Optimal design of Multiresonant Layered Acoustic Metamaterials (MLAM) via a homogenization approach

Broadband sound attenuation at low frequency ranges (below 500 Hz) has been a challenge in the acoustics field which cannot be solved, via conventional materials, unless impractical amounts of mass are employed. Multiresonant Layered Acoustic Metamaterials (MLAM) offer exceptional attenuating proper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering structures Ročník 293; s. 116555
Hlavní autoři: Sal-Anglada, G., Yago, D., Cante, J., Oliver, J., Roca, D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.10.2023
Témata:
ISSN:0141-0296, 1873-7323
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Broadband sound attenuation at low frequency ranges (below 500 Hz) has been a challenge in the acoustics field which cannot be solved, via conventional materials, unless impractical amounts of mass are employed. Multiresonant Layered Acoustic Metamaterials (MLAM) offer exceptional attenuating properties at lower frequencies, through novel coupled resonances mechanisms, in a layered configuration that make them amenable for large-scale manufacturing. To show the potential capabilities of MLAM, a novel computational design strategy has been developed to optimize the metamaterials’ performance in terms of their Sound Transmission Loss (STL). First, a multiscale homogenization framework specifically derived for MLAM allows an accurate and extremely fast evaluation of their STL response to normal-incidence acoustic waves in the frequency range of interest. Then, the MLAM design is parameterized into a set of relevant geometric features, which are optimized by means of an optimization scheme based on standard genetic algorithms combined with the homogenization model. The results demonstrate how this design strategy is a powerful tool to obtain optimal MLAM panel designs subject to constraints imposed by the application, for instance, in terms of weight or thickness of the panel, or the manufacturing process (e.g. geometric tolerances). •Multiresonant Layered Acoustic Metamaterial (MLAM) is designed for low-frequency STL.•Optimal MLAM improves STL by 20 dB from 100 to 500 Hz compared to wall of same mass.•MLAM structure, design and materials are amenable for large-scale manufacturing.•Layer-by-layer homogenization model is proposed to derive MLAM effective properties.•Two-step parametric optimization strategy using genetic algorithms is proposed.
AbstractList Broadband sound attenuation at low frequency ranges (below 500 Hz) has been a challenge in the acoustics field which cannot be solved, via conventional materials, unless impractical amounts of mass are employed. Multiresonant Layered Acoustic Metamaterials (MLAM) offer exceptional attenuating properties at lower frequencies, through novel coupled resonances mechanisms, in a layered configuration that make them amenable for large-scale manufacturing. To show the potential capabilities of MLAM, a novel computational design strategy has been developed to optimize the metamaterials’ performance in terms of their Sound Transmission Loss (STL). First, a multiscale homogenization framework specifically derived for MLAM allows an accurate and extremely fast evaluation of their STL response to normal-incidence acoustic waves in the frequency range of interest. Then, the MLAM design is parameterized into a set of relevant geometric features, which are optimized by means of an optimization scheme based on standard genetic algorithms combined with the homogenization model. The results demonstrate how this design strategy is a powerful tool to obtain optimal MLAM panel designs subject to constraints imposed by the application, for instance, in terms of weight or thickness of the panel, or the manufacturing process (e.g. geometric tolerances). •Multiresonant Layered Acoustic Metamaterial (MLAM) is designed for low-frequency STL.•Optimal MLAM improves STL by 20 dB from 100 to 500 Hz compared to wall of same mass.•MLAM structure, design and materials are amenable for large-scale manufacturing.•Layer-by-layer homogenization model is proposed to derive MLAM effective properties.•Two-step parametric optimization strategy using genetic algorithms is proposed.
ArticleNumber 116555
Author Oliver, J.
Sal-Anglada, G.
Yago, D.
Roca, D.
Cante, J.
Author_xml – sequence: 1
  givenname: G.
  orcidid: 0000-0002-0560-0035
  surname: Sal-Anglada
  fullname: Sal-Anglada, G.
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Nord UPC Ed. C1, C/ Gran Capità s/n, 08034 Barcelona, Spain
– sequence: 2
  givenname: D.
  orcidid: 0000-0002-2141-2683
  surname: Yago
  fullname: Yago, D.
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Nord UPC Ed. C1, C/ Gran Capità s/n, 08034 Barcelona, Spain
– sequence: 3
  givenname: J.
  surname: Cante
  fullname: Cante, J.
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Nord UPC Ed. C1, C/ Gran Capità s/n, 08034 Barcelona, Spain
– sequence: 4
  givenname: J.
  orcidid: 0000-0001-8717-1483
  surname: Oliver
  fullname: Oliver, J.
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Nord UPC Ed. C1, C/ Gran Capità s/n, 08034 Barcelona, Spain
– sequence: 5
  givenname: D.
  orcidid: 0000-0001-6336-6024
  surname: Roca
  fullname: Roca, D.
  email: david.roca.cazorla@upc.edu, droca@cimne.upc.edu
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Nord UPC Ed. C1, C/ Gran Capità s/n, 08034 Barcelona, Spain
BookMark eNqNkDtPwzAYRS1UJNrCb8AjDAl-5DkwRBUvKVEXmCPX-dy6Su3IdpHKryeliIEFprvcc6V7ZmhirAGErimJKaHZ3TYGs_bB7WWIGWE8pjRL0_QMTWmR8yjnjE_QlNCERoSV2QWaeb8lhLCiIFMkl0PQO9HjDrxeG2wVbvZ90A68NcIEXIsDOOhwJe3eBy1xA0HsRACnRe_xTVNXzS1-1wILvLE7uwajP0TQ1mAxDM4KublE52rswtV3ztHb48Pr4jmql08vi6qOJM-SEKWrElgq8oQU2SqVPGUqKzsAEHmhCChgSuVQEiVWxdiiaVfmnNMuo4kgMgE-R_lpVzrrvQPVDm785g4tJe3RVbttf1y1R1ftydVI3v8ipQ5fJ4ITuv8HX514GO-9a3CtlxqMhG4UOXY7q__c-AQRGI_e
CitedBy_id crossref_primary_10_3390_acoustics6020016
crossref_primary_10_1016_j_tws_2025_113219
crossref_primary_10_1016_j_jcomc_2025_100620
crossref_primary_10_1016_j_jobe_2025_111926
crossref_primary_10_1016_j_jsv_2025_119073
crossref_primary_10_1002_nme_7476
crossref_primary_10_1016_j_ijmecsci_2025_110637
crossref_primary_10_1016_j_jsv_2025_119364
crossref_primary_10_1016_j_ijmecsci_2023_108951
crossref_primary_10_3390_app15126543
crossref_primary_10_1016_j_ymssp_2025_112453
Cites_doi 10.1103/PhysRevLett.116.198001
10.1016/j.eml.2021.101368
10.1016/j.jsv.2018.09.053
10.1063/1.2970992
10.1121/1.4744941
10.1016/S0921-4526(03)00487-3
10.1016/j.jsv.2021.116716
10.1121/1.4984623
10.1016/j.cma.2018.10.037
10.1016/j.eml.2017.06.004
10.1016/j.ijmecsci.2018.11.029
10.1016/j.apacoust.2020.107482
10.1115/1.4045774
10.1126/science.289.5485.1734
10.1002/pssb.200982040
10.1063/1.4820796
10.1016/j.mechrescom.2023.104045
10.1103/PhysRevLett.113.014301
10.1103/PhysRevLett.101.204301
10.1016/j.ymssp.2015.08.029
10.1063/1.5142066
10.1115/1.4026911
10.1260/135101009788066555
10.1103/PhysRevB.78.104105
10.1063/1.4928564
10.1063/1.4764072
10.1016/j.cma.2017.10.025
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.engstruct.2023.116555
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2023_116555
S0141029623009707
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c364t-5b9e25a74086b5c352f69deeea78f0efe2ff7e90fab8a7415d97331d614a0c4e3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001055039000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-0296
IngestDate Sat Nov 29 07:24:14 EST 2025
Tue Nov 18 21:51:40 EST 2025
Fri Feb 23 02:35:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Computational homogenization
Coupled resonances
Acoustic metamaterials
Genetic algorithm optimization
MLAM
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c364t-5b9e25a74086b5c352f69deeea78f0efe2ff7e90fab8a7415d97331d614a0c4e3
ORCID 0000-0001-8717-1483
0000-0002-0560-0035
0000-0001-6336-6024
0000-0002-2141-2683
OpenAccessLink https://dx.doi.org/10.1016/j.engstruct.2023.116555
ParticipantIDs crossref_primary_10_1016_j_engstruct_2023_116555
crossref_citationtrail_10_1016_j_engstruct_2023_116555
elsevier_sciencedirect_doi_10_1016_j_engstruct_2023_116555
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Engineering structures
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bilal, Hussein (b13) 2013; 103
Zhang, Gao, Wu (b21) 2020; 169
McGee, Jiang, Qian, Jia, Wang, Meng (b19) 2019; 30
Liu, Zhang, Mao, Zhu, Yang, Chan (b1) 2000; 289
Claeys, Deckers, Pluymers, Desmet (b16) 2016; 70–71
Sheng, Zhang, Liu, Chan (b3) 2003; 338
Badreddine Assouar, Senesi, Oudich, Ruzzene, Hou (b12) 2012; 101
Roca, Lloberas-Valls, Cante, Oliver (b29) 2018; 330
Nimmagadda, Matlack (b23) 2019; 439
Roca, Yago, Cante, Lloberas-Valls, Oliver (b28) 2019; 345
Yang, Mei, Yang, Chan, Sheng (b6) 2008; 101
Naify, Chang, McKnight, Nutt (b7) 2012; 132
Roca, Hussein (b26) 2021; 16
Stein, Nouh, Singh (b27) 2022; 523
Calius, Bremaud, Smith, Hall (b5) 2009; 246
De Maio, Greco, Luciano, Sgambitterra, Pranno (b22) 2023; 128
Gao, Wang (b25) 2020; 127
Huang, Li, Chen, Bao (b15) 2019; 151
Hiraiwa, Abi Ghanem, Wallen, Khanolkar, Maznev, Boechler (b9) 2016; 116
Wang, Casadei, Shan, Weaver, Bertoldi (b14) 2014; 113
Hussein, Leamy, Ruzzene (b2) 2014; 66
Wester, Brémaud, Smith (b4) 2009; 16
Khanolkar, Wallen, Abi Ghanem, Jenks, Vogel, Boechler (b8) 2015; 107
Roca, Cante, Lloberas-Valls, Pàmies, Oliver (b24) 2021; 47
Wu, Huang, Tsai, Wu (b11) 2008; 93
Bilal, Foehr, Daraio (b18) 2017; 15
Roca, Pàmies, Cante, Lloberas-Valls, Oliver (b20) 2020; 142
Pennec, Djafari-Rouhani, Larabi, Vasseur, Hladky-Hennion (b10) 2008; 78
Leblanc, Lavie (b17) 2017; 141
Khanolkar (10.1016/j.engstruct.2023.116555_b8) 2015; 107
Leblanc (10.1016/j.engstruct.2023.116555_b17) 2017; 141
Bilal (10.1016/j.engstruct.2023.116555_b18) 2017; 15
Claeys (10.1016/j.engstruct.2023.116555_b16) 2016; 70–71
Wester (10.1016/j.engstruct.2023.116555_b4) 2009; 16
Wu (10.1016/j.engstruct.2023.116555_b11) 2008; 93
Roca (10.1016/j.engstruct.2023.116555_b20) 2020; 142
Calius (10.1016/j.engstruct.2023.116555_b5) 2009; 246
Yang (10.1016/j.engstruct.2023.116555_b6) 2008; 101
Hiraiwa (10.1016/j.engstruct.2023.116555_b9) 2016; 116
Nimmagadda (10.1016/j.engstruct.2023.116555_b23) 2019; 439
Badreddine Assouar (10.1016/j.engstruct.2023.116555_b12) 2012; 101
Roca (10.1016/j.engstruct.2023.116555_b28) 2019; 345
Pennec (10.1016/j.engstruct.2023.116555_b10) 2008; 78
Huang (10.1016/j.engstruct.2023.116555_b15) 2019; 151
Naify (10.1016/j.engstruct.2023.116555_b7) 2012; 132
Zhang (10.1016/j.engstruct.2023.116555_b21) 2020; 169
Roca (10.1016/j.engstruct.2023.116555_b24) 2021; 47
Wang (10.1016/j.engstruct.2023.116555_b14) 2014; 113
De Maio (10.1016/j.engstruct.2023.116555_b22) 2023; 128
McGee (10.1016/j.engstruct.2023.116555_b19) 2019; 30
Roca (10.1016/j.engstruct.2023.116555_b26) 2021; 16
Stein (10.1016/j.engstruct.2023.116555_b27) 2022; 523
Liu (10.1016/j.engstruct.2023.116555_b1) 2000; 289
Gao (10.1016/j.engstruct.2023.116555_b25) 2020; 127
Roca (10.1016/j.engstruct.2023.116555_b29) 2018; 330
Hussein (10.1016/j.engstruct.2023.116555_b2) 2014; 66
Bilal (10.1016/j.engstruct.2023.116555_b13) 2013; 103
Sheng (10.1016/j.engstruct.2023.116555_b3) 2003; 338
References_xml – volume: 330
  start-page: 415
  year: 2018
  end-page: 446
  ident: b29
  article-title: A computational multiscale homogenization framework accounting for inertial effects: Application to acoustic metamaterials modelling
  publication-title: Comput Methods Appl Mech Engrg
– volume: 169
  year: 2020
  ident: b21
  article-title: New mechanism of tunable broadband in local resonance structures
  publication-title: Appl Acoust
– volume: 523
  year: 2022
  ident: b27
  article-title: Widening, transition and coalescence of local resonance band gaps in multi-resonator acoustic metamaterials: from unit cells to finite chains
  publication-title: J Sound Vib
– volume: 338
  start-page: 201
  year: 2003
  end-page: 205
  ident: b3
  article-title: Locally resonant sonic materials
  publication-title: Physica B
– volume: 128
  year: 2023
  ident: b22
  article-title: Microstructural design for elastic wave attenuation in 3D printed nacre-like bioinspired metamaterials lightened with hollow platelets
  publication-title: Mech Res Commun
– volume: 93
  year: 2008
  ident: b11
  article-title: Evidence of complete band gap and resonances in a plate with periodic stubbed surface
  publication-title: Appl Phys Lett
– volume: 107
  year: 2015
  ident: b8
  article-title: A self-assembled metamaterial for lamb waves
  publication-title: Appl Phys Lett
– volume: 70–71
  start-page: 853
  year: 2016
  end-page: 880
  ident: b16
  article-title: A lightweight vibro-acoustic metamaterial demonstrator: numerical and experimental investigation
  publication-title: Mech Syst Signal Process
– volume: 141
  start-page: EL538
  year: 2017
  end-page: EL542
  ident: b17
  article-title: Three-dimensional-printed membrane-type acoustic metamaterial for low frequency sound attenuation
  publication-title: J Acoust Soc Am
– volume: 47
  year: 2021
  ident: b24
  article-title: Multiresonant layered acoustic metamaterial (MLAM) solution for broadband low-frequency noise attenuation through double-peak sound transmission loss response
  publication-title: Extreme Mech Lett
– volume: 66
  year: 2014
  ident: b2
  article-title: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook
  publication-title: Appl Mech Rev
– volume: 16
  year: 2021
  ident: b26
  article-title: Broadband and intense sound transmission loss by a coupled-resonance acoustic metamaterial
  publication-title: Phys Rev A
– volume: 116
  year: 2016
  ident: b9
  article-title: Complex contact-based dynamics of microsphere monolayers revealed by resonant attenuation of surface acoustic waves
  publication-title: Phys Rev Lett
– volume: 113
  year: 2014
  ident: b14
  article-title: Harnessing buckling to design tunable locally resonant acoustic metamaterials
  publication-title: Phys Rev Lett
– volume: 15
  start-page: 103
  year: 2017
  end-page: 107
  ident: b18
  article-title: Observation of trampoline phenomena in 3d-printed metamaterial plates
  publication-title: Extreme Mech Lett
– volume: 345
  start-page: 161
  year: 2019
  end-page: 182
  ident: b28
  article-title: Computational design of locally resonant acoustic metamaterials
  publication-title: Comput Methods Appl Mech Engrg
– volume: 103
  year: 2013
  ident: b13
  article-title: Trampoline metamaterial: local resonance enhancement by springboards
  publication-title: Appl Phys Lett
– volume: 439
  start-page: 29
  year: 2019
  end-page: 42
  ident: b23
  article-title: Thermally tunable band gaps in architected metamaterial structures
  publication-title: J Sound Vib
– volume: 151
  start-page: 300
  year: 2019
  end-page: 313
  ident: b15
  article-title: Tunable bandgaps in soft phononic plates with spring-mass-like resonators
  publication-title: Int J Mech Sci
– volume: 132
  start-page: 2784
  year: 2012
  end-page: 2792
  ident: b7
  article-title: Scaling of membrane-type locally resonant acoustic metamaterial arrays
  publication-title: J Acoust Soc Am
– volume: 101
  year: 2012
  ident: b12
  article-title: Broadband plate-type acoustic metamaterial for low-frequency sound attenuation
  publication-title: Appl Phys Lett
– volume: 142
  start-page: 1
  year: 2020
  end-page: 9
  ident: b20
  article-title: Experimental and numerical assessment of local resonance phenomena in 3D-printed acoustic metamaterials
  publication-title: J Vib Acoust
– volume: 30
  year: 2019
  ident: b19
  article-title: 3D printed architected hollow sphere foams with low-frequency phononic band gaps
  publication-title: Addit Manuf
– volume: 289
  start-page: 1734
  year: 2000
  end-page: 1736
  ident: b1
  article-title: Locally resonant sonic materials
  publication-title: Science
– volume: 16
  start-page: 21
  year: 2009
  end-page: 30
  ident: b4
  article-title: Meta-material sound insulation
  publication-title: Build Acoust
– volume: 101
  year: 2008
  ident: b6
  article-title: Membrane-type acoustic metamaterial with negative dynamic mass
  publication-title: Phys Rev Lett
– volume: 127
  year: 2020
  ident: b25
  article-title: Ultrawide coupled bandgap in hybrid periodic system with multiple resonators
  publication-title: J Appl Phys
– volume: 246
  start-page: 2089
  year: 2009
  end-page: 2097
  ident: b5
  article-title: Negative mass sound shielding structures: early results
  publication-title: Phys Status Solidi (b)
– volume: 78
  year: 2008
  ident: b10
  article-title: Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate
  publication-title: Phys Rev B
– volume: 116
  issue: 19
  year: 2016
  ident: 10.1016/j.engstruct.2023.116555_b9
  article-title: Complex contact-based dynamics of microsphere monolayers revealed by resonant attenuation of surface acoustic waves
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.116.198001
– volume: 47
  year: 2021
  ident: 10.1016/j.engstruct.2023.116555_b24
  article-title: Multiresonant layered acoustic metamaterial (MLAM) solution for broadband low-frequency noise attenuation through double-peak sound transmission loss response
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2021.101368
– volume: 30
  year: 2019
  ident: 10.1016/j.engstruct.2023.116555_b19
  article-title: 3D printed architected hollow sphere foams with low-frequency phononic band gaps
  publication-title: Addit Manuf
– volume: 439
  start-page: 29
  year: 2019
  ident: 10.1016/j.engstruct.2023.116555_b23
  article-title: Thermally tunable band gaps in architected metamaterial structures
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.09.053
– volume: 93
  issue: 11
  year: 2008
  ident: 10.1016/j.engstruct.2023.116555_b11
  article-title: Evidence of complete band gap and resonances in a plate with periodic stubbed surface
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2970992
– volume: 132
  start-page: 2784
  issue: 4
  year: 2012
  ident: 10.1016/j.engstruct.2023.116555_b7
  article-title: Scaling of membrane-type locally resonant acoustic metamaterial arrays
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4744941
– volume: 338
  start-page: 201
  issue: 1–4
  year: 2003
  ident: 10.1016/j.engstruct.2023.116555_b3
  article-title: Locally resonant sonic materials
  publication-title: Physica B
  doi: 10.1016/S0921-4526(03)00487-3
– volume: 523
  year: 2022
  ident: 10.1016/j.engstruct.2023.116555_b27
  article-title: Widening, transition and coalescence of local resonance band gaps in multi-resonator acoustic metamaterials: from unit cells to finite chains
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2021.116716
– volume: 141
  start-page: EL538
  issue: 6
  year: 2017
  ident: 10.1016/j.engstruct.2023.116555_b17
  article-title: Three-dimensional-printed membrane-type acoustic metamaterial for low frequency sound attenuation
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4984623
– volume: 345
  start-page: 161
  year: 2019
  ident: 10.1016/j.engstruct.2023.116555_b28
  article-title: Computational design of locally resonant acoustic metamaterials
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2018.10.037
– volume: 15
  start-page: 103
  year: 2017
  ident: 10.1016/j.engstruct.2023.116555_b18
  article-title: Observation of trampoline phenomena in 3d-printed metamaterial plates
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2017.06.004
– volume: 151
  start-page: 300
  year: 2019
  ident: 10.1016/j.engstruct.2023.116555_b15
  article-title: Tunable bandgaps in soft phononic plates with spring-mass-like resonators
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2018.11.029
– volume: 169
  year: 2020
  ident: 10.1016/j.engstruct.2023.116555_b21
  article-title: New mechanism of tunable broadband in local resonance structures
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2020.107482
– volume: 142
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.engstruct.2023.116555_b20
  article-title: Experimental and numerical assessment of local resonance phenomena in 3D-printed acoustic metamaterials
  publication-title: J Vib Acoust
  doi: 10.1115/1.4045774
– volume: 289
  start-page: 1734
  issue: 5485
  year: 2000
  ident: 10.1016/j.engstruct.2023.116555_b1
  article-title: Locally resonant sonic materials
  publication-title: Science
  doi: 10.1126/science.289.5485.1734
– volume: 246
  start-page: 2089
  issue: 9
  year: 2009
  ident: 10.1016/j.engstruct.2023.116555_b5
  article-title: Negative mass sound shielding structures: early results
  publication-title: Phys Status Solidi (b)
  doi: 10.1002/pssb.200982040
– volume: 103
  issue: 11
  year: 2013
  ident: 10.1016/j.engstruct.2023.116555_b13
  article-title: Trampoline metamaterial: local resonance enhancement by springboards
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4820796
– volume: 128
  year: 2023
  ident: 10.1016/j.engstruct.2023.116555_b22
  article-title: Microstructural design for elastic wave attenuation in 3D printed nacre-like bioinspired metamaterials lightened with hollow platelets
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2023.104045
– volume: 113
  year: 2014
  ident: 10.1016/j.engstruct.2023.116555_b14
  article-title: Harnessing buckling to design tunable locally resonant acoustic metamaterials
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.113.014301
– volume: 101
  issue: 20
  year: 2008
  ident: 10.1016/j.engstruct.2023.116555_b6
  article-title: Membrane-type acoustic metamaterial with negative dynamic mass
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.101.204301
– volume: 70–71
  start-page: 853
  year: 2016
  ident: 10.1016/j.engstruct.2023.116555_b16
  article-title: A lightweight vibro-acoustic metamaterial demonstrator: numerical and experimental investigation
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.08.029
– volume: 127
  issue: 20
  year: 2020
  ident: 10.1016/j.engstruct.2023.116555_b25
  article-title: Ultrawide coupled bandgap in hybrid periodic system with multiple resonators
  publication-title: J Appl Phys
  doi: 10.1063/1.5142066
– volume: 66
  issue: 4
  year: 2014
  ident: 10.1016/j.engstruct.2023.116555_b2
  article-title: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook
  publication-title: Appl Mech Rev
  doi: 10.1115/1.4026911
– volume: 16
  start-page: 21
  issue: 1
  year: 2009
  ident: 10.1016/j.engstruct.2023.116555_b4
  article-title: Meta-material sound insulation
  publication-title: Build Acoust
  doi: 10.1260/135101009788066555
– volume: 16
  issue: 5
  year: 2021
  ident: 10.1016/j.engstruct.2023.116555_b26
  article-title: Broadband and intense sound transmission loss by a coupled-resonance acoustic metamaterial
  publication-title: Phys Rev A
– volume: 78
  issue: 10
  year: 2008
  ident: 10.1016/j.engstruct.2023.116555_b10
  article-title: Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.78.104105
– volume: 107
  issue: 7
  year: 2015
  ident: 10.1016/j.engstruct.2023.116555_b8
  article-title: A self-assembled metamaterial for lamb waves
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4928564
– volume: 101
  issue: 17
  year: 2012
  ident: 10.1016/j.engstruct.2023.116555_b12
  article-title: Broadband plate-type acoustic metamaterial for low-frequency sound attenuation
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4764072
– volume: 330
  start-page: 415
  year: 2018
  ident: 10.1016/j.engstruct.2023.116555_b29
  article-title: A computational multiscale homogenization framework accounting for inertial effects: Application to acoustic metamaterials modelling
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2017.10.025
SSID ssj0002880
Score 2.471256
Snippet Broadband sound attenuation at low frequency ranges (below 500 Hz) has been a challenge in the acoustics field which cannot be solved, via conventional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116555
SubjectTerms Acoustic metamaterials
Computational homogenization
Coupled resonances
Genetic algorithm optimization
MLAM
Title Optimal design of Multiresonant Layered Acoustic Metamaterials (MLAM) via a homogenization approach
URI https://dx.doi.org/10.1016/j.engstruct.2023.116555
Volume 293
WOSCitedRecordID wos001055039000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE9t40M-cABFrpI0iWNu0RhfajckBuotchx7bOqSaSvVOPKf8_wRt4FJZQcuUfUU20nery8_v7wPhF7SnFExTjJCeVWTpE4jwnmaEJVWUoUij7jpPPdtQg8O8tmMfR4MfnW5MMs5bZr86oqd_1dVgwyUrVNnb6BuPykI4DcoHY6gdjj-k-IPwQic6U8vJjbDhLjooEHYVrc66CWY8J-6P2dQiNZ08gqmcsGBt9pr04xzOimm2luw1Albwff2rIXFXL6mL0Lec-mvihoGtiDtj4tVbOIXPieF7hVSG6L6fuQtDT82jtq3XrKn9WyA5UWH8xMXZOpkzkURm2A3m6TpvZYRCWPburYzuzEbrxlOXQXI1uv9y6Zb98LpSDbH9hZGeo3RakS_ivYfbzcfc9iFs52WfqJST1TaiW6hrZimLB-ireLj_uyTf53HuWm_5--hFyR47TVdT3HWaMvRfXTP7TdwYXHyAA1k8xDdXVPYIyQcYrBFDG4V7iEGO8TgDjG4hxj8SuPlNQa0YI77aMEdWh6jr-_2j_Y-ENd7g4hxlixIWjEZp5wmsOWtUgE0XWWsllJymqtQKhkrRSULFa9yrllpzXT3zxrYHg9FIsdP0LBpG7mNMEt5lMVRUtGoTgTssCVXmYyzPFKRBPa4g7LucZXCFabX_VHm5QaV7aDQDzy3tVk2D3nT6aN0FNNSxxLQtmnw7s3Xe4rurP4Qz9AQTpDP0W2xXJxcXrxwUPsNXKijBg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+Multiresonant+Layered+Acoustic+Metamaterials+%28MLAM%29+via+a+homogenization+approach&rft.jtitle=Engineering+structures&rft.au=Sal-Anglada%2C+G.&rft.au=Yago%2C+D.&rft.au=Cante%2C+J.&rft.au=Oliver%2C+J.&rft.date=2023-10-15&rft.issn=0141-0296&rft.volume=293&rft.spage=116555&rft_id=info:doi/10.1016%2Fj.engstruct.2023.116555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2023_116555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon