Optimal design of Multiresonant Layered Acoustic Metamaterials (MLAM) via a homogenization approach
Broadband sound attenuation at low frequency ranges (below 500 Hz) has been a challenge in the acoustics field which cannot be solved, via conventional materials, unless impractical amounts of mass are employed. Multiresonant Layered Acoustic Metamaterials (MLAM) offer exceptional attenuating proper...
Uloženo v:
| Vydáno v: | Engineering structures Ročník 293; s. 116555 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.10.2023
|
| Témata: | |
| ISSN: | 0141-0296, 1873-7323 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Broadband sound attenuation at low frequency ranges (below 500 Hz) has been a challenge in the acoustics field which cannot be solved, via conventional materials, unless impractical amounts of mass are employed. Multiresonant Layered Acoustic Metamaterials (MLAM) offer exceptional attenuating properties at lower frequencies, through novel coupled resonances mechanisms, in a layered configuration that make them amenable for large-scale manufacturing. To show the potential capabilities of MLAM, a novel computational design strategy has been developed to optimize the metamaterials’ performance in terms of their Sound Transmission Loss (STL). First, a multiscale homogenization framework specifically derived for MLAM allows an accurate and extremely fast evaluation of their STL response to normal-incidence acoustic waves in the frequency range of interest. Then, the MLAM design is parameterized into a set of relevant geometric features, which are optimized by means of an optimization scheme based on standard genetic algorithms combined with the homogenization model. The results demonstrate how this design strategy is a powerful tool to obtain optimal MLAM panel designs subject to constraints imposed by the application, for instance, in terms of weight or thickness of the panel, or the manufacturing process (e.g. geometric tolerances).
•Multiresonant Layered Acoustic Metamaterial (MLAM) is designed for low-frequency STL.•Optimal MLAM improves STL by 20 dB from 100 to 500 Hz compared to wall of same mass.•MLAM structure, design and materials are amenable for large-scale manufacturing.•Layer-by-layer homogenization model is proposed to derive MLAM effective properties.•Two-step parametric optimization strategy using genetic algorithms is proposed. |
|---|---|
| AbstractList | Broadband sound attenuation at low frequency ranges (below 500 Hz) has been a challenge in the acoustics field which cannot be solved, via conventional materials, unless impractical amounts of mass are employed. Multiresonant Layered Acoustic Metamaterials (MLAM) offer exceptional attenuating properties at lower frequencies, through novel coupled resonances mechanisms, in a layered configuration that make them amenable for large-scale manufacturing. To show the potential capabilities of MLAM, a novel computational design strategy has been developed to optimize the metamaterials’ performance in terms of their Sound Transmission Loss (STL). First, a multiscale homogenization framework specifically derived for MLAM allows an accurate and extremely fast evaluation of their STL response to normal-incidence acoustic waves in the frequency range of interest. Then, the MLAM design is parameterized into a set of relevant geometric features, which are optimized by means of an optimization scheme based on standard genetic algorithms combined with the homogenization model. The results demonstrate how this design strategy is a powerful tool to obtain optimal MLAM panel designs subject to constraints imposed by the application, for instance, in terms of weight or thickness of the panel, or the manufacturing process (e.g. geometric tolerances).
•Multiresonant Layered Acoustic Metamaterial (MLAM) is designed for low-frequency STL.•Optimal MLAM improves STL by 20 dB from 100 to 500 Hz compared to wall of same mass.•MLAM structure, design and materials are amenable for large-scale manufacturing.•Layer-by-layer homogenization model is proposed to derive MLAM effective properties.•Two-step parametric optimization strategy using genetic algorithms is proposed. |
| ArticleNumber | 116555 |
| Author | Oliver, J. Sal-Anglada, G. Yago, D. Roca, D. Cante, J. |
| Author_xml | – sequence: 1 givenname: G. orcidid: 0000-0002-0560-0035 surname: Sal-Anglada fullname: Sal-Anglada, G. organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Nord UPC Ed. C1, C/ Gran Capità s/n, 08034 Barcelona, Spain – sequence: 2 givenname: D. orcidid: 0000-0002-2141-2683 surname: Yago fullname: Yago, D. organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Nord UPC Ed. C1, C/ Gran Capità s/n, 08034 Barcelona, Spain – sequence: 3 givenname: J. surname: Cante fullname: Cante, J. organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Nord UPC Ed. C1, C/ Gran Capità s/n, 08034 Barcelona, Spain – sequence: 4 givenname: J. orcidid: 0000-0001-8717-1483 surname: Oliver fullname: Oliver, J. organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Nord UPC Ed. C1, C/ Gran Capità s/n, 08034 Barcelona, Spain – sequence: 5 givenname: D. orcidid: 0000-0001-6336-6024 surname: Roca fullname: Roca, D. email: david.roca.cazorla@upc.edu, droca@cimne.upc.edu organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Nord UPC Ed. C1, C/ Gran Capità s/n, 08034 Barcelona, Spain |
| BookMark | eNqNkDtPwzAYRS1UJNrCb8AjDAl-5DkwRBUvKVEXmCPX-dy6Su3IdpHKryeliIEFprvcc6V7ZmhirAGErimJKaHZ3TYGs_bB7WWIGWE8pjRL0_QMTWmR8yjnjE_QlNCERoSV2QWaeb8lhLCiIFMkl0PQO9HjDrxeG2wVbvZ90A68NcIEXIsDOOhwJe3eBy1xA0HsRACnRe_xTVNXzS1-1wILvLE7uwajP0TQ1mAxDM4KublE52rswtV3ztHb48Pr4jmql08vi6qOJM-SEKWrElgq8oQU2SqVPGUqKzsAEHmhCChgSuVQEiVWxdiiaVfmnNMuo4kgMgE-R_lpVzrrvQPVDm785g4tJe3RVbttf1y1R1ftydVI3v8ipQ5fJ4ITuv8HX514GO-9a3CtlxqMhG4UOXY7q__c-AQRGI_e |
| CitedBy_id | crossref_primary_10_3390_acoustics6020016 crossref_primary_10_1016_j_tws_2025_113219 crossref_primary_10_1016_j_jcomc_2025_100620 crossref_primary_10_1016_j_jobe_2025_111926 crossref_primary_10_1016_j_jsv_2025_119073 crossref_primary_10_1002_nme_7476 crossref_primary_10_1016_j_ijmecsci_2025_110637 crossref_primary_10_1016_j_jsv_2025_119364 crossref_primary_10_1016_j_ijmecsci_2023_108951 crossref_primary_10_3390_app15126543 crossref_primary_10_1016_j_ymssp_2025_112453 |
| Cites_doi | 10.1103/PhysRevLett.116.198001 10.1016/j.eml.2021.101368 10.1016/j.jsv.2018.09.053 10.1063/1.2970992 10.1121/1.4744941 10.1016/S0921-4526(03)00487-3 10.1016/j.jsv.2021.116716 10.1121/1.4984623 10.1016/j.cma.2018.10.037 10.1016/j.eml.2017.06.004 10.1016/j.ijmecsci.2018.11.029 10.1016/j.apacoust.2020.107482 10.1115/1.4045774 10.1126/science.289.5485.1734 10.1002/pssb.200982040 10.1063/1.4820796 10.1016/j.mechrescom.2023.104045 10.1103/PhysRevLett.113.014301 10.1103/PhysRevLett.101.204301 10.1016/j.ymssp.2015.08.029 10.1063/1.5142066 10.1115/1.4026911 10.1260/135101009788066555 10.1103/PhysRevB.78.104105 10.1063/1.4928564 10.1063/1.4764072 10.1016/j.cma.2017.10.025 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) |
| Copyright_xml | – notice: 2023 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.engstruct.2023.116555 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7323 |
| ExternalDocumentID | 10_1016_j_engstruct_2023_116555 S0141029623009707 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET VH1 WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c364t-5b9e25a74086b5c352f69deeea78f0efe2ff7e90fab8a7415d97331d614a0c4e3 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001055039000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0141-0296 |
| IngestDate | Sat Nov 29 07:24:14 EST 2025 Tue Nov 18 21:51:40 EST 2025 Fri Feb 23 02:35:26 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Computational homogenization Coupled resonances Acoustic metamaterials Genetic algorithm optimization MLAM |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c364t-5b9e25a74086b5c352f69deeea78f0efe2ff7e90fab8a7415d97331d614a0c4e3 |
| ORCID | 0000-0001-8717-1483 0000-0002-0560-0035 0000-0001-6336-6024 0000-0002-2141-2683 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.engstruct.2023.116555 |
| ParticipantIDs | crossref_primary_10_1016_j_engstruct_2023_116555 crossref_citationtrail_10_1016_j_engstruct_2023_116555 elsevier_sciencedirect_doi_10_1016_j_engstruct_2023_116555 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-15 |
| PublicationDateYYYYMMDD | 2023-10-15 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering structures |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bilal, Hussein (b13) 2013; 103 Zhang, Gao, Wu (b21) 2020; 169 McGee, Jiang, Qian, Jia, Wang, Meng (b19) 2019; 30 Liu, Zhang, Mao, Zhu, Yang, Chan (b1) 2000; 289 Claeys, Deckers, Pluymers, Desmet (b16) 2016; 70–71 Sheng, Zhang, Liu, Chan (b3) 2003; 338 Badreddine Assouar, Senesi, Oudich, Ruzzene, Hou (b12) 2012; 101 Roca, Lloberas-Valls, Cante, Oliver (b29) 2018; 330 Nimmagadda, Matlack (b23) 2019; 439 Roca, Yago, Cante, Lloberas-Valls, Oliver (b28) 2019; 345 Yang, Mei, Yang, Chan, Sheng (b6) 2008; 101 Naify, Chang, McKnight, Nutt (b7) 2012; 132 Roca, Hussein (b26) 2021; 16 Stein, Nouh, Singh (b27) 2022; 523 Calius, Bremaud, Smith, Hall (b5) 2009; 246 De Maio, Greco, Luciano, Sgambitterra, Pranno (b22) 2023; 128 Gao, Wang (b25) 2020; 127 Huang, Li, Chen, Bao (b15) 2019; 151 Hiraiwa, Abi Ghanem, Wallen, Khanolkar, Maznev, Boechler (b9) 2016; 116 Wang, Casadei, Shan, Weaver, Bertoldi (b14) 2014; 113 Hussein, Leamy, Ruzzene (b2) 2014; 66 Wester, Brémaud, Smith (b4) 2009; 16 Khanolkar, Wallen, Abi Ghanem, Jenks, Vogel, Boechler (b8) 2015; 107 Roca, Cante, Lloberas-Valls, Pàmies, Oliver (b24) 2021; 47 Wu, Huang, Tsai, Wu (b11) 2008; 93 Bilal, Foehr, Daraio (b18) 2017; 15 Roca, Pàmies, Cante, Lloberas-Valls, Oliver (b20) 2020; 142 Pennec, Djafari-Rouhani, Larabi, Vasseur, Hladky-Hennion (b10) 2008; 78 Leblanc, Lavie (b17) 2017; 141 Khanolkar (10.1016/j.engstruct.2023.116555_b8) 2015; 107 Leblanc (10.1016/j.engstruct.2023.116555_b17) 2017; 141 Bilal (10.1016/j.engstruct.2023.116555_b18) 2017; 15 Claeys (10.1016/j.engstruct.2023.116555_b16) 2016; 70–71 Wester (10.1016/j.engstruct.2023.116555_b4) 2009; 16 Wu (10.1016/j.engstruct.2023.116555_b11) 2008; 93 Roca (10.1016/j.engstruct.2023.116555_b20) 2020; 142 Calius (10.1016/j.engstruct.2023.116555_b5) 2009; 246 Yang (10.1016/j.engstruct.2023.116555_b6) 2008; 101 Hiraiwa (10.1016/j.engstruct.2023.116555_b9) 2016; 116 Nimmagadda (10.1016/j.engstruct.2023.116555_b23) 2019; 439 Badreddine Assouar (10.1016/j.engstruct.2023.116555_b12) 2012; 101 Roca (10.1016/j.engstruct.2023.116555_b28) 2019; 345 Pennec (10.1016/j.engstruct.2023.116555_b10) 2008; 78 Huang (10.1016/j.engstruct.2023.116555_b15) 2019; 151 Naify (10.1016/j.engstruct.2023.116555_b7) 2012; 132 Zhang (10.1016/j.engstruct.2023.116555_b21) 2020; 169 Roca (10.1016/j.engstruct.2023.116555_b24) 2021; 47 Wang (10.1016/j.engstruct.2023.116555_b14) 2014; 113 De Maio (10.1016/j.engstruct.2023.116555_b22) 2023; 128 McGee (10.1016/j.engstruct.2023.116555_b19) 2019; 30 Roca (10.1016/j.engstruct.2023.116555_b26) 2021; 16 Stein (10.1016/j.engstruct.2023.116555_b27) 2022; 523 Liu (10.1016/j.engstruct.2023.116555_b1) 2000; 289 Gao (10.1016/j.engstruct.2023.116555_b25) 2020; 127 Roca (10.1016/j.engstruct.2023.116555_b29) 2018; 330 Hussein (10.1016/j.engstruct.2023.116555_b2) 2014; 66 Bilal (10.1016/j.engstruct.2023.116555_b13) 2013; 103 Sheng (10.1016/j.engstruct.2023.116555_b3) 2003; 338 |
| References_xml | – volume: 330 start-page: 415 year: 2018 end-page: 446 ident: b29 article-title: A computational multiscale homogenization framework accounting for inertial effects: Application to acoustic metamaterials modelling publication-title: Comput Methods Appl Mech Engrg – volume: 169 year: 2020 ident: b21 article-title: New mechanism of tunable broadband in local resonance structures publication-title: Appl Acoust – volume: 523 year: 2022 ident: b27 article-title: Widening, transition and coalescence of local resonance band gaps in multi-resonator acoustic metamaterials: from unit cells to finite chains publication-title: J Sound Vib – volume: 338 start-page: 201 year: 2003 end-page: 205 ident: b3 article-title: Locally resonant sonic materials publication-title: Physica B – volume: 128 year: 2023 ident: b22 article-title: Microstructural design for elastic wave attenuation in 3D printed nacre-like bioinspired metamaterials lightened with hollow platelets publication-title: Mech Res Commun – volume: 93 year: 2008 ident: b11 article-title: Evidence of complete band gap and resonances in a plate with periodic stubbed surface publication-title: Appl Phys Lett – volume: 107 year: 2015 ident: b8 article-title: A self-assembled metamaterial for lamb waves publication-title: Appl Phys Lett – volume: 70–71 start-page: 853 year: 2016 end-page: 880 ident: b16 article-title: A lightweight vibro-acoustic metamaterial demonstrator: numerical and experimental investigation publication-title: Mech Syst Signal Process – volume: 141 start-page: EL538 year: 2017 end-page: EL542 ident: b17 article-title: Three-dimensional-printed membrane-type acoustic metamaterial for low frequency sound attenuation publication-title: J Acoust Soc Am – volume: 47 year: 2021 ident: b24 article-title: Multiresonant layered acoustic metamaterial (MLAM) solution for broadband low-frequency noise attenuation through double-peak sound transmission loss response publication-title: Extreme Mech Lett – volume: 66 year: 2014 ident: b2 article-title: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook publication-title: Appl Mech Rev – volume: 16 year: 2021 ident: b26 article-title: Broadband and intense sound transmission loss by a coupled-resonance acoustic metamaterial publication-title: Phys Rev A – volume: 116 year: 2016 ident: b9 article-title: Complex contact-based dynamics of microsphere monolayers revealed by resonant attenuation of surface acoustic waves publication-title: Phys Rev Lett – volume: 113 year: 2014 ident: b14 article-title: Harnessing buckling to design tunable locally resonant acoustic metamaterials publication-title: Phys Rev Lett – volume: 15 start-page: 103 year: 2017 end-page: 107 ident: b18 article-title: Observation of trampoline phenomena in 3d-printed metamaterial plates publication-title: Extreme Mech Lett – volume: 345 start-page: 161 year: 2019 end-page: 182 ident: b28 article-title: Computational design of locally resonant acoustic metamaterials publication-title: Comput Methods Appl Mech Engrg – volume: 103 year: 2013 ident: b13 article-title: Trampoline metamaterial: local resonance enhancement by springboards publication-title: Appl Phys Lett – volume: 439 start-page: 29 year: 2019 end-page: 42 ident: b23 article-title: Thermally tunable band gaps in architected metamaterial structures publication-title: J Sound Vib – volume: 151 start-page: 300 year: 2019 end-page: 313 ident: b15 article-title: Tunable bandgaps in soft phononic plates with spring-mass-like resonators publication-title: Int J Mech Sci – volume: 132 start-page: 2784 year: 2012 end-page: 2792 ident: b7 article-title: Scaling of membrane-type locally resonant acoustic metamaterial arrays publication-title: J Acoust Soc Am – volume: 101 year: 2012 ident: b12 article-title: Broadband plate-type acoustic metamaterial for low-frequency sound attenuation publication-title: Appl Phys Lett – volume: 142 start-page: 1 year: 2020 end-page: 9 ident: b20 article-title: Experimental and numerical assessment of local resonance phenomena in 3D-printed acoustic metamaterials publication-title: J Vib Acoust – volume: 30 year: 2019 ident: b19 article-title: 3D printed architected hollow sphere foams with low-frequency phononic band gaps publication-title: Addit Manuf – volume: 289 start-page: 1734 year: 2000 end-page: 1736 ident: b1 article-title: Locally resonant sonic materials publication-title: Science – volume: 16 start-page: 21 year: 2009 end-page: 30 ident: b4 article-title: Meta-material sound insulation publication-title: Build Acoust – volume: 101 year: 2008 ident: b6 article-title: Membrane-type acoustic metamaterial with negative dynamic mass publication-title: Phys Rev Lett – volume: 127 year: 2020 ident: b25 article-title: Ultrawide coupled bandgap in hybrid periodic system with multiple resonators publication-title: J Appl Phys – volume: 246 start-page: 2089 year: 2009 end-page: 2097 ident: b5 article-title: Negative mass sound shielding structures: early results publication-title: Phys Status Solidi (b) – volume: 78 year: 2008 ident: b10 article-title: Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate publication-title: Phys Rev B – volume: 116 issue: 19 year: 2016 ident: 10.1016/j.engstruct.2023.116555_b9 article-title: Complex contact-based dynamics of microsphere monolayers revealed by resonant attenuation of surface acoustic waves publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.116.198001 – volume: 47 year: 2021 ident: 10.1016/j.engstruct.2023.116555_b24 article-title: Multiresonant layered acoustic metamaterial (MLAM) solution for broadband low-frequency noise attenuation through double-peak sound transmission loss response publication-title: Extreme Mech Lett doi: 10.1016/j.eml.2021.101368 – volume: 30 year: 2019 ident: 10.1016/j.engstruct.2023.116555_b19 article-title: 3D printed architected hollow sphere foams with low-frequency phononic band gaps publication-title: Addit Manuf – volume: 439 start-page: 29 year: 2019 ident: 10.1016/j.engstruct.2023.116555_b23 article-title: Thermally tunable band gaps in architected metamaterial structures publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.09.053 – volume: 93 issue: 11 year: 2008 ident: 10.1016/j.engstruct.2023.116555_b11 article-title: Evidence of complete band gap and resonances in a plate with periodic stubbed surface publication-title: Appl Phys Lett doi: 10.1063/1.2970992 – volume: 132 start-page: 2784 issue: 4 year: 2012 ident: 10.1016/j.engstruct.2023.116555_b7 article-title: Scaling of membrane-type locally resonant acoustic metamaterial arrays publication-title: J Acoust Soc Am doi: 10.1121/1.4744941 – volume: 338 start-page: 201 issue: 1–4 year: 2003 ident: 10.1016/j.engstruct.2023.116555_b3 article-title: Locally resonant sonic materials publication-title: Physica B doi: 10.1016/S0921-4526(03)00487-3 – volume: 523 year: 2022 ident: 10.1016/j.engstruct.2023.116555_b27 article-title: Widening, transition and coalescence of local resonance band gaps in multi-resonator acoustic metamaterials: from unit cells to finite chains publication-title: J Sound Vib doi: 10.1016/j.jsv.2021.116716 – volume: 141 start-page: EL538 issue: 6 year: 2017 ident: 10.1016/j.engstruct.2023.116555_b17 article-title: Three-dimensional-printed membrane-type acoustic metamaterial for low frequency sound attenuation publication-title: J Acoust Soc Am doi: 10.1121/1.4984623 – volume: 345 start-page: 161 year: 2019 ident: 10.1016/j.engstruct.2023.116555_b28 article-title: Computational design of locally resonant acoustic metamaterials publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2018.10.037 – volume: 15 start-page: 103 year: 2017 ident: 10.1016/j.engstruct.2023.116555_b18 article-title: Observation of trampoline phenomena in 3d-printed metamaterial plates publication-title: Extreme Mech Lett doi: 10.1016/j.eml.2017.06.004 – volume: 151 start-page: 300 year: 2019 ident: 10.1016/j.engstruct.2023.116555_b15 article-title: Tunable bandgaps in soft phononic plates with spring-mass-like resonators publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2018.11.029 – volume: 169 year: 2020 ident: 10.1016/j.engstruct.2023.116555_b21 article-title: New mechanism of tunable broadband in local resonance structures publication-title: Appl Acoust doi: 10.1016/j.apacoust.2020.107482 – volume: 142 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.engstruct.2023.116555_b20 article-title: Experimental and numerical assessment of local resonance phenomena in 3D-printed acoustic metamaterials publication-title: J Vib Acoust doi: 10.1115/1.4045774 – volume: 289 start-page: 1734 issue: 5485 year: 2000 ident: 10.1016/j.engstruct.2023.116555_b1 article-title: Locally resonant sonic materials publication-title: Science doi: 10.1126/science.289.5485.1734 – volume: 246 start-page: 2089 issue: 9 year: 2009 ident: 10.1016/j.engstruct.2023.116555_b5 article-title: Negative mass sound shielding structures: early results publication-title: Phys Status Solidi (b) doi: 10.1002/pssb.200982040 – volume: 103 issue: 11 year: 2013 ident: 10.1016/j.engstruct.2023.116555_b13 article-title: Trampoline metamaterial: local resonance enhancement by springboards publication-title: Appl Phys Lett doi: 10.1063/1.4820796 – volume: 128 year: 2023 ident: 10.1016/j.engstruct.2023.116555_b22 article-title: Microstructural design for elastic wave attenuation in 3D printed nacre-like bioinspired metamaterials lightened with hollow platelets publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2023.104045 – volume: 113 year: 2014 ident: 10.1016/j.engstruct.2023.116555_b14 article-title: Harnessing buckling to design tunable locally resonant acoustic metamaterials publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.113.014301 – volume: 101 issue: 20 year: 2008 ident: 10.1016/j.engstruct.2023.116555_b6 article-title: Membrane-type acoustic metamaterial with negative dynamic mass publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.101.204301 – volume: 70–71 start-page: 853 year: 2016 ident: 10.1016/j.engstruct.2023.116555_b16 article-title: A lightweight vibro-acoustic metamaterial demonstrator: numerical and experimental investigation publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.08.029 – volume: 127 issue: 20 year: 2020 ident: 10.1016/j.engstruct.2023.116555_b25 article-title: Ultrawide coupled bandgap in hybrid periodic system with multiple resonators publication-title: J Appl Phys doi: 10.1063/1.5142066 – volume: 66 issue: 4 year: 2014 ident: 10.1016/j.engstruct.2023.116555_b2 article-title: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook publication-title: Appl Mech Rev doi: 10.1115/1.4026911 – volume: 16 start-page: 21 issue: 1 year: 2009 ident: 10.1016/j.engstruct.2023.116555_b4 article-title: Meta-material sound insulation publication-title: Build Acoust doi: 10.1260/135101009788066555 – volume: 16 issue: 5 year: 2021 ident: 10.1016/j.engstruct.2023.116555_b26 article-title: Broadband and intense sound transmission loss by a coupled-resonance acoustic metamaterial publication-title: Phys Rev A – volume: 78 issue: 10 year: 2008 ident: 10.1016/j.engstruct.2023.116555_b10 article-title: Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate publication-title: Phys Rev B doi: 10.1103/PhysRevB.78.104105 – volume: 107 issue: 7 year: 2015 ident: 10.1016/j.engstruct.2023.116555_b8 article-title: A self-assembled metamaterial for lamb waves publication-title: Appl Phys Lett doi: 10.1063/1.4928564 – volume: 101 issue: 17 year: 2012 ident: 10.1016/j.engstruct.2023.116555_b12 article-title: Broadband plate-type acoustic metamaterial for low-frequency sound attenuation publication-title: Appl Phys Lett doi: 10.1063/1.4764072 – volume: 330 start-page: 415 year: 2018 ident: 10.1016/j.engstruct.2023.116555_b29 article-title: A computational multiscale homogenization framework accounting for inertial effects: Application to acoustic metamaterials modelling publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2017.10.025 |
| SSID | ssj0002880 |
| Score | 2.471256 |
| Snippet | Broadband sound attenuation at low frequency ranges (below 500 Hz) has been a challenge in the acoustics field which cannot be solved, via conventional... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 116555 |
| SubjectTerms | Acoustic metamaterials Computational homogenization Coupled resonances Genetic algorithm optimization MLAM |
| Title | Optimal design of Multiresonant Layered Acoustic Metamaterials (MLAM) via a homogenization approach |
| URI | https://dx.doi.org/10.1016/j.engstruct.2023.116555 |
| Volume | 293 |
| WOSCitedRecordID | wos001055039000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE9t40M-cABFrpI0iWNu0RhfajckBuotchx7bOqSaSvVOPKf8_wRt4FJZQcuUfUU20nery8_v7wPhF7SnFExTjJCeVWTpE4jwnmaEJVWUoUij7jpPPdtQg8O8tmMfR4MfnW5MMs5bZr86oqd_1dVgwyUrVNnb6BuPykI4DcoHY6gdjj-k-IPwQic6U8vJjbDhLjooEHYVrc66CWY8J-6P2dQiNZ08gqmcsGBt9pr04xzOimm2luw1Albwff2rIXFXL6mL0Lec-mvihoGtiDtj4tVbOIXPieF7hVSG6L6fuQtDT82jtq3XrKn9WyA5UWH8xMXZOpkzkURm2A3m6TpvZYRCWPburYzuzEbrxlOXQXI1uv9y6Zb98LpSDbH9hZGeo3RakS_ivYfbzcfc9iFs52WfqJST1TaiW6hrZimLB-ireLj_uyTf53HuWm_5--hFyR47TVdT3HWaMvRfXTP7TdwYXHyAA1k8xDdXVPYIyQcYrBFDG4V7iEGO8TgDjG4hxj8SuPlNQa0YI77aMEdWh6jr-_2j_Y-ENd7g4hxlixIWjEZp5wmsOWtUgE0XWWsllJymqtQKhkrRSULFa9yrllpzXT3zxrYHg9FIsdP0LBpG7mNMEt5lMVRUtGoTgTssCVXmYyzPFKRBPa4g7LucZXCFabX_VHm5QaV7aDQDzy3tVk2D3nT6aN0FNNSxxLQtmnw7s3Xe4rurP4Qz9AQTpDP0W2xXJxcXrxwUPsNXKijBg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+Multiresonant+Layered+Acoustic+Metamaterials+%28MLAM%29+via+a+homogenization+approach&rft.jtitle=Engineering+structures&rft.au=Sal-Anglada%2C+G.&rft.au=Yago%2C+D.&rft.au=Cante%2C+J.&rft.au=Oliver%2C+J.&rft.date=2023-10-15&rft.issn=0141-0296&rft.volume=293&rft.spage=116555&rft_id=info:doi/10.1016%2Fj.engstruct.2023.116555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2023_116555 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |