Lecouat (10.1016/j.media.2021.102117_bib0018) 2018
Pezeshk (10.1016/j.media.2021.102117_bib0032) 2018; 23
Zhang (10.1016/j.media.2021.102117_bib0042) 2017
Zhou (10.1016/j.media.2021.102117_bib0045) 2019
Wang (10.1016/j.media.2021.102117_bib0038) 2019
Li (10.1016/j.media.2021.102117_bib0020) 2018
Jeong (10.1016/j.media.2021.102117_bib0014) 2019
Lin (10.1016/j.media.2021.102117_bib0025) 2017
He (10.1016/j.media.2021.102117_bib0013) 2016
Liu (10.1016/j.media.2021.102117_bib0026) 2019
Khosravan (10.1016/j.media.2021.102117_bib0016) 2018
Ghiasi (10.1016/j.media.2021.102117_bib0009) 2018
Lee (10.1016/j.media.2021.102117_bib0019) 2013
Sohn (10.1016/j.media.2021.102117_bib0033) 2020
Miyato (10.1016/j.media.2021.102117_bib0030) 2018; 41
Wang (10.1016/j.media.2021.102117_bib0037) 2020
Zhu (10.1016/j.media.2021.102117_bib0047) 2018
Girshick (10.1016/j.media.2021.102117_bib0010) 2015
Liu (10.1016/j.media.2021.102117_bib0027) 2020
Yi (10.1016/j.media.2021.102117_bib0040) 2018
Ke (10.1016/j.media.2021.102117_bib0015) 2019
References_xml – start-page: 2079
  year: 2019
  end-page: 2088
  ident: bib0045
  article-title: Collaborative Learning of Semi-Supervised Segmentation and Classification for Medical Images
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib0002
  article-title: Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring
  publication-title: International Conference on Learning Representations
– year: 2016
  ident: bib0017
  article-title: Temporal ensembling for semi-Supervised learning
  publication-title: arXiv preprint arXiv:1610.02242
– year: 2013
  ident: bib0019
  article-title: Pseudo-label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks
  publication-title: ICML Workshop
– start-page: 2117
  year: 2017
  end-page: 2125
  ident: bib0024
  article-title: Feature Pyramid Networks for Object Detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib0033
  article-title: A simple semi-supervised learning framework for object detection
  publication-title: arXiv preprint arXiv:2005.04757
– start-page: 408
  year: 2017
  end-page: 416
  ident: bib0043
  article-title: Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images
  publication-title: International Conference on Medical Image Computing and Computer Assisted Intervention
– year: 2018
  ident: bib0001
  article-title: There are many consistent explanations of unlabeled data: why you should average
  publication-title: arXiv preprint arXiv:1806.05594
– start-page: 13
  year: 2019
  end-page: 21
  ident: bib0022
  article-title: MVP-Net: Multi-view FPN with Position-aware Attention for Deep Universal Lesion Detection
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2014
  ident: bib0011
  article-title: Explaining and harnessing adversarial examples
  publication-title: arXiv preprint arXiv:1412.6572
– volume: 41
  start-page: 1979
  year: 2018
  end-page: 1993
  ident: bib0030
  article-title: Virtual adversarial training: a regularization method for supervised and semi-Supervised learning
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 559
  year: 2017
  end-page: 567
  ident: bib0008
  article-title: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1752
  year: 2020
  end-page: 1755
  ident: bib0004
  article-title: Soft-Label Guided Semi-Supervised Learning for Bi-Ventricle Segmentation in Cardiac Cine MRI
  publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
– start-page: 673
  year: 2018
  end-page: 681
  ident: bib0047
  article-title: Deeplung: Deep 3d dual path nets for automated pulmonary nodule detection and classification
  publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0034
  article-title: Dropout: A Simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– year: 2019
  ident: bib0036
  article-title: Interpolation consistency training for semi-Supervised learning
  publication-title: arXiv preprint arXiv:1903.03825
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0013
  article-title: Deep Residual Learning for Image Recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib0027
  article-title: Semi-Supervised medical image classification with relation-driven self-ensembling model
  publication-title: IEEE Trans Med Imaging
– start-page: 457
  year: 2019
  end-page: 465
  ident: bib0006
  article-title: Multi-Task Attention-Based Semi-Supervised Learning for Medical Image Segmentation
  publication-title: International Conference on Medical Image Computing and Computer Assisted Intervention
– volume: 1
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0029
  article-title: Deep echocardiography: data-efficient supervised and semi-Supervised deep learning towards automated diagnosis of cardiac disease
  publication-title: NPJ digital medicine
– start-page: 3951
  year: 2020
  end-page: 3960
  ident: bib0037
  article-title: FocalMix: Semi-Supervised Learning for 3D Medical Image Detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 5050
  year: 2019
  end-page: 5060
  ident: bib0003
  article-title: MixMatch: A Holistic Approach to Semi-Supervised Learning
  publication-title: Advances in Neural Information Processing Systems
– start-page: 384
  year: 2019
  end-page: 393
  ident: bib0046
  article-title: Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 10727
  year: 2018
  end-page: 10737
  ident: bib0009
  article-title: Dropblock: A Regularization Method for Convolutional Networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2018
  ident: bib0018
  article-title: Semi-Supervised deep learning for abnormality classification in retinal images
  publication-title: arXiv preprint arXiv:1812.07832
– year: 2017
  ident: bib0042
  article-title: Mixup: beyond empirical risk minimization
  publication-title: arXiv preprint arXiv:1710.09412
– start-page: 794
  year: 2018
  end-page: 802
  ident: bib0016
  article-title: S4nd: Single-shot single-scale lung nodule detection
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 23
  start-page: 2080
  year: 2018
  end-page: 2090
  ident: bib0032
  article-title: 3-D convolutional neural networks for automatic detection of pulmonary nodules in chest ct
  publication-title: IEEE J Biomed Health Inform
– start-page: 513
  year: 2019
  end-page: 521
  ident: bib0026
  article-title: 3dfpn-hs2: 3d feature pyramid network based high sensitivity and specificity pulmonary nodule detection
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2020
  ident: bib0044
  article-title: Comparing to Learn: Surpassing ImageNet Pretraining on Radiographs By Comparing Image Representations
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 2980
  year: 2017
  end-page: 2988
  ident: bib0025
  article-title: Focal Loss for Dense Object Detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2018
  ident: bib0040
  article-title: Unsupervised and semi-Supervised learning with categorical generative adversarial networks assisted by wasserstein distance for dermoscopy image classification
  publication-title: arXiv preprint arXiv:1804.03700
– year: 2020
  ident: bib0021
  article-title: Transformation-Consistent self-Ensembling model for semisupervised medical image segmentation
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 370
  year: 2018
  end-page: 378
  ident: bib0031
  article-title: ASDNet: Attention based Semi-Supervised Deep Networks for Medical Image Segmentation
  publication-title: International Conference on Medical Image Computing and Computer Assisted Intervention
– year: 2018
  ident: bib0020
  article-title: Semi-Supervised skin lesion segmentation via transformation consistent self-ensembling model
  publication-title: British Machine Vision Conference
– volume: 58
  start-page: 101539
  year: 2019
  ident: bib0005
  article-title: Self-supervised learning for medical image analysis using image context restoration
  publication-title: Med Image Anal
– year: 2019
  ident: bib0038
  article-title: Repetitive reprediction deep decipher for semi-Supervised learning
  publication-title: arXiv preprint arXiv:1908.04345
– start-page: 402
  year: 2019
  end-page: 410
  ident: bib0048
  article-title: Improving Retinanet for CT Lesion Detection with Dense Masks from Weak Recist Labels
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2017
  ident: bib0007
  article-title: Improved regularization of convolutional neural networks with cutout
  publication-title: arXiv preprint arXiv:1708.04552
– start-page: 10758
  year: 2019
  end-page: 10767
  ident: bib0014
  article-title: Consistency-based Semi-Supervised Learning for Object detection
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1038
  year: 2018
  end-page: 1042
  ident: bib0028
  article-title: Semi-Supervised Learning with Generative Adversarial Networks for Chest X-Ray Classification with Ability of Data Domain Adaptation
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib0012
  article-title: Mask r-cnn
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 5
  start-page: 036501
  year: 2018
  ident: bib0039
  article-title: Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning
  publication-title: J. Med. Imaging
– start-page: 6728
  year: 2019
  end-page: 6736
  ident: bib0015
  article-title: Dual Student: Breaking the Limits of the Teacher in Semi-Supervised Learning
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 30
  start-page: 3484
  year: 2019
  end-page: 3495
  ident: bib0023
  article-title: Evaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or network
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 605
  year: 2019
  end-page: 613
  ident: bib0041
  article-title: Uncertainty-aware Self-ensembling Model for Semi-Supervised 3D Left Atrium Segmentation
  publication-title: International Conference on Medical Image Computing and Computer Assisted Intervention
– start-page: 1195
  year: 2017
  end-page: 1204
  ident: bib0035
  article-title: Mean Teachers are Better Role Models: Weight-averaged Consistency Targets Improve Semi-Supervised Deep Learning Results
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1440
  year: 2015
  end-page: 1448
  ident: bib0010
  article-title: Fast r-cnn
  publication-title: Proceedings of the IEEE international conference on computer vision
– year: 2020
  ident: 10.1016/j.media.2021.102117_bib0044
  article-title: Comparing to Learn: Surpassing ImageNet Pretraining on Radiographs By Comparing Image Representations
– year: 2016
  ident: 10.1016/j.media.2021.102117_bib0017
  article-title: Temporal ensembling for semi-Supervised learning
  publication-title: arXiv preprint arXiv:1610.02242
– start-page: 2079
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0045
  article-title: Collaborative Learning of Semi-Supervised Segmentation and Classification for Medical Images
– start-page: 1195
  year: 2017
  ident: 10.1016/j.media.2021.102117_bib0035
  article-title: Mean Teachers are Better Role Models: Weight-averaged Consistency Targets Improve Semi-Supervised Deep Learning Results
– year: 2018
  ident: 10.1016/j.media.2021.102117_bib0001
  article-title: There are many consistent explanations of unlabeled data: why you should average
  publication-title: arXiv preprint arXiv:1806.05594
– start-page: 370
  year: 2018
  ident: 10.1016/j.media.2021.102117_bib0031
  article-title: ASDNet: Attention based Semi-Supervised Deep Networks for Medical Image Segmentation
– start-page: 5050
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0003
  article-title: MixMatch: A Holistic Approach to Semi-Supervised Learning
– year: 2020
  ident: 10.1016/j.media.2021.102117_bib0033
  article-title: A simple semi-supervised learning framework for object detection
  publication-title: arXiv preprint arXiv:2005.04757
– start-page: 6728
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0015
  article-title: Dual Student: Breaking the Limits of the Teacher in Semi-Supervised Learning
– year: 2019
  ident: 10.1016/j.media.2021.102117_bib0002
  article-title: Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring
– year: 2018
  ident: 10.1016/j.media.2021.102117_bib0040
  article-title: Unsupervised and semi-Supervised learning with categorical generative adversarial networks assisted by wasserstein distance for dermoscopy image classification
  publication-title: arXiv preprint arXiv:1804.03700
– start-page: 13
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0022
  article-title: MVP-Net: Multi-view FPN with Position-aware Attention for Deep Universal Lesion Detection
– start-page: 770
  year: 2016
  ident: 10.1016/j.media.2021.102117_bib0013
  article-title: Deep Residual Learning for Image Recognition
– year: 2019
  ident: 10.1016/j.media.2021.102117_bib0036
  article-title: Interpolation consistency training for semi-Supervised learning
  publication-title: arXiv preprint arXiv:1903.03825
– year: 2014
  ident: 10.1016/j.media.2021.102117_bib0011
  article-title: Explaining and harnessing adversarial examples
  publication-title: arXiv preprint arXiv:1412.6572
– start-page: 10758
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0014
  article-title: Consistency-based Semi-Supervised Learning for Object detection
– start-page: 605
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0041
  article-title: Uncertainty-aware Self-ensembling Model for Semi-Supervised 3D Left Atrium Segmentation
– start-page: 673
  year: 2018
  ident: 10.1016/j.media.2021.102117_bib0047
  article-title: Deeplung: Deep 3d dual path nets for automated pulmonary nodule detection and classification
– start-page: 3951
  year: 2020
  ident: 10.1016/j.media.2021.102117_bib0037
  article-title: FocalMix: Semi-Supervised Learning for 3D Medical Image Detection
– volume: 30
  start-page: 3484
  issue: 11
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0023
  article-title: Evaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or network
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2892409
– start-page: 1440
  year: 2015
  ident: 10.1016/j.media.2021.102117_bib0010
  article-title: Fast r-cnn
– start-page: 1038
  year: 2018
  ident: 10.1016/j.media.2021.102117_bib0028
  article-title: Semi-Supervised Learning with Generative Adversarial Networks for Chest X-Ray Classification with Ability of Data Domain Adaptation
– volume: 5
  start-page: 036501
  issue: 3
  year: 2018
  ident: 10.1016/j.media.2021.102117_bib0039
  article-title: Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.5.3.036501
– year: 2018
  ident: 10.1016/j.media.2021.102117_bib0020
  article-title: Semi-Supervised skin lesion segmentation via transformation consistent self-ensembling model
  publication-title: British Machine Vision Conference
– year: 2020
  ident: 10.1016/j.media.2021.102117_bib0021
  article-title: Transformation-Consistent self-Ensembling model for semisupervised medical image segmentation
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 2117
  year: 2017
  ident: 10.1016/j.media.2021.102117_bib0024
  article-title: Feature Pyramid Networks for Object Detection
– start-page: 408
  year: 2017
  ident: 10.1016/j.media.2021.102117_bib0043
  article-title: Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images
– start-page: 2980
  year: 2017
  ident: 10.1016/j.media.2021.102117_bib0025
  article-title: Focal Loss for Dense Object Detection
– volume: 23
  start-page: 2080
  issue: 5
  year: 2018
  ident: 10.1016/j.media.2021.102117_bib0032
  article-title: 3-D convolutional neural networks for automatic detection of pulmonary nodules in chest ct
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2879449
– year: 2020
  ident: 10.1016/j.media.2021.102117_bib0027
  article-title: Semi-Supervised medical image classification with relation-driven self-ensembling model
  publication-title: IEEE Trans Med Imaging
– year: 2018
  ident: 10.1016/j.media.2021.102117_bib0018
  article-title: Semi-Supervised deep learning for abnormality classification in retinal images
  publication-title: arXiv preprint arXiv:1812.07832
– start-page: 457
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0006
  article-title: Multi-Task Attention-Based Semi-Supervised Learning for Medical Image Segmentation
– volume: 58
  start-page: 101539
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0005
  article-title: Self-supervised learning for medical image analysis using image context restoration
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101539
– start-page: 559
  year: 2017
  ident: 10.1016/j.media.2021.102117_bib0008
  article-title: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks
– start-page: 10727
  year: 2018
  ident: 10.1016/j.media.2021.102117_bib0009
  article-title: Dropblock: A Regularization Method for Convolutional Networks
– year: 2017
  ident: 10.1016/j.media.2021.102117_bib0007
  article-title: Improved regularization of convolutional neural networks with cutout
  publication-title: arXiv preprint arXiv:1708.04552
– volume: 1
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.media.2021.102117_bib0029
  article-title: Deep echocardiography: data-efficient supervised and semi-Supervised deep learning towards automated diagnosis of cardiac disease
  publication-title: NPJ digital medicine
  doi: 10.1038/s41746-018-0065-x
– start-page: 1752
  year: 2020
  ident: 10.1016/j.media.2021.102117_bib0004
  article-title: Soft-Label Guided Semi-Supervised Learning for Bi-Ventricle Segmentation in Cardiac Cine MRI
– volume: 41
  start-page: 1979
  issue: 8
  year: 2018
  ident: 10.1016/j.media.2021.102117_bib0030
  article-title: Virtual adversarial training: a regularization method for supervised and semi-Supervised learning
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2858821
– start-page: 384
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0046
  article-title: Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis
– start-page: 513
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0026
  article-title: 3dfpn-hs2: 3d feature pyramid network based high sensitivity and specificity pulmonary nodule detection
– year: 2013
  ident: 10.1016/j.media.2021.102117_bib0019
  article-title: Pseudo-label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks
– year: 2019
  ident: 10.1016/j.media.2021.102117_bib0038
  article-title: Repetitive reprediction deep decipher for semi-Supervised learning
  publication-title: arXiv preprint arXiv:1908.04345
– year: 2017
  ident: 10.1016/j.media.2021.102117_bib0042
  article-title: Mixup: beyond empirical risk minimization
  publication-title: arXiv preprint arXiv:1710.09412
– start-page: 2961
  year: 2017
  ident: 10.1016/j.media.2021.102117_bib0012
  article-title: Mask r-cnn
– start-page: 402
  year: 2019
  ident: 10.1016/j.media.2021.102117_bib0048
  article-title: Improving Retinanet for CT Lesion Detection with Dense Masks from Weak Recist Labels
– start-page: 794
  year: 2018
  ident: 10.1016/j.media.2021.102117_bib0016
  article-title: S4nd: Single-shot single-scale lung nodule detection
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.media.2021.102117_bib0034
  article-title: Dropout: A Simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
SSID ssj0007440
Score 2.5561845
Snippet •We propose a semi-supervised medical image detector with a novel adaptive consistency cost function which takes into account the confidence of proposals at...
Semi-Supervised classification and segmentation methods have been widely investigated in medical image analysis. Both approaches can improve the performance of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102117
SubjectTerms Ablation
Consistency
Cost function
Image analysis
Image classification
Image detection
Image processing
Image segmentation
Lesion detection
Medical imaging
Motivation
Nuclei detection
Object recognition
Performance enhancement
Perturbation
Predictions
Semi-Supervised learning
Title SSMD: Semi-Supervised medical image detection with adaptive consistency and heterogeneous perturbation
URI https://dx.doi.org/10.1016/j.media.2021.102117
https://www.proquest.com/docview/2572614014
https://www.proquest.com/docview/2544878732
Volume 72
WOSCitedRecordID wos000681131600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DSH2gGCA6BiTkRBPpGqT1HZ4m0bHh7qC1E4qT5ZjO1unNS1rO-2Jv5272EnbDabxwEtUuY4d-X6-O5_vg5C3KgYpw6IIdlqog9hwHQiDgboZVjzSqU7TIlC4y3s9MRwm32u1X2UszNUFz3NxfZ1M_yupoQ2IjaGz_0DualBogN9AdHgC2eF5L8L3-8cf8Zzft-NR0F9MkRnMQK0c-yuZ0RjddIydW1cl3EW3GTUtnIg0OszO5kVAJtrUz9BdZgKTWfSVhcFARKVLapa1oNbGVj7RydIoPVkUIm6SnwY_FksbvuMzh2c2PzWjyjXI1dFWk8x6qbrS95Pybd5QEbYqN7mSt0asFYjYhRc37B_aPEN2tXw8R8XS4y668xazd3aH80YRY9PAKRvL3uuptXvf5NFJtysHneHg3fRngFXH8Hbel2DZIFshbyfA2LcOvnSGXytZjukTXeSe-8wyb1XhIXhr3r_pNjekfKG6DJ6Qx_7MQQ8cVp6Sms13yPZKJsod8vDY-1g8IxkC6AO9AR_q4UMLEtMKPhThQ0v40BX4UIAPXYMPXYXPc3Jy1Bkcfg58NY5ARyyeBzwToJ7akJvECJFynmihVdMyY7Mmh3N7xkC3Zlma8FYa8kTYFmexaatmzNtaqegF2cwnuX1JqMgSODlrWHBr4qyVCpOyOGUmVla1I5PVSViuo9Q-VT1WTLmQpU_iuSwWX-LiS7f4dfK-emnqMrXc3Z2VBJJe2XRKpAR43f3iXklO6bf9TILgCxnaKuI6eVP9DZwar99UscYSkwEKkI9RuHuPPq_Io-Um2iOb88uFfU0e6Kv5aHa5Tzb4UOx7tP4GH-23wQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSMD%3A+Semi-Supervised+medical+image+detection+with+adaptive+consistency+and+heterogeneous+perturbation&rft.jtitle=Medical+image+analysis&rft.au=Zhou%2C+Hong-Yu&rft.au=Wang%2C+Chengdi&rft.au=Li%2C+Haofeng&rft.au=Wang%2C+Gang&rft.date=2021-08-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=72&rft.spage=102117&rft_id=info:doi/10.1016%2Fj.media.2021.102117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon