Inversion Study on Landslide Seepage Field Based on Swarm Intelligence Optimization Least-Square Support Vector Machine Algorithm
The permeability coefficient of landslide mass, a key parameter in the study of reservoir landslides, is commonly obtained through in situ and laboratory tests; however, the tests are costly and subject to high variability, leading to potential biases. In this paper, a new method was proposed to inv...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 14; číslo 13; s. 5822 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.07.2024
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The permeability coefficient of landslide mass, a key parameter in the study of reservoir landslides, is commonly obtained through in situ and laboratory tests; however, the tests are costly and subject to high variability, leading to potential biases. In this paper, a new method was proposed to inversely estimate the permeability coefficient of landslide layers using monitoring data of groundwater level (GWL). First, the landslide transient seepage simulation was conducted to generate sample data for permeability coefficients and GWL during a reservoir operation cycle. Second, using GWL data as input and permeability coefficient data as output, the least-square support vector machine (LSSVM) was trained with two optimization algorithms, the particle swarm optimization (PSO) algorithm and the whale optimization algorithm (WOA), to construct the nonlinear mapping relationship between simulated GWL and permeability coefficients. Third, the accurate permeability coefficients for landslide seepage simulation were inverted or predicted based on the monitored GWL. Finally, using the inverted permeability coefficients for landslide seepage simulation, we compared simulation results with actual monitored GWL and achieved good consistency. In addition, this paper compared the inversion effects of three different algorithms: the standard LSSVM, PSO-LSSVM, and WOA-LSSVM. This study showed that these three algorithms had good nonlinear fitting effects in studying landslide seepage fields. Among them, using the inversion values from PSO-LSSVM for landslide seepage simulation resulted in the smallest relative error compared to actual monitoring data. Within a single reservoir operation cycle, the simulated water level changes were also largely consistent with the monitored water level changes. The results could provide a reference to determine landslide permeability coefficients and seepage. |
|---|---|
| AbstractList | The permeability coefficient of landslide mass, a key parameter in the study of reservoir landslides, is commonly obtained through in situ and laboratory tests; however, the tests are costly and subject to high variability, leading to potential biases. In this paper, a new method was proposed to inversely estimate the permeability coefficient of landslide layers using monitoring data of groundwater level (GWL). First, the landslide transient seepage simulation was conducted to generate sample data for permeability coefficients and GWL during a reservoir operation cycle. Second, using GWL data as input and permeability coefficient data as output, the least-square support vector machine (LSSVM) was trained with two optimization algorithms, the particle swarm optimization (PSO) algorithm and the whale optimization algorithm (WOA), to construct the nonlinear mapping relationship between simulated GWL and permeability coefficients. Third, the accurate permeability coefficients for landslide seepage simulation were inverted or predicted based on the monitored GWL. Finally, using the inverted permeability coefficients for landslide seepage simulation, we compared simulation results with actual monitored GWL and achieved good consistency. In addition, this paper compared the inversion effects of three different algorithms: the standard LSSVM, PSO-LSSVM, and WOA-LSSVM. This study showed that these three algorithms had good nonlinear fitting effects in studying landslide seepage fields. Among them, using the inversion values from PSO-LSSVM for landslide seepage simulation resulted in the smallest relative error compared to actual monitoring data. Within a single reservoir operation cycle, the simulated water level changes were also largely consistent with the monitored water level changes. The results could provide a reference to determine landslide permeability coefficients and seepage. |
| Author | Tang, Xuan Zhang, Yuming Shi, Chong |
| Author_xml | – sequence: 1 givenname: Xuan surname: Tang fullname: Tang, Xuan – sequence: 2 givenname: Chong orcidid: 0000-0003-1386-0651 surname: Shi fullname: Shi, Chong – sequence: 3 givenname: Yuming surname: Zhang fullname: Zhang, Yuming |
| BookMark | eNptkcFq3DAQhkVJoWmaU19A0GNxIq1syTqmoUkWNuSwba9iLI03WryWI8kp6a1vXm22hFCqi36GT98MmvfkaAwjEvKRszMhNDuHaeI1F027WLwhxwumZCVqro5e5XfkNKUtK0dz0XJ2TH4vx0eMyYeRrvPsnmgJKxhdGrxDukacYIP0yuPg6BdI6PbA-ifEHV2OGYfBb3C0SO-m7Hf-F-S9aYWQcrV-mCEWxzxNIWb6A20Okd6Cvfcj0othE6LP97sP5G0PQ8LTv_cJ-X719dvlTbW6u15eXqwqK2SdK2X7vqt7rblyjbZdJ1VnRW07cMoqxVC7Qlhl0Vrd9ByE5CBRdHUBW6HFCVkevC7A1kzR7yA-mQDePBdC3BiI2dsBTcPALXjLpOyg7pXsmNataIqSWc4Bi-vTwTXF8DBjymYb5jiW8Y1gqtW6UVIV6vOBsjGkFLF_6cqZ2a_MvFpZofk_tPX5-T9zBD_8980fKtudUA |
| CitedBy_id | crossref_primary_10_1007_s12145_024_01470_9 |
| Cites_doi | 10.1016/j.enganabound.2018.03.004 10.1016/j.scient.2011.03.007 10.1007/s43452-023-00631-9 10.3390/w16050686 10.4236/eng.2011.34049 10.1016/j.jhydrol.2017.02.046 10.1016/j.advwatres.2004.02.001 10.1109/ICNN.1995.488968 10.1016/j.advengsoft.2016.01.008 10.1016/j.enggeo.2019.105267 10.1029/2003WR002432 10.1016/j.compgeo.2023.105738 10.1061/(ASCE)GM.1943-5622.0000129 10.1016/S1365-1609(00)00077-0 10.1007/s10346-018-0945-9 10.3390/app122312315 10.1016/j.measurement.2023.113580 10.1016/j.soildyn.2023.107761 10.1155/2014/741323 10.1016/j.tust.2018.09.027 10.1007/s10064-013-0552-x 10.1016/j.enggeo.2014.02.004 10.1007/s10064-022-02618-x 10.1016/j.enggeo.2015.10.014 10.1007/s10064-024-03612-1 10.1016/j.tust.2023.105099 10.1016/j.enggeo.2015.01.008 10.1016/j.jhydrol.2018.02.013 10.1007/s12665-015-4837-1 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app14135822 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database (subscription) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_50ad218066ba4f76b099835a360c11ae 10_3390_app14135822 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c364t-7cffb4f9917d59cbb67bc34cbad7c770e9dcffc7cecc95f1a361a6e3b467b8393 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001269707600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Mon Nov 10 04:35:39 EST 2025 Mon Jun 30 17:43:56 EDT 2025 Sat Nov 29 07:14:31 EST 2025 Tue Nov 18 22:15:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-7cffb4f9917d59cbb67bc34cbad7c770e9dcffc7cecc95f1a361a6e3b467b8393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1386-0651 |
| OpenAccessLink | https://www.proquest.com/docview/3078995767?pq-origsite=%requestingapplication% |
| PQID | 3078995767 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_50ad218066ba4f76b099835a360c11ae proquest_journals_3078995767 crossref_primary_10_3390_app14135822 crossref_citationtrail_10_3390_app14135822 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Tang (ref_2) 2019; 261 Liang (ref_13) 2014; 2014 Wang (ref_26) 2014; 490 Li (ref_27) 2020; 37 Zhuang (ref_14) 2019; 83 Samui (ref_29) 2011; 334049 Yin (ref_1) 2022; 81 Kazemi (ref_11) 2023; 23 Hu (ref_3) 2015; 74 Yin (ref_34) 2021; 41 ref_17 Eberhart (ref_31) 1995; Volume 4 Zhang (ref_33) 2018; 15 Ren (ref_19) 2016; 75 Kazemi (ref_10) 2023; 166 Mirjalili (ref_32) 2016; 95 Basile (ref_7) 2003; 39 Yu (ref_21) 2024; 83 Wen (ref_5) 2017; 548 Thomas (ref_24) 2018; 91 Chang (ref_15) 2023; 163 ref_25 Dewandel (ref_6) 2018; 559 Farcas (ref_8) 2004; 27 ref_22 Ding (ref_30) 2010; 5 Li (ref_16) 2023; 136 Samui (ref_28) 2011; 18 Deng (ref_9) 2001; 38 Sun (ref_12) 2016; 205 Zhou (ref_18) 2015; 187 Zhou (ref_4) 2014; 173 Fei (ref_20) 2023; 221 Das (ref_23) 2012; 12 |
| References_xml | – volume: 91 start-page: 60 year: 2018 ident: ref_24 article-title: Simulation optimization model for aquifer parameter estimation using coupled meshfree point collocation method and cat swarm optimization publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2018.03.004 – volume: 5 start-page: 55 year: 2010 ident: ref_30 article-title: Constrained surface recovery using rbf and its efficiency improvements publication-title: J. Multimed. – volume: 18 start-page: 53 year: 2011 ident: ref_28 article-title: Utilization of a least square support vector machine (lssvm) for slope stability analysis publication-title: Sci. Iran. doi: 10.1016/j.scient.2011.03.007 – volume: 23 start-page: 94 year: 2023 ident: ref_11 article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings publication-title: Arch. Civ. Mech. Eng. doi: 10.1007/s43452-023-00631-9 – ident: ref_25 doi: 10.3390/w16050686 – volume: 334049 start-page: 431 year: 2011 ident: ref_29 article-title: Application of least square support vector machine (lssvm) for determination of evaporation losses in reservoirs publication-title: Engineering doi: 10.4236/eng.2011.34049 – volume: 548 start-page: 40 year: 2017 ident: ref_5 article-title: Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.02.046 – volume: 27 start-page: 223 year: 2004 ident: ref_8 article-title: An inverse dual reciprocity method for hydraulic conductivity identification in steady groundwater flow publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2004.02.001 – volume: Volume 4 start-page: 1942 year: 1995 ident: ref_31 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE International Conference on Neural Networks doi: 10.1109/ICNN.1995.488968 – volume: 95 start-page: 51 year: 2016 ident: ref_32 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 261 start-page: 105267 year: 2019 ident: ref_2 article-title: Geohazards in the Three Gorges Reservoir area, China–lessons learned from decades of research publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2019.105267 – volume: 39 start-page: 1355 year: 2003 ident: ref_7 article-title: Hysteresis in soil water characteristics as a key to interpreting comparisons of laboratory and field measured hydraulic properties publication-title: Water Resour. Res. doi: 10.1029/2003WR002432 – volume: 163 start-page: 105738 year: 2023 ident: ref_15 article-title: Back analysis of rock mass parameters in tunnel engineering using machine learning techniques publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2023.105738 – volume: 490 start-page: 633 year: 2014 ident: ref_26 article-title: The inversion analysis of the reservoir saturation landslide’s permeability coefficient publication-title: Appl. Mech. Mater. – volume: 12 start-page: 606 year: 2012 ident: ref_23 article-title: Prediction of field hydraulic conductivity of clay liners using an artificial neural network and support vector machine publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0000129 – volume: 38 start-page: 259 year: 2001 ident: ref_9 article-title: Displacement back analysis for a steep slope at the three gorges project site publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/S1365-1609(00)00077-0 – volume: 15 start-page: 581 year: 2018 ident: ref_33 article-title: Field monitoring and deformation characteristics of a landslide with piles in the Three Gorges Reservoir area publication-title: Landslides doi: 10.1007/s10346-018-0945-9 – ident: ref_17 doi: 10.3390/app122312315 – volume: 221 start-page: 113580 year: 2023 ident: ref_20 article-title: Inversion analysis of rock mass permeability coefficient of dam engineering based on particle swarm optimization and support vector machine: A case study publication-title: Measurement doi: 10.1016/j.measurement.2023.113580 – volume: 166 start-page: 107761 year: 2023 ident: ref_10 article-title: Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2023.107761 – volume: 2014 start-page: 741323 year: 2014 ident: ref_13 article-title: Displacement back analysis for a high slope of the dagangshan hydroelectric power station based on bp neural network and particle swarm optimization publication-title: Sci. World J. doi: 10.1155/2014/741323 – volume: 83 start-page: 425 year: 2019 ident: ref_14 article-title: Mechanical parameter inversion in tunnel engineering using support vector regression optimized by multi-strategy artificial fish swarm algorithm publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2018.09.027 – volume: 74 start-page: 1 year: 2015 ident: ref_3 article-title: Deformation characteristics and failure mode of the zhujiadian landslide in the Three Gorges Reservoir, China publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-013-0552-x – volume: 41 start-page: 649 year: 2021 ident: ref_34 article-title: Research on seepage stability and prevention design of landslide during impoundment operation of the Three Gorges Reservoir, China publication-title: Chin. J. Rock Mech. Eng. – volume: 173 start-page: 41 year: 2014 ident: ref_4 article-title: Comparing two methods to estimate lateral force acting on stabilizing piles for a landslide in the Three Gorges Reservoir, China publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.02.004 – volume: 81 start-page: 109 year: 2022 ident: ref_1 article-title: Research on the collapse process of a thick-layer dangerous rock on the reservoir bank publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-022-02618-x – volume: 37 start-page: 121 year: 2020 ident: ref_27 article-title: Inversion analysis on permeability coefficient of stratum in engineering area based on rvm-cs publication-title: J. Yangtze River Sci. Res. Inst. – volume: 205 start-page: 133 year: 2016 ident: ref_12 article-title: Parameter inversion and deformation mechanism of sanmendong landslide in the Three Gorges Reservoir region under the combined effect of reservoir water level fluctuation and rainfall publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.10.014 – volume: 83 start-page: 127 year: 2024 ident: ref_21 article-title: An artificial intelligence optimization method of back analysis of unsteady-steady seepage field for the dam site under complex geological condition publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-024-03612-1 – volume: 136 start-page: 105099 year: 2023 ident: ref_16 article-title: Back analysis of geomechanical parameters for rock mass under complex geological conditions using a novel algorithm publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2023.105099 – volume: 187 start-page: 183 year: 2015 ident: ref_18 article-title: Inverse modeling of leakage through a rockfill dam foundation during its construction stage using transient flow model, neural network and genetic algorithm publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.01.008 – ident: ref_22 – volume: 559 start-page: 89 year: 2018 ident: ref_6 article-title: A generic analytical solution for modelling pumping tests in wells intersecting fractures publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.013 – volume: 75 start-page: 113 year: 2016 ident: ref_19 article-title: Back analysis of the 3d seepage problem and its engineering applications publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4837-1 |
| SSID | ssj0000913810 |
| Score | 2.3024023 |
| Snippet | The permeability coefficient of landslide mass, a key parameter in the study of reservoir landslides, is commonly obtained through in situ and laboratory... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 5822 |
| SubjectTerms | Algorithms Dams Lagrange multiplier Landslides & mudslides LSSVM Machine learning Network management systems Neural networks Optimization parameter inversion Permeability permeability coefficient Reinforced concrete reservoir landslides Seismic engineering Simulation Support vector machines swarm intelligence optimization algorithm |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD2KpYrbKHHlQIdpt0Nzm2YlHQKlSlt7CvaKEv-1A8-s-d2aQlouDFWwhDEnZmZ77ZzHxDSBVCIg4_4YDcQusFHNIdlTDl-YaFJjJS66Tmhk2ITifs9aL73KgvrAlL6YHThTtv1KSBMASRUckgEVwBpAHUIH1e04xJi94XUE8umXI-OGJIXZU25PmQ1-P_YAYOuxHW699CkGPq_-GIXXRpb5OtDBbSZvo5RbJmRyWymSMLLJFitg1n9CTjij7dIZ_Ik-FOvChWBH5QuLjB7t1B31jatS7Y0DaWqdEWBCyDAt13OR3S6xwZJ70DzzHMWjLpDc7z8bqvYD3wjMUEITp9csf79NYVX1raHDyPp_35y3CXPLYvHy6uvGyqgqd9Hsw9oZNEBQngQmEakVaKC6X9QCtphBaiZiMDElpoUG7USBisNJPc-gpcqgI45e-Rwmg8svuEhpxrY4UJ6grSmAS582xghNRMyEAIXSZny4WOdUY5jpMvBjGkHqiVOKeVMqmuhCcp08bvYi3U2EoE6bHdDTCaODOa-C-jKZPKUt9xtmdnsY_M-xHkX-LgP95xSDbqAIDS0t4KKcynC3tE1vXbvD-bHjtz_QJBYPDc priority: 102 providerName: Directory of Open Access Journals |
| Title | Inversion Study on Landslide Seepage Field Based on Swarm Intelligence Optimization Least-Square Support Vector Machine Algorithm |
| URI | https://www.proquest.com/docview/3078995767 https://doaj.org/article/50ad218066ba4f76b099835a360c11ae |
| Volume | 14 |
| WOSCitedRecordID | wos001269707600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (subscription) customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BygEO9AGI0FL50EOLtGKddezdU9WgRq3UplEDqJxWfm2plFeTFNRj_3lnHCcEgbhw28dotdaMZz6Px98A7GFIpOYnEpFb7hMhcbljKm6SzPHcFU5bW6Wh2YTqdPKrq6IbE27TWFa58InBUbuRpRz5x4x40QtEx-pwfJtQ1yjaXY0tNJ7CGjGViRqstY473ctlloVYL3Oezg_mZbi-p31hjo67mTcav4WiwNj_h0MOUaa9_r__twEvI75kR3OD2IQnfrgFL1ZYB7dgM87nKduPpNMHr-CBCDdC6oxRaeE9w4szOgbcv3Ge9XyIWqxN9W6shZHPkUDvp54M2OkKqye7QBc0iGc72Rk1Bkp6t2iG-I27MWF99jXsE7DzUMXp2VH_Gocx-z54DV_ax58_nSSxPUNiMylmibJVZUSFAFO5ZmGNkcrYTFijnbJKpb5wKGGVRSspmhXXmeRa-sygbzaIy7I3UBuOhv4tsFxK67xyomFwPVQRCZ8XTmnLlRZK2Tp8WGiqtJG7nFpo9Etcw5BayxW11mFvKTyeU3b8XaxFKl-KEM92eDCaXJdx2pbNVDsEQYjLjBaVkgYBNWJWHEpqOde-DjsLayjj5J-Wv0zh3b9fb8PzBmKkefXvDtRmkzv_Hp7ZH7Ob6WQ32vJuSBPgXff0vPvtEd43A_c |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIlyAFpABArsoUiAZGF7N177UFUtEDVqEiKloPZk9uW2Ul5NUqoe-4f6G5nxIwSBuPXAzbJHlrz-duab3dlvALYwJFLzkwiZW-w8EWG6o7NAe9wGsU2sMibz82YTstuNj46S3grcVGdhqKyy8om5o7ZjQ2vkHzjpoifIjuXO5NyjrlG0u1q10ChgceCuLjFlm223PuH_fROGzc-HH_e9squAZ3gk5p40WaZFhrxI2kZitI6kNlwYraw0UvousWhhpMGPSxpZoHgUqMhxjS5FI53g-N47sCoQ7HENVnutTu94sapDKptx4BcHATlPfNqHDjBQNOIw_C305R0C_ggAeVRrPvzfxuMRPCj5M9stAL8OK260AfeXVBU3YL30VzP2thTVfvcYrklQJF8aZFQ6ecXwok3HnAdn1rG-y6Mya1I9H9vDyG7JoH-ppkPWWlItZV_QxQ7Ls6usTY2PvP45TjN8x8WEchn2Ld8HYZ28StWx3cEJDtv8dPgEvt7KwDyF2mg8cs-AxVFkrJNWhBrzvYxEBp2wUplAKiGlqcP7ChmpKbXZqUXIIMUcjWCULsGoDlsL40khSfJ3sz2C2MKEdMTzG-PpSVq6pbThK4skD3mnViKTkcaEATk5fopvgkC5OmxW6EtL5zZLf0Hv-b8fv4Z7-4eddtpudQ9ewFqIfLCodN6E2nx64V7CXfNjfjabvirnEYPvtw3Vn-gvYvY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFiE4AC2gBgrsoUiAZNVrO7v2AaGWEhE1DZECqD2Z_XJbKV9NUqoe-Vv8OmbsdQgCceuBm2WPLHn9dubN7uwbgG0MidT8RCBzS12QCEx3dMF1EFue2swqY4qwbDYhu9306CjrrcCP-iwMlVXWPrF01HZsaI18JyZd9AzZsdwpfFlEb7_1dnIeUAcp2mmt22lUEDlwV5eYvs3etPfxX7-Iotb7T-8-BL7DQGBikcwDaYpCJwVyJGmbmdFaSG3ixGhlpZEydJlFCyMNfmjWLLiKBVfCxRrdi0ZqEeN7b8AaUvIE59har33YO16s8JDiZsrD6lBgHGch7UlzDBrNNIp-C4Nlt4A_gkEZ4Vr3_uexuQ93Pa9mu9VEWIcVN9qAO0tqixuw7v3YjL30YtuvHsB3EhoplwwZlVReMbzo0PHnwZl1rO_KaM1aVOfH9jDiWzLoX6rpkLWX1EzZR3S9Q3-mlXWoIVLQP8fph--4mFCOw76U-yPssKxedWx3cILDNj8dPoTP1zIwj2B1NB65TWCpEMY6aZNIYx5YkPigS6xUhkuVSGka8LpGSW68Zju1DhnkmLsRpPIlSDVge2E8qaRK_m62R3BbmJC-eHljPD3JvbvKm6GySP6Qj2qVFFJoTCSQq-OnhIZz5RqwVSMx905vlv-C4eN_P34OtxCfeafdPXgCtyOkiVUB9BaszqcX7incNN_mZ7PpMz-lGHy9bqT-BORza7Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion+Study+on+Landslide+Seepage+Field+Based+on+Swarm+Intelligence+Optimization+Least-Square+Support+Vector+Machine+Algorithm&rft.jtitle=Applied+sciences&rft.au=Tang%2C+Xuan&rft.au=Shi%2C+Chong&rft.au=Zhang%2C+Yuming&rft.date=2024-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=13&rft.spage=5822&rft_id=info:doi/10.3390%2Fapp14135822&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14135822 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |