Optimization Algorithms for Scalable Stream Batch Clustering with k Estimation

The increasing volume and velocity of the continuously generated data (data stream) challenge machine learning algorithms, which must evolve to fit real-world problems. The data stream clustering algorithms face issues such as the rapidly increasing volume of the data, the variety of the number of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 12; H. 13; S. 6464
Hauptverfasser: Cândido, Paulo Gustavo Lopes, Silva, Jonathan Andrade, Faria, Elaine Ribeiro, Naldi, Murilo Coelho
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.07.2022
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The increasing volume and velocity of the continuously generated data (data stream) challenge machine learning algorithms, which must evolve to fit real-world problems. The data stream clustering algorithms face issues such as the rapidly increasing volume of the data, the variety of the number of clusters, and their shapes. The present work aims to improve the accuracy of sequential clustering batches of data streams for scenarios in which clusters evolve dynamically and continuously, automatically estimating their number. In order to achieve this goal, three evolutionary algorithms are presented, along with three novel algorithms designed to deal with clusters of normal distribution based on goodness-of-fit tests in the context of scalable batch stream clustering with automatic estimation of the number of clusters. All of them are developed on top of MapReduce, Discretized-Stream models, and the most recent MPC frameworks to provide scalability, reliability, resilience, and flexibility. The proposed algorithms are experimentally compared with state-of-the-art methods and present the best results for accuracy for normally distributed data sets, reaching their goal.
AbstractList The increasing volume and velocity of the continuously generated data (data stream) challenge machine learning algorithms, which must evolve to fit real-world problems. The data stream clustering algorithms face issues such as the rapidly increasing volume of the data, the variety of the number of clusters, and their shapes. The present work aims to improve the accuracy of sequential clustering batches of data streams for scenarios in which clusters evolve dynamically and continuously, automatically estimating their number. In order to achieve this goal, three evolutionary algorithms are presented, along with three novel algorithms designed to deal with clusters of normal distribution based on goodness-of-fit tests in the context of scalable batch stream clustering with automatic estimation of the number of clusters. All of them are developed on top of MapReduce, Discretized-Stream models, and the most recent MPC frameworks to provide scalability, reliability, resilience, and flexibility. The proposed algorithms are experimentally compared with state-of-the-art methods and present the best results for accuracy for normally distributed data sets, reaching their goal.
Author Silva, Jonathan Andrade
Faria, Elaine Ribeiro
Cândido, Paulo Gustavo Lopes
Naldi, Murilo Coelho
Author_xml – sequence: 1
  givenname: Paulo Gustavo Lopes
  orcidid: 0000-0001-7680-3967
  surname: Cândido
  fullname: Cândido, Paulo Gustavo Lopes
– sequence: 2
  givenname: Jonathan Andrade
  orcidid: 0000-0002-8274-2707
  surname: Silva
  fullname: Silva, Jonathan Andrade
– sequence: 3
  givenname: Elaine Ribeiro
  orcidid: 0000-0001-5242-9026
  surname: Faria
  fullname: Faria, Elaine Ribeiro
– sequence: 4
  givenname: Murilo Coelho
  orcidid: 0000-0002-3107-8236
  surname: Naldi
  fullname: Naldi, Murilo Coelho
BookMark eNptkU9PAyEQxYnRRK2e_AIkHk2VgV1Yjtr4LzF6qJ4JZaFSt8sKNEY_vdhqYowcYELe_OZN3j7a7kNvEToCcsqYJGd6GIAC4xWvttAeJYKPWQVi-1e9iw5TWpByJLAGyB66fxiyX_oPnX3o8Xk3D9Hn52XCLkQ8NbrTs87iaY5WL_GFzuYZT7pVyjb6fo7fiha_4MtUGGvCAdpxukv28Psdoaery8fJzfju4fp2cn43NsVfHletJJUh3Brhyj2Tzuia6pqD44aDoQIEcRRcw2cgeWOBuRbAGu2kbRxnI3S74bZBL9QQy_j4roL2av0R4lzpmL3prDKmsa7mFaMUKuZqOZNCtIawpuGtYKKwjjesIYbXlU1ZLcIq9sW-oryppaDFQVHBRmViSClap4zP651z1L5TQNRXCupXCqXn5E_Pj9P_1J-8c4lw
CitedBy_id crossref_primary_10_1109_TNNLS_2024_3382033
Cites_doi 10.1145/2934664
10.1145/3403951
10.1145/1327452.1327492
10.1109/CEC.2018.8477668
10.7551/mitpress/7503.003.0054
10.1109/ICDMW.2015.140
10.1201/EBK1439826119
10.1145/3373464.3373470
10.21236/ADA575859
10.1109/BRACIS.2017.53
10.1016/j.asoc.2010.06.010
10.1145/2522968.2522981
10.1016/B978-012722442-8/50016-1
10.1007/s10994-013-5377-0
10.1201/9781420089653
10.1016/j.neucom.2016.07.074
10.1016/j.eswa.2016.09.020
10.1007/BF01908075
10.1080/01621459.1951.10500769
10.1093/biomet/52.3-4.591
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12136464
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_cc8ef564322143f59b977dc03886d737
10_3390_app12136464
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-4d904c06ec7f06eb9fca52a561f6c61c27170f21f86b1968e13fd11ecaf9e8f63
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000822129500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:53:19 EDT 2025
Mon Jun 30 07:33:37 EDT 2025
Mon Nov 10 02:49:37 EST 2025
Tue Nov 18 22:01:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-4d904c06ec7f06eb9fca52a561f6c61c27170f21f86b1968e13fd11ecaf9e8f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7680-3967
0000-0001-5242-9026
0000-0002-3107-8236
0000-0002-8274-2707
OpenAccessLink https://doaj.org/article/cc8ef564322143f59b977dc03886d737
PQID 2685972968
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_cc8ef564322143f59b977dc03886d737
proquest_journals_2685972968
crossref_citationtrail_10_3390_app12136464
crossref_primary_10_3390_app12136464
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Naldi (ref_34) 2011; 11
Madani (ref_31) 2013; 92
ref_36
ref_13
ref_12
ref_11
Zaharia (ref_25) 2016; 59
ref_33
Aggarwal (ref_22) 2003; Volume 29
ref_32
ref_30
Meng (ref_24) 2016; 17
Hubert (ref_28) 1985; 2
Khader (ref_14) 2020; 53
ref_19
ref_18
ref_17
ref_16
ref_15
Shapiro (ref_35) 1965; 52
Morales (ref_7) 2015; 16
Gomes (ref_2) 2019; 21
Dean (ref_9) 2008; 51
Silva (ref_3) 2013; 46
ref_21
ref_20
ref_1
Massey (ref_26) 1951; 46
ref_27
Silva (ref_23) 2017; 67
ref_8
ref_5
ref_4
Bifet (ref_29) 2010; 11
ref_6
Oliveira (ref_10) 2017; 246
References_xml – volume: 59
  start-page: 56
  year: 2016
  ident: ref_25
  article-title: Apache Spark: A Unified Engine for Big Data Processing
  publication-title: Commun. ACM
  doi: 10.1145/2934664
– ident: ref_30
– ident: ref_5
– ident: ref_32
– volume: 53
  start-page: 1
  year: 2020
  ident: ref_14
  article-title: Density-Based Algorithms for Big Data Clustering Using MapReduce Framework: A Comprehensive Study
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3403951
– volume: 11
  start-page: 1601
  year: 2010
  ident: ref_29
  article-title: MOA Massive Online Analysis
  publication-title: J. Mach. Learn. Res.
– volume: 51
  start-page: 107
  year: 2008
  ident: ref_9
  article-title: MapReduce: Simplified data processing on large clusters
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– ident: ref_18
– ident: ref_13
  doi: 10.1109/CEC.2018.8477668
– ident: ref_19
  doi: 10.7551/mitpress/7503.003.0054
– ident: ref_21
– ident: ref_8
  doi: 10.1109/ICDMW.2015.140
– ident: ref_1
  doi: 10.1201/EBK1439826119
– volume: 21
  start-page: 6
  year: 2019
  ident: ref_2
  article-title: Machine learning for streaming data: State of the art, challenges, and opportunities
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/3373464.3373470
– ident: ref_6
– ident: ref_11
  doi: 10.21236/ADA575859
– ident: ref_4
– ident: ref_33
– ident: ref_12
  doi: 10.1109/BRACIS.2017.53
– ident: ref_27
– volume: 16
  start-page: 149
  year: 2015
  ident: ref_7
  article-title: SAMOA: Scalable Advanced Massive Online Analysis
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 1938
  year: 2011
  ident: ref_34
  article-title: Efficiency issues of evolutionary k-means
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.010
– volume: 46
  start-page: 1
  year: 2013
  ident: ref_3
  article-title: Data stream clustering
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2522968.2522981
– volume: 17
  start-page: 1235
  year: 2016
  ident: ref_24
  article-title: MLlib: Machine Learning in Apache Spark
  publication-title: J. Mach. Learn. Res.
– ident: ref_15
– volume: Volume 29
  start-page: 81
  year: 2003
  ident: ref_22
  article-title: Aggarwal, C.C.; Han, J.; Wang, J.; Yu, P.S. A framework for clustering evolving data streams
  publication-title: Proceedings 2003 VLDB Conference
  doi: 10.1016/B978-012722442-8/50016-1
– volume: 92
  start-page: 457
  year: 2013
  ident: ref_31
  article-title: On Using Nearly-Independent Feature Families for High Precision and Confidence
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5377-0
– ident: ref_16
  doi: 10.1201/9781420089653
– ident: ref_17
– ident: ref_36
– volume: 246
  start-page: 45
  year: 2017
  ident: ref_10
  article-title: Improving k-means through distributed scalable metaheuristics
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.074
– volume: 67
  start-page: 228
  year: 2017
  ident: ref_23
  article-title: An evolutionary algorithm for clustering data streams with a variable number of clusters
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.020
– ident: ref_20
– volume: 2
  start-page: 193
  year: 1985
  ident: ref_28
  article-title: Comparing partitions
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– volume: 46
  start-page: 68
  year: 1951
  ident: ref_26
  article-title: The Kolmogorov-Smirnov Test for Goodness of Fit
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1951.10500769
– volume: 52
  start-page: 591
  year: 1965
  ident: ref_35
  article-title: An Analysis of Variance Test for Normality (Complete Samples)
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
SSID ssj0000913810
Score 2.230552
Snippet The increasing volume and velocity of the continuously generated data (data stream) challenge machine learning algorithms, which must evolve to fit real-world...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6464
SubjectTerms Algorithms
Big Data
Clustering
data stream
Datasets
Hypotheses
Machine learning
massive parallel computation
Normal distribution
SummonAdditionalLinks – databaseName: ProQuest Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5B4ACHlqcIpdUeeoBKFms7Xu-eKkCg9tA0EiDByXJmdwMiD4gDv78z9oaCWnHikoOzWln-Zr6Zfcw3AF8xM15SXI-0sVnUsRajssxlRLHdoqX4kaOsm03k3a6-ujK9UB5dhWuVc06sibpRe-Z720TCh3aCvGN-mChNmXBilP5-_xBxDyk-aw0NNRZhiYW3ZAuWej9_9a6f91xYA1PHsinTS2m1z6fErGmmOqrzKjDV-v3_0HMdc84-vu_brsGHkHuKo8ZY1mHBjTdg9YUi4QasB1-vxH4QpD7YhO5v4pVRKNgUR8MBzT27GVWCEl5xTiBz-ZXg8-1yJI6J22_EyfCRFRhoTsE7veJOnBKXNGWSW3B5dnpx8iMKfRgipC8zIwSN7KBUDnNPv33jscySkjIvr1DFmNCSUPok9lr1yaG1i1Nv49hh6Y3TXqXb0BpPxm4HhE6VzZxh2byU2MKbfoySjIUm9jrOsA3f5iAUGETKuVfGsKDFCiNWvECsTaY2H3zfaHP8f9gxo_k8hAW16weT6aAI_lkgauczSs-ShDJIn5k-JcYWWStH2TzN27A3B7oIXl4Vf3HdffvvT7CScNlEfc13D1qz6aP7DMv4NLutpl-Cmf4BolL4jA
  priority: 102
  providerName: ProQuest
Title Optimization Algorithms for Scalable Stream Batch Clustering with k Estimation
URI https://www.proquest.com/docview/2685972968
https://doaj.org/article/cc8ef564322143f59b977dc03886d737
Volume 12
WOSCitedRecordID wos000822129500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYYAB0QKiUCoPDIAUkadjj23VCgZCxEMqU5ScbYroA_XB7-ecpCgIJBaWSIksJ_5857uLfd8RcgaB0DbadYsLGVi-lGClaWhbaNslSLQfIdh5sYkwivhwKOJKqS9zJqygBy6AuwLgSgdoN10XTbsORIYeiwRDYsJk6OV55HYoKsFUvgYLx1BXFQl5Hsb1Zj_YsJcxn_nfTFDO1P9jIc6ty2CP7JZuIe0Un1MnG2raIDsVssAGqZdquKDnJVf0xT6J7lDlJ2UuJe2MX2YY7I8mC4q-KH1A_E1mFDVbz-mEdnHZHdHeeGXIEbBPan7C0jfaRzUvMhgPyNOg_9i7tsoSCRbgUJYIrrB9sJmCUOM1ExrSwE3RKdIMmAMuRmu2dh3NWYa6xpXjaek4ClItFNfMOyS16WyqjgjlHpOBEobRzkNF1iJzwMZ5xI41dwJokss1agmU_OGmjMU4wTjCQJxUIG6iFKwbvxe0Gb836xr4v5oYruv8AUpAUkpA8pcENElrPXlJqYCLxGUcQyUXh3z8H-84IduuyXvIz-m2SG05X6lTsgUfy9fFvE02u_0ovm_nMoh38c1t_PwJn5jfxg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwAFpAbCnFB5AAKcJxEsc-INSnumq7rESR2lPIju0WsY-y2Rbxp_iNjBOnFIG49cAlh8SyYvvzzOfHfAPwHDPtOPn1SGmTRakxGJVlziPy7QYN-Y8ceZ1sIu_31dGRHizAjzYWxl-rbG1ibajNFP0e-RshFXFfoaV6d_Y18lmj_Olqm0KjgcWe_f6NlmzV294Wje8LIXa2Dzd3o5BVIMJEpnP6H81T5NJi7ug51A7LTJTEI5xEGaOgBQ53InZKDgmeysaJM3FssXTaKicTqvcGLKYEdt6BxUHvYHB8uavjVTZVzJtAwCTR3J9De9U0mcr0N9dXZwj4wwHUXm3n3v_WH_fhbuDPbL0B_BIs2Mky3LmiqrgMS8FeVexlENV-9QD678k2jkPQKVsfnVBb5qfjihFpZx8IqD6EjPkz-nLMNsg_nbLN0blXkaA6md-tZl_YNtnDJtTzIXy8llY-gs5kOrGPgalEmsxqL_2XEAicHsbICfBUsVNxhl143Q5zgUFo3ef7GBW04PKYKK5gokvTpS181uiL_L3YhsfLZREvCl6_mM5OimBjCkRlXUYUUwhiwS7TQyL3Br3ejzR5kndhtYVSESxVVfzC0cq_Pz-DW7uHB_vFfq-_9wRuCx8GUl9bXoXOfHZun8JNvJh_rmZrYVIw-HTduPsJfGdLBA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwAFpALBTwASRAiuo4iWMfEOq2u6IqCiseUm8hO7ZbxD7KZgvir_HrGCdOKQJx64FLDollJfE334wf8w3AY8y04-TXI6VNFqXGYFRVOY_Itxs05D9y5E2xibwo1OGhHq_Bjy4Xxh-r7DixIWqzQL9Gvi2kothXaKm2XTgWMd4bvTz5EvkKUn6ntSun0ULkwH7_RtO3-sX-Ho31EyFGw_e7r6JQYSDCRKYrejfNU-TSYu7oOtEOq0xUFFM4iTJGQZMd7kTslJwQVJWNE2fi2GLltFVOJtTvJVjPE5r09GB9MCzGb89WeLzipop5mxSYJJr7PWmvoCZTmf7mBptqAX84g8bDjW78z__mJlwPcTXbaQ1hA9bsfBOunVNb3ISNwGM1exrEtp_dguINceYsJKOynekRfcvqeFYzCubZOwKwTy1jfu--mrEB-a1jtjs99eoS1Cfzq9jsMxsST7YpoLfhw4V85R3ozRdzexeYSqTJrPaSgAkxodOTGDkZAnXsVJxhH553Q15iEGD3dUCmJU3EPD7Kc_jokxl1jU9a3ZG_Nxt47Jw18WLhzY3F8qgM3FMiKusyCj2FoOjYZXpCQb9BrwMkTZ7kfdjqYFUGBqvLX5i69-_Hj-AKga18vV8c3IerwmeHNKeZt6C3Wp7aB3AZv64-1cuHwT4YfLxo2P0EeAxTng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+Algorithms+for+Scalable+Stream+Batch+Clustering+with+k+Estimation&rft.jtitle=Applied+sciences&rft.au=C%C3%A2ndido%2C+Paulo+Gustavo+Lopes&rft.au=Silva%2C+Jonathan+Andrade&rft.au=Faria%2C+Elaine+Ribeiro&rft.au=Naldi%2C+Murilo+Coelho&rft.date=2022-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=13&rft.spage=6464&rft_id=info:doi/10.3390%2Fapp12136464&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app12136464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon