Inversion Study on Landslide Seepage Field Based on Swarm Intelligence Optimization Least-Square Support Vector Machine Algorithm

The permeability coefficient of landslide mass, a key parameter in the study of reservoir landslides, is commonly obtained through in situ and laboratory tests; however, the tests are costly and subject to high variability, leading to potential biases. In this paper, a new method was proposed to inv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 14; číslo 13; s. 5822
Hlavní autoři: Tang, Xuan, Shi, Chong, Zhang, Yuming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.07.2024
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The permeability coefficient of landslide mass, a key parameter in the study of reservoir landslides, is commonly obtained through in situ and laboratory tests; however, the tests are costly and subject to high variability, leading to potential biases. In this paper, a new method was proposed to inversely estimate the permeability coefficient of landslide layers using monitoring data of groundwater level (GWL). First, the landslide transient seepage simulation was conducted to generate sample data for permeability coefficients and GWL during a reservoir operation cycle. Second, using GWL data as input and permeability coefficient data as output, the least-square support vector machine (LSSVM) was trained with two optimization algorithms, the particle swarm optimization (PSO) algorithm and the whale optimization algorithm (WOA), to construct the nonlinear mapping relationship between simulated GWL and permeability coefficients. Third, the accurate permeability coefficients for landslide seepage simulation were inverted or predicted based on the monitored GWL. Finally, using the inverted permeability coefficients for landslide seepage simulation, we compared simulation results with actual monitored GWL and achieved good consistency. In addition, this paper compared the inversion effects of three different algorithms: the standard LSSVM, PSO-LSSVM, and WOA-LSSVM. This study showed that these three algorithms had good nonlinear fitting effects in studying landslide seepage fields. Among them, using the inversion values from PSO-LSSVM for landslide seepage simulation resulted in the smallest relative error compared to actual monitoring data. Within a single reservoir operation cycle, the simulated water level changes were also largely consistent with the monitored water level changes. The results could provide a reference to determine landslide permeability coefficients and seepage.
AbstractList The permeability coefficient of landslide mass, a key parameter in the study of reservoir landslides, is commonly obtained through in situ and laboratory tests; however, the tests are costly and subject to high variability, leading to potential biases. In this paper, a new method was proposed to inversely estimate the permeability coefficient of landslide layers using monitoring data of groundwater level (GWL). First, the landslide transient seepage simulation was conducted to generate sample data for permeability coefficients and GWL during a reservoir operation cycle. Second, using GWL data as input and permeability coefficient data as output, the least-square support vector machine (LSSVM) was trained with two optimization algorithms, the particle swarm optimization (PSO) algorithm and the whale optimization algorithm (WOA), to construct the nonlinear mapping relationship between simulated GWL and permeability coefficients. Third, the accurate permeability coefficients for landslide seepage simulation were inverted or predicted based on the monitored GWL. Finally, using the inverted permeability coefficients for landslide seepage simulation, we compared simulation results with actual monitored GWL and achieved good consistency. In addition, this paper compared the inversion effects of three different algorithms: the standard LSSVM, PSO-LSSVM, and WOA-LSSVM. This study showed that these three algorithms had good nonlinear fitting effects in studying landslide seepage fields. Among them, using the inversion values from PSO-LSSVM for landslide seepage simulation resulted in the smallest relative error compared to actual monitoring data. Within a single reservoir operation cycle, the simulated water level changes were also largely consistent with the monitored water level changes. The results could provide a reference to determine landslide permeability coefficients and seepage.
Author Tang, Xuan
Zhang, Yuming
Shi, Chong
Author_xml – sequence: 1
  givenname: Xuan
  surname: Tang
  fullname: Tang, Xuan
– sequence: 2
  givenname: Chong
  orcidid: 0000-0003-1386-0651
  surname: Shi
  fullname: Shi, Chong
– sequence: 3
  givenname: Yuming
  surname: Zhang
  fullname: Zhang, Yuming
BookMark eNptkcFq3DAQhkVJoWmaU19A0GNxIq1syTqmoUkWNuSwba9iLI03WryWI8kp6a1vXm22hFCqi36GT98MmvfkaAwjEvKRszMhNDuHaeI1F027WLwhxwumZCVqro5e5XfkNKUtK0dz0XJ2TH4vx0eMyYeRrvPsnmgJKxhdGrxDukacYIP0yuPg6BdI6PbA-ifEHV2OGYfBb3C0SO-m7Hf-F-S9aYWQcrV-mCEWxzxNIWb6A20Okd6Cvfcj0othE6LP97sP5G0PQ8LTv_cJ-X719dvlTbW6u15eXqwqK2SdK2X7vqt7rblyjbZdJ1VnRW07cMoqxVC7Qlhl0Vrd9ByE5CBRdHUBW6HFCVkevC7A1kzR7yA-mQDePBdC3BiI2dsBTcPALXjLpOyg7pXsmNataIqSWc4Bi-vTwTXF8DBjymYb5jiW8Y1gqtW6UVIV6vOBsjGkFLF_6cqZ2a_MvFpZofk_tPX5-T9zBD_8980fKtudUA
CitedBy_id crossref_primary_10_1007_s12145_024_01470_9
Cites_doi 10.1016/j.enganabound.2018.03.004
10.1016/j.scient.2011.03.007
10.1007/s43452-023-00631-9
10.3390/w16050686
10.4236/eng.2011.34049
10.1016/j.jhydrol.2017.02.046
10.1016/j.advwatres.2004.02.001
10.1109/ICNN.1995.488968
10.1016/j.advengsoft.2016.01.008
10.1016/j.enggeo.2019.105267
10.1029/2003WR002432
10.1016/j.compgeo.2023.105738
10.1061/(ASCE)GM.1943-5622.0000129
10.1016/S1365-1609(00)00077-0
10.1007/s10346-018-0945-9
10.3390/app122312315
10.1016/j.measurement.2023.113580
10.1016/j.soildyn.2023.107761
10.1155/2014/741323
10.1016/j.tust.2018.09.027
10.1007/s10064-013-0552-x
10.1016/j.enggeo.2014.02.004
10.1007/s10064-022-02618-x
10.1016/j.enggeo.2015.10.014
10.1007/s10064-024-03612-1
10.1016/j.tust.2023.105099
10.1016/j.enggeo.2015.01.008
10.1016/j.jhydrol.2018.02.013
10.1007/s12665-015-4837-1
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app14135822
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (subscription)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_50ad218066ba4f76b099835a360c11ae
10_3390_app14135822
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c364t-7cffb4f9917d59cbb67bc34cbad7c770e9dcffc7cecc95f1a361a6e3b467b8393
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001269707600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 10 04:35:39 EST 2025
Mon Jun 30 17:43:56 EDT 2025
Sat Nov 29 07:14:31 EST 2025
Tue Nov 18 22:15:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-7cffb4f9917d59cbb67bc34cbad7c770e9dcffc7cecc95f1a361a6e3b467b8393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1386-0651
OpenAccessLink https://www.proquest.com/docview/3078995767?pq-origsite=%requestingapplication%
PQID 3078995767
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_50ad218066ba4f76b099835a360c11ae
proquest_journals_3078995767
crossref_primary_10_3390_app14135822
crossref_citationtrail_10_3390_app14135822
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tang (ref_2) 2019; 261
Liang (ref_13) 2014; 2014
Wang (ref_26) 2014; 490
Li (ref_27) 2020; 37
Zhuang (ref_14) 2019; 83
Samui (ref_29) 2011; 334049
Yin (ref_1) 2022; 81
Kazemi (ref_11) 2023; 23
Hu (ref_3) 2015; 74
Yin (ref_34) 2021; 41
ref_17
Eberhart (ref_31) 1995; Volume 4
Zhang (ref_33) 2018; 15
Ren (ref_19) 2016; 75
Kazemi (ref_10) 2023; 166
Mirjalili (ref_32) 2016; 95
Basile (ref_7) 2003; 39
Yu (ref_21) 2024; 83
Wen (ref_5) 2017; 548
Thomas (ref_24) 2018; 91
Chang (ref_15) 2023; 163
ref_25
Dewandel (ref_6) 2018; 559
Farcas (ref_8) 2004; 27
ref_22
Ding (ref_30) 2010; 5
Li (ref_16) 2023; 136
Samui (ref_28) 2011; 18
Deng (ref_9) 2001; 38
Sun (ref_12) 2016; 205
Zhou (ref_18) 2015; 187
Zhou (ref_4) 2014; 173
Fei (ref_20) 2023; 221
Das (ref_23) 2012; 12
References_xml – volume: 91
  start-page: 60
  year: 2018
  ident: ref_24
  article-title: Simulation optimization model for aquifer parameter estimation using coupled meshfree point collocation method and cat swarm optimization
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2018.03.004
– volume: 5
  start-page: 55
  year: 2010
  ident: ref_30
  article-title: Constrained surface recovery using rbf and its efficiency improvements
  publication-title: J. Multimed.
– volume: 18
  start-page: 53
  year: 2011
  ident: ref_28
  article-title: Utilization of a least square support vector machine (lssvm) for slope stability analysis
  publication-title: Sci. Iran.
  doi: 10.1016/j.scient.2011.03.007
– volume: 23
  start-page: 94
  year: 2023
  ident: ref_11
  article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1007/s43452-023-00631-9
– ident: ref_25
  doi: 10.3390/w16050686
– volume: 334049
  start-page: 431
  year: 2011
  ident: ref_29
  article-title: Application of least square support vector machine (lssvm) for determination of evaporation losses in reservoirs
  publication-title: Engineering
  doi: 10.4236/eng.2011.34049
– volume: 548
  start-page: 40
  year: 2017
  ident: ref_5
  article-title: Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.02.046
– volume: 27
  start-page: 223
  year: 2004
  ident: ref_8
  article-title: An inverse dual reciprocity method for hydraulic conductivity identification in steady groundwater flow
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2004.02.001
– volume: Volume 4
  start-page: 1942
  year: 1995
  ident: ref_31
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Conference on Neural Networks
  doi: 10.1109/ICNN.1995.488968
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_32
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 261
  start-page: 105267
  year: 2019
  ident: ref_2
  article-title: Geohazards in the Three Gorges Reservoir area, China–lessons learned from decades of research
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2019.105267
– volume: 39
  start-page: 1355
  year: 2003
  ident: ref_7
  article-title: Hysteresis in soil water characteristics as a key to interpreting comparisons of laboratory and field measured hydraulic properties
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002432
– volume: 163
  start-page: 105738
  year: 2023
  ident: ref_15
  article-title: Back analysis of rock mass parameters in tunnel engineering using machine learning techniques
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2023.105738
– volume: 490
  start-page: 633
  year: 2014
  ident: ref_26
  article-title: The inversion analysis of the reservoir saturation landslide’s permeability coefficient
  publication-title: Appl. Mech. Mater.
– volume: 12
  start-page: 606
  year: 2012
  ident: ref_23
  article-title: Prediction of field hydraulic conductivity of clay liners using an artificial neural network and support vector machine
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0000129
– volume: 38
  start-page: 259
  year: 2001
  ident: ref_9
  article-title: Displacement back analysis for a steep slope at the three gorges project site
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/S1365-1609(00)00077-0
– volume: 15
  start-page: 581
  year: 2018
  ident: ref_33
  article-title: Field monitoring and deformation characteristics of a landslide with piles in the Three Gorges Reservoir area
  publication-title: Landslides
  doi: 10.1007/s10346-018-0945-9
– ident: ref_17
  doi: 10.3390/app122312315
– volume: 221
  start-page: 113580
  year: 2023
  ident: ref_20
  article-title: Inversion analysis of rock mass permeability coefficient of dam engineering based on particle swarm optimization and support vector machine: A case study
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113580
– volume: 166
  start-page: 107761
  year: 2023
  ident: ref_10
  article-title: Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2023.107761
– volume: 2014
  start-page: 741323
  year: 2014
  ident: ref_13
  article-title: Displacement back analysis for a high slope of the dagangshan hydroelectric power station based on bp neural network and particle swarm optimization
  publication-title: Sci. World J.
  doi: 10.1155/2014/741323
– volume: 83
  start-page: 425
  year: 2019
  ident: ref_14
  article-title: Mechanical parameter inversion in tunnel engineering using support vector regression optimized by multi-strategy artificial fish swarm algorithm
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2018.09.027
– volume: 74
  start-page: 1
  year: 2015
  ident: ref_3
  article-title: Deformation characteristics and failure mode of the zhujiadian landslide in the Three Gorges Reservoir, China
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-013-0552-x
– volume: 41
  start-page: 649
  year: 2021
  ident: ref_34
  article-title: Research on seepage stability and prevention design of landslide during impoundment operation of the Three Gorges Reservoir, China
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 173
  start-page: 41
  year: 2014
  ident: ref_4
  article-title: Comparing two methods to estimate lateral force acting on stabilizing piles for a landslide in the Three Gorges Reservoir, China
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2014.02.004
– volume: 81
  start-page: 109
  year: 2022
  ident: ref_1
  article-title: Research on the collapse process of a thick-layer dangerous rock on the reservoir bank
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-022-02618-x
– volume: 37
  start-page: 121
  year: 2020
  ident: ref_27
  article-title: Inversion analysis on permeability coefficient of stratum in engineering area based on rvm-cs
  publication-title: J. Yangtze River Sci. Res. Inst.
– volume: 205
  start-page: 133
  year: 2016
  ident: ref_12
  article-title: Parameter inversion and deformation mechanism of sanmendong landslide in the Three Gorges Reservoir region under the combined effect of reservoir water level fluctuation and rainfall
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.10.014
– volume: 83
  start-page: 127
  year: 2024
  ident: ref_21
  article-title: An artificial intelligence optimization method of back analysis of unsteady-steady seepage field for the dam site under complex geological condition
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-024-03612-1
– volume: 136
  start-page: 105099
  year: 2023
  ident: ref_16
  article-title: Back analysis of geomechanical parameters for rock mass under complex geological conditions using a novel algorithm
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2023.105099
– volume: 187
  start-page: 183
  year: 2015
  ident: ref_18
  article-title: Inverse modeling of leakage through a rockfill dam foundation during its construction stage using transient flow model, neural network and genetic algorithm
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.01.008
– ident: ref_22
– volume: 559
  start-page: 89
  year: 2018
  ident: ref_6
  article-title: A generic analytical solution for modelling pumping tests in wells intersecting fractures
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.013
– volume: 75
  start-page: 113
  year: 2016
  ident: ref_19
  article-title: Back analysis of the 3d seepage problem and its engineering applications
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4837-1
SSID ssj0000913810
Score 2.3024023
Snippet The permeability coefficient of landslide mass, a key parameter in the study of reservoir landslides, is commonly obtained through in situ and laboratory...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5822
SubjectTerms Algorithms
Dams
Lagrange multiplier
Landslides & mudslides
LSSVM
Machine learning
Network management systems
Neural networks
Optimization
parameter inversion
Permeability
permeability coefficient
Reinforced concrete
reservoir landslides
Seismic engineering
Simulation
Support vector machines
swarm intelligence optimization algorithm
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD2KpYrbKHHlQIdpt0Nzm2YlHQKlSlt7CvaKEv-1A8-s-d2aQlouDFWwhDEnZmZ77ZzHxDSBVCIg4_4YDcQusFHNIdlTDl-YaFJjJS66Tmhk2ITifs9aL73KgvrAlL6YHThTtv1KSBMASRUckgEVwBpAHUIH1e04xJi94XUE8umXI-OGJIXZU25PmQ1-P_YAYOuxHW699CkGPq_-GIXXRpb5OtDBbSZvo5RbJmRyWymSMLLJFitg1n9CTjij7dIZ_Ik-FOvChWBH5QuLjB7t1B31jatS7Y0DaWqdEWBCyDAt13OR3S6xwZJ70DzzHMWjLpDc7z8bqvYD3wjMUEITp9csf79NYVX1raHDyPp_35y3CXPLYvHy6uvGyqgqd9Hsw9oZNEBQngQmEakVaKC6X9QCtphBaiZiMDElpoUG7USBisNJPc-gpcqgI45e-Rwmg8svuEhpxrY4UJ6grSmAS582xghNRMyEAIXSZny4WOdUY5jpMvBjGkHqiVOKeVMqmuhCcp08bvYi3U2EoE6bHdDTCaODOa-C-jKZPKUt9xtmdnsY_M-xHkX-LgP95xSDbqAIDS0t4KKcynC3tE1vXbvD-bHjtz_QJBYPDc
  priority: 102
  providerName: Directory of Open Access Journals
Title Inversion Study on Landslide Seepage Field Based on Swarm Intelligence Optimization Least-Square Support Vector Machine Algorithm
URI https://www.proquest.com/docview/3078995767
https://doaj.org/article/50ad218066ba4f76b099835a360c11ae
Volume 14
WOSCitedRecordID wos001269707600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (subscription)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BygEO9AGI0FL50EOLtGKddezdU9WgRq3UplEDqJxWfm2plFeTFNRj_3lnHCcEgbhw28dotdaMZz6Px98A7GFIpOYnEpFb7hMhcbljKm6SzPHcFU5bW6Wh2YTqdPKrq6IbE27TWFa58InBUbuRpRz5x4x40QtEx-pwfJtQ1yjaXY0tNJ7CGjGViRqstY473ctlloVYL3Oezg_mZbi-p31hjo67mTcav4WiwNj_h0MOUaa9_r__twEvI75kR3OD2IQnfrgFL1ZYB7dgM87nKduPpNMHr-CBCDdC6oxRaeE9w4szOgbcv3Ge9XyIWqxN9W6shZHPkUDvp54M2OkKqye7QBc0iGc72Rk1Bkp6t2iG-I27MWF99jXsE7DzUMXp2VH_Gocx-z54DV_ax58_nSSxPUNiMylmibJVZUSFAFO5ZmGNkcrYTFijnbJKpb5wKGGVRSspmhXXmeRa-sygbzaIy7I3UBuOhv4tsFxK67xyomFwPVQRCZ8XTmnLlRZK2Tp8WGiqtJG7nFpo9Etcw5BayxW11mFvKTyeU3b8XaxFKl-KEM92eDCaXJdx2pbNVDsEQYjLjBaVkgYBNWJWHEpqOde-DjsLayjj5J-Wv0zh3b9fb8PzBmKkefXvDtRmkzv_Hp7ZH7Ob6WQ32vJuSBPgXff0vPvtEd43A_c
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIlyAFpABArsoUiAZGF7N177UFUtEDVqEiKloPZk9uW2Ul5NUqoe-4f6G5nxIwSBuPXAzbJHlrz-duab3dlvALYwJFLzkwiZW-w8EWG6o7NAe9wGsU2sMibz82YTstuNj46S3grcVGdhqKyy8om5o7ZjQ2vkHzjpoifIjuXO5NyjrlG0u1q10ChgceCuLjFlm223PuH_fROGzc-HH_e9squAZ3gk5p40WaZFhrxI2kZitI6kNlwYraw0UvousWhhpMGPSxpZoHgUqMhxjS5FI53g-N47sCoQ7HENVnutTu94sapDKptx4BcHATlPfNqHDjBQNOIw_C305R0C_ggAeVRrPvzfxuMRPCj5M9stAL8OK260AfeXVBU3YL30VzP2thTVfvcYrklQJF8aZFQ6ecXwok3HnAdn1rG-y6Mya1I9H9vDyG7JoH-ppkPWWlItZV_QxQ7Ls6usTY2PvP45TjN8x8WEchn2Ld8HYZ28StWx3cEJDtv8dPgEvt7KwDyF2mg8cs-AxVFkrJNWhBrzvYxEBp2wUplAKiGlqcP7ChmpKbXZqUXIIMUcjWCULsGoDlsL40khSfJ3sz2C2MKEdMTzG-PpSVq6pbThK4skD3mnViKTkcaEATk5fopvgkC5OmxW6EtL5zZLf0Hv-b8fv4Z7-4eddtpudQ9ewFqIfLCodN6E2nx64V7CXfNjfjabvirnEYPvtw3Vn-gvYvY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFiE4AC2gBgrsoUiAZNVrO7v2AaGWEhE1DZECqD2Z_XJbKV9NUqoe-Vv8OmbsdQgCceuBm2WPLHn9dubN7uwbgG0MidT8RCBzS12QCEx3dMF1EFue2swqY4qwbDYhu9306CjrrcCP-iwMlVXWPrF01HZsaI18JyZd9AzZsdwpfFlEb7_1dnIeUAcp2mmt22lUEDlwV5eYvs3etPfxX7-Iotb7T-8-BL7DQGBikcwDaYpCJwVyJGmbmdFaSG3ixGhlpZEydJlFCyMNfmjWLLiKBVfCxRrdi0ZqEeN7b8AaUvIE59har33YO16s8JDiZsrD6lBgHGch7UlzDBrNNIp-C4Nlt4A_gkEZ4Vr3_uexuQ93Pa9mu9VEWIcVN9qAO0tqixuw7v3YjL30YtuvHsB3EhoplwwZlVReMbzo0PHnwZl1rO_KaM1aVOfH9jDiWzLoX6rpkLWX1EzZR3S9Q3-mlXWoIVLQP8fph--4mFCOw76U-yPssKxedWx3cILDNj8dPoTP1zIwj2B1NB65TWCpEMY6aZNIYx5YkPigS6xUhkuVSGka8LpGSW68Zju1DhnkmLsRpPIlSDVge2E8qaRK_m62R3BbmJC-eHljPD3JvbvKm6GySP6Qj2qVFFJoTCSQq-OnhIZz5RqwVSMx905vlv-C4eN_P34OtxCfeafdPXgCtyOkiVUB9BaszqcX7incNN_mZ7PpMz-lGHy9bqT-BORza7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion+Study+on+Landslide+Seepage+Field+Based+on+Swarm+Intelligence+Optimization+Least-Square+Support+Vector+Machine+Algorithm&rft.jtitle=Applied+sciences&rft.au=Tang%2C+Xuan&rft.au=Shi%2C+Chong&rft.au=Zhang%2C+Yuming&rft.date=2024-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=13&rft.spage=5822&rft_id=info:doi/10.3390%2Fapp14135822&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14135822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon