Fine-Tuning Fuzzy KNN Classifier Based on Uncertainty Membership for the Medical Diagnosis of Diabetes

Diabetes, a metabolic disease in which the blood glucose level rises over time, is one of the most common chronic diseases at present. It is critical to accurately predict and classify diabetes to reduce the severity of the disease and treat it early. One of the difficulties that researchers face is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 12; číslo 3; s. 950
Hlavní autori: Salem, Hanaa, Shams, Mahmoud Y., Elzeki, Omar M., Abd Elfattah, Mohamed, F. Al-Amri, Jehad, Elnazer, Shaima
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.02.2022
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Diabetes, a metabolic disease in which the blood glucose level rises over time, is one of the most common chronic diseases at present. It is critical to accurately predict and classify diabetes to reduce the severity of the disease and treat it early. One of the difficulties that researchers face is that diabetes datasets are limited and contain outliers and missing data. Additionally, there is a trade-off between classification accuracy and operational law for detecting diabetes. In this paper, an algorithm for diabetes classification is proposed for pregnant women using the Pima Indians Diabetes Dataset (PIDD). First, a preprocessing step in the proposed algorithm includes outlier rejection, imputing missing values, the standardization process, and feature selection of the attributes, which enhance the dataset’s quality. Second, the classifier uses the fuzzy KNN method and modifies the membership function based on the uncertainty theory. Third, a grid search method is applied to achieve the best values for tuning the fuzzy KNN method based on uncertainty membership, as there are hyperparameters that affect the performance of the proposed classifier. In turn, the proposed tuned fuzzy KNN based on uncertainty classifiers (TFKNN) deals with the belief degree, handles membership functions and operation law, and avoids making the wrong categorization. The proposed algorithm performs better than other classifiers that have been trained and evaluated, including KNN, fuzzy KNN, naïve Bayes (NB), and decision tree (DT). The results of different classifiers in an ensemble could significantly improve classification precision. The TFKNN has time complexity O(kn2d), and space complexity O(n2d). The TFKNN model has high performance and outperformed the others in all tests in terms of accuracy, specificity, precision, and average AUC, with values of 90.63, 85.00, 93.18, and 94.13, respectively. Additionally, results of empirical analysis of TFKNN compared to fuzzy KNN, KNN, NB, and DT demonstrate the global superiority of TFKNN in precision, accuracy, and specificity.
AbstractList Diabetes, a metabolic disease in which the blood glucose level rises over time, is one of the most common chronic diseases at present. It is critical to accurately predict and classify diabetes to reduce the severity of the disease and treat it early. One of the difficulties that researchers face is that diabetes datasets are limited and contain outliers and missing data. Additionally, there is a trade-off between classification accuracy and operational law for detecting diabetes. In this paper, an algorithm for diabetes classification is proposed for pregnant women using the Pima Indians Diabetes Dataset (PIDD). First, a preprocessing step in the proposed algorithm includes outlier rejection, imputing missing values, the standardization process, and feature selection of the attributes, which enhance the dataset’s quality. Second, the classifier uses the fuzzy KNN method and modifies the membership function based on the uncertainty theory. Third, a grid search method is applied to achieve the best values for tuning the fuzzy KNN method based on uncertainty membership, as there are hyperparameters that affect the performance of the proposed classifier. In turn, the proposed tuned fuzzy KNN based on uncertainty classifiers (TFKNN) deals with the belief degree, handles membership functions and operation law, and avoids making the wrong categorization. The proposed algorithm performs better than other classifiers that have been trained and evaluated, including KNN, fuzzy KNN, naïve Bayes (NB), and decision tree (DT). The results of different classifiers in an ensemble could significantly improve classification precision. The TFKNN has time complexity O(kn2d), and space complexity O(n2d). The TFKNN model has high performance and outperformed the others in all tests in terms of accuracy, specificity, precision, and average AUC, with values of 90.63, 85.00, 93.18, and 94.13, respectively. Additionally, results of empirical analysis of TFKNN compared to fuzzy KNN, KNN, NB, and DT demonstrate the global superiority of TFKNN in precision, accuracy, and specificity.
Author Elzeki, Omar M.
Abd Elfattah, Mohamed
Salem, Hanaa
F. Al-Amri, Jehad
Shams, Mahmoud Y.
Elnazer, Shaima
Author_xml – sequence: 1
  givenname: Hanaa
  orcidid: 0000-0002-8714-567X
  surname: Salem
  fullname: Salem, Hanaa
– sequence: 2
  givenname: Mahmoud Y.
  orcidid: 0000-0003-3021-5902
  surname: Shams
  fullname: Shams, Mahmoud Y.
– sequence: 3
  givenname: Omar M.
  orcidid: 0000-0001-5409-1305
  surname: Elzeki
  fullname: Elzeki, Omar M.
– sequence: 4
  givenname: Mohamed
  orcidid: 0000-0003-2390-5665
  surname: Abd Elfattah
  fullname: Abd Elfattah, Mohamed
– sequence: 5
  givenname: Jehad
  surname: F. Al-Amri
  fullname: F. Al-Amri, Jehad
– sequence: 6
  givenname: Shaima
  surname: Elnazer
  fullname: Elnazer, Shaima
BookMark eNptUU1P3DAUtCoqlVJO_AFLPaKAv5I4x3bLUlS6XOBsvTjPi1fBDrb3sPx6st0ioarv8t4bzYxGms_kKMSAhJxxdiFlxy5hmrhgknU1-0COBWubSireHr27P5HTnDdsno5LzdkxcUsfsLrfBh_WdLl9ednRX6sVXYyQs3ceE_0OGQcaA30IFlMBH8qO_sanHlN-9BN1MdHyiDM0eAsj_eFhHWL2mUa3f3osmL-Qjw7GjKd_9wl5WF7dL35Wt3fXN4tvt5WVjSpVDY731rbYdy02Wom2rXsxcA5ad83QN53rFatFraVSdat5JyzUjFtrmRjEIE_IzcF3iLAxU_JPkHYmgjd_gJjWBlLxdkQjgSstoBYNF0o40IiOK4eaq65hzM5eXw9eU4rPW8zFbOI2hTm-EY2cVUKLdmbxA8ummHNCZ6wvUHwMJYEfDWdm3455186sOf9H85b0f-xXwG-QWA
CitedBy_id crossref_primary_10_3390_a15030087
crossref_primary_10_3390_electronics12183828
crossref_primary_10_2174_0123520965291885240315051751
crossref_primary_10_1007_s41870_024_02123_2
crossref_primary_10_1007_s11277_024_11128_w
crossref_primary_10_1109_ACCESS_2023_3347336
crossref_primary_10_1186_s13640_023_00618_9
crossref_primary_10_3390_s23042085
crossref_primary_10_1038_s41598_024_51615_5
crossref_primary_10_3390_info15010031
crossref_primary_10_1016_j_bspc_2023_104747
crossref_primary_10_1016_j_asoc_2023_111123
crossref_primary_10_1007_s10115_023_01851_4
crossref_primary_10_1007_s10462_022_10282_6
crossref_primary_10_1016_j_bspc_2023_104908
crossref_primary_10_1186_s40537_024_00985_8
crossref_primary_10_1177_19322968251355967
crossref_primary_10_1080_23311916_2022_2143040
crossref_primary_10_1007_s42979_023_01831_z
crossref_primary_10_3390_app122412943
crossref_primary_10_1002_cjce_25594
crossref_primary_10_32604_cmc_2022_031583
crossref_primary_10_1038_s41598_024_82420_9
crossref_primary_10_1007_s11227_024_06082_0
crossref_primary_10_1007_s11042_022_13820_0
crossref_primary_10_1016_j_rineng_2024_103791
crossref_primary_10_1080_01969722_2022_2080338
crossref_primary_10_1016_j_heliyon_2024_e29197
crossref_primary_10_1002_eng2_13080
crossref_primary_10_1007_s11042_023_17990_3
crossref_primary_10_1007_s41870_022_01153_y
crossref_primary_10_1186_s12938_023_01063_5
Cites_doi 10.2337/diacare.27.2007.S88
10.1016/j.asoc.2021.107423
10.21500/20112084.844
10.1016/j.jnca.2020.102873
10.1109/ICNN.1996.549118
10.1109/ITME.2018.00021
10.1109/FOCS.2006.49
10.4239/wjd.v5.i4.444
10.1016/j.eswa.2008.09.015
10.1016/j.artmed.2020.101815
10.1109/TSMC.1985.6313426
10.1007/s10916-011-9762-6
10.1016/j.diabres.2018.02.023
10.1007/s40200-020-00520-5
10.1016/j.cmpb.2021.105968
10.1109/TPAMI.2011.142
10.1016/j.ceh.2020.11.001
10.1049/htl2.12010
10.1016/j.csda.2010.11.018
10.1088/1742-6596/978/1/012047
10.1109/SSCI47803.2020.9308286
10.1007/978-3-030-66717-7_13
10.1016/j.csbj.2016.12.005
10.1016/j.artmed.2015.08.003
10.1016/j.ins.2011.09.027
10.1109/ICCISci.2019.8716405
10.1016/j.patcog.2010.01.003
10.1016/j.ins.2014.08.056
10.1016/j.atherosclerosissup.2014.04.001
10.1016/j.ins.2013.10.038
10.1145/3127404.3127466
10.1136/bmjdrc-2017-000438
10.1016/0167-8655(83)90064-8
10.1016/j.biopha.2019.108802
10.1016/j.procs.2018.05.122
10.1515/phys-2020-0159
10.2337/diacare.23.9.1278
10.1016/j.jbi.2018.08.006
10.1016/j.cmpb.2018.01.004
10.1109/ACCESS.2020.2989857
10.1088/1742-6596/1821/1/012006
10.5121/ijsc.2011.2202
10.1080/03772063.2018.1462109
10.1038/s41572-019-0098-8
10.1007/978-3-030-24409-5_18
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12030950
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_3a1482a5261242fa8eef14fe8149600c
10_3390_app12030950
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-5af1bcc7eb97e6842775b2d11a8896db69fb405258344578192ca501ccc02d2d3
IEDL.DBID DOA
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757414900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:07:18 EDT 2025
Mon Jun 30 07:28:37 EDT 2025
Sat Nov 29 07:12:05 EST 2025
Tue Nov 18 20:56:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-5af1bcc7eb97e6842775b2d11a8896db69fb405258344578192ca501ccc02d2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2390-5665
0000-0002-8714-567X
0000-0003-3021-5902
0000-0001-5409-1305
OpenAccessLink https://doaj.org/article/3a1482a5261242fa8eef14fe8149600c
PQID 2636122827
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_3a1482a5261242fa8eef14fe8149600c
proquest_journals_2636122827
crossref_citationtrail_10_3390_app12030950
crossref_primary_10_3390_app12030950
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Garcia (ref_42) 2012; 34
ref_56
Ramsingh (ref_18) 2021; 108
Nnamoko (ref_50) 2020; 104
Venkatesh (ref_52) 2019; 19
Thakkar (ref_8) 2021; 4
Bhoi (ref_26) 2021; 12
Ayon (ref_36) 2019; 11
ref_17
ref_16
Maulidina (ref_30) 2021; 1821
Naz (ref_34) 2020; 19
Khanwalkar (ref_25) 2020; 8
Mokdad (ref_2) 2000; 23
Kavakiotis (ref_19) 2017; 15
Albahri (ref_10) 2021; 173
Airola (ref_57) 2011; 55
Ramesh (ref_29) 2021; 8
Sisodia (ref_23) 2018; 132
Keller (ref_49) 1985; SMC-15
ref_21
(ref_4) 2014; 5
Benavides (ref_33) 2021; 202
Sabir (ref_1) 2019; 114
Syaliman (ref_43) 2018; 978
ref_28
ref_27
Hsieh (ref_54) 2012; 36
Crandall (ref_12) 2017; 5
Srivastava (ref_35) 2014; 15
Versaci (ref_7) 2020; 18
Luukka (ref_6) 2009; 36
Boulos (ref_9) 2021; 20
Harangi (ref_55) 2018; 86
ref_31
Elmogy (ref_22) 2015; 65
McIntyre (ref_13) 2019; 5
Cho (ref_15) 2018; 138
ref_39
ref_38
Sattar (ref_11) 2014; 15
ref_37
Kuhkan (ref_44) 2016; 8
Cousineau (ref_51) 2010; 3
Association (ref_14) 2004; 27
ref_45
Hasan (ref_53) 2020; 8
Samant (ref_20) 2018; 157
Zhu (ref_32) 2015; 292
Liaw (ref_40) 2010; 43
ref_3
Derrac (ref_41) 2012; 186
Patel (ref_46) 2018; 65
Karegowda (ref_24) 2011; 2
ref_5
Derrac (ref_47) 2014; 260
(ref_48) 1983; 1
References_xml – volume: 27
  start-page: S88
  year: 2004
  ident: ref_14
  article-title: Gestational diabetes mellitus
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.2007.S88
– volume: 108
  start-page: 107423
  year: 2021
  ident: ref_18
  article-title: An integrated multi-node Hadoop framework to predict high-risk factors of Diabetes Mellitus using a Multilevel MapReduce based Fuzzy Classifier (MMR-FC) and Modified DBSCAN algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107423
– volume: 3
  start-page: 58
  year: 2010
  ident: ref_51
  article-title: Outliers detection and treatment: A review
  publication-title: Int. J. Psychol. Res.
  doi: 10.21500/20112084.844
– ident: ref_5
– volume: 173
  start-page: 102873
  year: 2021
  ident: ref_10
  article-title: IoT-based telemedicine for disease prevention and health promotion: State-of-the-Art
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102873
– volume: 8
  start-page: 973
  year: 2020
  ident: ref_25
  article-title: Sequential Minimal Optimization for Predicting Diabetes at its Early Stage
  publication-title: J. Crit. Rev.
– ident: ref_38
  doi: 10.1109/ICNN.1996.549118
– ident: ref_3
  doi: 10.1109/ITME.2018.00021
– ident: ref_39
  doi: 10.1109/FOCS.2006.49
– volume: 20
  start-page: 1
  year: 2021
  ident: ref_9
  article-title: Smart city lifestyle sensing, big data, geo-analytics and intelligence for smarter public health decision-making in overweight, obesity and type 2 diabetes prevention: The research we should be doing
  publication-title: Int. J. Health Geogr.
– volume: 5
  start-page: 444
  year: 2014
  ident: ref_4
  article-title: Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength?
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v5.i4.444
– ident: ref_16
– volume: 8
  start-page: 90
  year: 2016
  ident: ref_44
  article-title: A method to improve the accuracy of k-nearest neighbor algorithm
  publication-title: Int. J. Comput. Eng. Inf. Technol.
– volume: 36
  start-page: 7463
  year: 2009
  ident: ref_6
  article-title: Classification based on fuzzy robust PCA algorithms and similarity classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.015
– volume: 12
  start-page: 3074
  year: 2021
  ident: ref_26
  article-title: Prediction of Diabetes in Females of Pima Indian Heritage: A Complete Supervised Learning Approach
  publication-title: Turk. J. Comput. Math. Educ. TURCOMAT
– volume: 104
  start-page: 101815
  year: 2020
  ident: ref_50
  article-title: Efficient treatment of outliers and class imbalance for diabetes prediction
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101815
– volume: SMC-15
  start-page: 580
  year: 1985
  ident: ref_49
  article-title: A fuzzy K-nearest neighbor algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313426
– volume: 36
  start-page: 2841
  year: 2012
  ident: ref_54
  article-title: Design ensemble machine learning model for breast cancer diagnosis
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9762-6
– volume: 19
  start-page: 3
  year: 2019
  ident: ref_52
  article-title: A Review of Feature Selection and Its Methods
  publication-title: Cybern. Inf. Technol.
– volume: 138
  start-page: 271
  year: 2018
  ident: ref_15
  article-title: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2018.02.023
– volume: 19
  start-page: 391
  year: 2020
  ident: ref_34
  article-title: Deep learning approach for diabetes prediction using PIMA Indian dataset
  publication-title: J. Diabetes Metab. Disord.
  doi: 10.1007/s40200-020-00520-5
– ident: ref_17
– volume: 202
  start-page: 105968
  year: 2021
  ident: ref_33
  article-title: Diabetes detection using deep learning techniques with oversampling and feature augmentation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.105968
– volume: 34
  start-page: 417
  year: 2012
  ident: ref_42
  article-title: Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.142
– volume: 11
  start-page: 21
  year: 2019
  ident: ref_36
  article-title: Diabetes Prediction: A Deep Learning Approach
  publication-title: Int. J. Inf. Eng. Electron. Bus.
– volume: 4
  start-page: 12
  year: 2021
  ident: ref_8
  article-title: Comparative anatomization of data mining and fuzzy logic techniques used in diabetes prognosis
  publication-title: Clin. eHealth
  doi: 10.1016/j.ceh.2020.11.001
– volume: 8
  start-page: 45
  year: 2021
  ident: ref_29
  article-title: A remote healthcare monitoring framework for diabetes prediction using machine learning
  publication-title: Healthc. Technol. Lett.
  doi: 10.1049/htl2.12010
– volume: 55
  start-page: 1828
  year: 2011
  ident: ref_57
  article-title: An experimental comparison of cross-validation techniques for estimating the area under the ROC curve
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2010.11.018
– volume: 978
  start-page: 012047
  year: 2018
  ident: ref_43
  article-title: Improving the accuracy of k-nearest neighbor using local mean based and distance weight
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/978/1/012047
– ident: ref_45
  doi: 10.1109/SSCI47803.2020.9308286
– ident: ref_31
  doi: 10.1007/978-3-030-66717-7_13
– volume: 15
  start-page: 104
  year: 2017
  ident: ref_19
  article-title: Machine Learning and Data Mining Methods in Diabetes Research
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2016.12.005
– volume: 65
  start-page: 179
  year: 2015
  ident: ref_22
  article-title: A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2015.08.003
– volume: 186
  start-page: 73
  year: 2012
  ident: ref_41
  article-title: Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.09.027
– ident: ref_27
  doi: 10.1109/ICCISci.2019.8716405
– volume: 43
  start-page: 2351
  year: 2010
  ident: ref_40
  article-title: Fast exact k nearest neighbors search using an orthogonal search tree
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.01.003
– ident: ref_37
– volume: 292
  start-page: 1
  year: 2015
  ident: ref_32
  article-title: An improved early detection method of type-2 diabetes mellitus using multiple classifier system
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.056
– volume: 15
  start-page: 1
  year: 2014
  ident: ref_11
  article-title: The use of statins in people at risk of developing diabetes mellitus: Evidence and guidance for clinical practice
  publication-title: Atheroscler. Suppl.
  doi: 10.1016/j.atherosclerosissup.2014.04.001
– ident: ref_21
– volume: 260
  start-page: 98
  year: 2014
  ident: ref_47
  article-title: Fuzzy nearest neighbor algorithms: Taxonomy, experimental analysis and prospects
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.10.038
– ident: ref_28
  doi: 10.1145/3127404.3127466
– volume: 5
  start-page: e000438
  year: 2017
  ident: ref_12
  article-title: Statin use and risk of developing diabetes: Results from the Diabetes Prevention Program
  publication-title: BMJ Open Diabetes Res. Care
  doi: 10.1136/bmjdrc-2017-000438
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_35
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 287
  year: 1983
  ident: ref_48
  article-title: A learning scheme for a fuzzy k-NN rule
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(83)90064-8
– volume: 114
  start-page: 108802
  year: 2019
  ident: ref_1
  article-title: Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: Inserting the association into perspectives
  publication-title: Biomed. Pharm.
  doi: 10.1016/j.biopha.2019.108802
– volume: 132
  start-page: 1578
  year: 2018
  ident: ref_23
  article-title: Prediction of diabetes using classification algorithms
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.05.122
– volume: 18
  start-page: 230
  year: 2020
  ident: ref_7
  article-title: Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates
  publication-title: Open Phys.
  doi: 10.1515/phys-2020-0159
– volume: 23
  start-page: 1278
  year: 2000
  ident: ref_2
  article-title: Diabetes trends in the US: 1990–1998
  publication-title: Diabetes Care
  doi: 10.2337/diacare.23.9.1278
– volume: 86
  start-page: 25
  year: 2018
  ident: ref_55
  article-title: Skin lesion classification with ensembles of deep convolutional neural networks
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.08.006
– volume: 157
  start-page: 121
  year: 2018
  ident: ref_20
  article-title: Machine learning techniques for medical diagnosis of diabetes using iris images
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.01.004
– volume: 8
  start-page: 76516
  year: 2020
  ident: ref_53
  article-title: Diabetes Prediction Using Ensembling of Different Machine Learning Classifiers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989857
– volume: 1821
  start-page: 012006
  year: 2021
  ident: ref_30
  article-title: Feature optimization using Backward Elimination and Support Vector Machines (SVM) algorithm for diabetes classification
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1821/1/012006
– volume: 2
  start-page: 15
  year: 2011
  ident: ref_24
  article-title: Application of Genetic Algorithm Optimized Neural Network Connection Weights for Medical Diagnosis of PIMA Indians Diabetes
  publication-title: Int. J. Soft Comput.
  doi: 10.5121/ijsc.2011.2202
– volume: 65
  start-page: 780
  year: 2018
  ident: ref_46
  article-title: An Improved Fuzzy K-Nearest Neighbor Algorithm for Imbalanced Data using Adaptive Approach
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2018.1462109
– volume: 5
  start-page: 1
  year: 2019
  ident: ref_13
  article-title: Gestational diabetes mellitus
  publication-title: Nat. Rev. Dis. Primer
  doi: 10.1038/s41572-019-0098-8
– ident: ref_56
  doi: 10.1007/978-3-030-24409-5_18
SSID ssj0000913810
Score 2.374898
Snippet Diabetes, a metabolic disease in which the blood glucose level rises over time, is one of the most common chronic diseases at present. It is critical to...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 950
SubjectTerms Algorithms
Artificial intelligence
Big Data
Carbohydrates
Classification
classifier
Deep learning
diabetes
Disease
ensemble classifier
fuzzy KNN
Fuzzy logic
Gestational diabetes
Glucose
Hormones
Insulin
Machine learning
Medical diagnosis
Metabolism
Ontology
Overweight
Pima Indians diabetes dataset
Pregnancy
Womens health
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60etCDb7G-2IMHFRabZJvHSaxaBDGIKHgLyWZHCtLUphX01zuTbGtB8eI1mYSF2dl57vcBHKnAxRQjLTH1WlIZT8uUPKEM_ShMc2M8bNVkE0Ech8_P0b0tuJV2rHJyJlYHdV5orpGfub5HzpgShOB88CaZNYq7q5ZCYx4WGKlMNWChcx3fP0yrLIx6GTqt-mKeR_k994Udl_sKfNN-xhVViP0_DuTKy3RX_7u-NVix8aW4qDfEOsyZ_gYsz6AObsC6tedSHFvQ6ZNNwC4JyMcxl0lEd_z5-SFu41hUnJk9JN8pOuTvclH0xRN9W80RjD7EnWFCEZ74EhT9CoomhW39iKt6iK9XigKFHbwpt-Cpe_14eSMtB4PUnq9Gsp2ik2kdmCwKDPfsgqCdubnjpGEY-XnmR5gp5sJjvg6yfgoYmWTB0Vq33NzNvW1o9Iu-2QGBGNE_lINao1K0RfKg7WfapYyGtITYhNOJOhJtAcqZJ-M1oUSFdZfM6K4JR1PhQY3L8btYh_U6FWEw7epBMXxJrG0mXspgqGmb0dR4XaEx6Cg0IWWPFA_qJuxPVJ5YCy-Tb33v_v16D5ZcvjJRTXrvQ2M0HJsDWNTvo145PLQb9gvJ3_Ty
  priority: 102
  providerName: ProQuest
Title Fine-Tuning Fuzzy KNN Classifier Based on Uncertainty Membership for the Medical Diagnosis of Diabetes
URI https://www.proquest.com/docview/2636122827
https://doaj.org/article/3a1482a5261242fa8eef14fe8149600c
Volume 12
WOSCitedRecordID wos000757414900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6ketCD2KpYrWUPPagQbB7N42i1RZGGIi3UU0g2O1CQVppWaH-9M8m2BBS8eEyYbMLs7M5MZvb7AFqOZ2GMgTQwttuGo2xpxOQJDd8N_DhVysZ2QTbhhaE_mQTDEtUX94QV8MCF4u7tmJEq4w5DXTk0rq8Umg4qn0J7ctaSd1-KekrJVL4HByZDVxUH8mzK67kebFpcT-AT9iUXlCP1_9iIc-_SP4FjHRaKh-JzqrCnZjU4KoEF1qCql2EmbjRW9O0pYJ8EjNGK_26I_mqzWYvXMBQ51eUUyeWJLrmpVMxnYkzP5uX_5VoMFPOAcKOWoKBVUBAodMVGPBW9d9NMzFHofpnsDMb93ujx2dDUCYa0XWdpdGI0Eyk9lQSe4lKb53USKzXN2PcDN03cABOHKeyYZoMWLcV5zI1gSinbVmql9jlUZvOZugCBGNAYjolSosMzkHodN5EWJSKkZMQ63G21GUmNK870Fh8R5Res-qik-jq0dsKfBZzG72JdnpadCGNg5zfIMiJtGdFfllGHxnZSI70ws8hybRKnPNO7_I93XMGhxech8jbuBlSWi5W6hgP5tZxmiybsd3vh8K2Z2yZdDV8Gw_dvW4zoIw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAl6KLSACC2whyIB0gp717HXB4QoJWqUxsohlcrJtde7KBKKS5wUpT-K38iMvQ6RQNx64GqPLdv7eR47jw_gKIiEzWysuc2kxwMjNc_QEnIVxiorjJHWa8gmoiRRFxfxeAt-tr0wVFbZ6sRaURelpj3ydyKUaIwxQIg-XH3nxBpF2dWWQqOBxdCsfmDIVr0fnOD6vhKi_3ny6ZQ7VgGuZRgseC-zfq51ZPI4MpSFiqJeLgrfz5SKwyIPY5sHxO5GDBSIZ3SBiDbA11p7ohCFxPvege0Awa46sD0ejMZf1rs6NGVT-V7TCChl7FEe2heUx6DO_g3TVzME_GEAaqvWf_C_fY-HsOv8Z_axAfwebJnZPuxsTFXchz2nryr22g3VfvMIbB8F-GRJ20Csv7y5WbFhkrCaE3Rq0Tdgx2jPC1bO2DleW9dJLFZsZIgwhSraGHr3DL1l5lJb7KQpUpxWrLTMFRZVj-H8Vt7-CXRm5cw8BWZtjPcIfKu1RXTYrIh6Ya4FRmyICmu78LZd_lS7AezEA_ItxUCMsJJuYKULR2vhq2buyN_FjglHaxEaFl4fKOdfU6d7UpnRsNesR9Pi6LmUMdYPrFEYHaO_q7tw2EIsdRqsSn_j69m_T7-Ee6eT0Vl6NkiGB3BfUHtIXdV-CJ3FfGmew119vZhW8xfuZ2Fwedt4_AXGUVC8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFqH2ALRQESiwhyIB0qr27saPA0KUYBGFWjm0UjkZe71bRariEidF6U_j1zFjr0MkELceuNpry49vXjuPD-BQhcLmNtbc5tLjykjNc7SEPAriKC-NkdZrySbCNI3Oz-PxBvzsemGorLLTiY2iLitNe-RHIpBojDFACI-sK4sYD5L3V985MUhRprWj02ghMjLLHxi-1e-GA_zXr4RIPp1-_MwdwwDXMlBz3s-tX2gdmiIODWWkwrBfiNL38yiKg7IIYlsoYnojNgrENrpDRCHga609UYpS4n3vwBa65AplbGs8PBl_Xe3w0MTNyPfapkApY49y0r6gnAZ1-a-ZwYYt4A9j0Fi45MH__G0ewn3nV7MPrSDswoaZ7sHO2rTFPdh1eqxmr92w7TePwCa4gJ8uaHuIJYubmyUbpSlruEInFn0Gdox2vmTVlJ3htU39xHzJTgwRqVClG0Ovn6EXzVzKiw3a4sVJzSrLXMFR_RjObuXt92FzWk3NE2DWxngP5VutrVIoGmXYDwotMJJDhFjbg7cdFDLtBrMTP8hlhgEa4SZbw00PDleLr9p5JH9fdkyYWi2hIeLNgWp2kTmdlMmchsDmfZoiR88VGWN9ZU2EUTP6wboHBx3cMqfZ6uw31p7--_RLuIcgzL4M09Ez2BbUNdIUux_A5ny2MM_hrr6eT-rZCyc3DL7dNhx_Ac5QWXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-Tuning+Fuzzy+KNN+Classifier+Based+on+Uncertainty+Membership+for+the+Medical+Diagnosis+of+Diabetes&rft.jtitle=Applied+sciences&rft.au=Hanaa+Salem&rft.au=Mahmoud+Y.+Shams&rft.au=Omar+M.+Elzeki&rft.au=Mohamed+Abd+Elfattah&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=3&rft.spage=950&rft_id=info:doi/10.3390%2Fapp12030950&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3a1482a5261242fa8eef14fe8149600c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon