Tree-Based Modeling Methods to Predict Nitrate Exceedances in the Ogallala Aquifer in Texas
The performance of four tree-based classification techniques—classification and regression trees (CART), multi-adaptive regression splines (MARS), random forests (RF) and gradient boosting trees (GBT) were compared against the commonly used logistic regression (LR) analysis to assess aquifer vulnera...
Uloženo v:
| Vydáno v: | Water (Basel) Ročník 12; číslo 4; s. 1023 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.04.2020
|
| Témata: | |
| ISSN: | 2073-4441, 2073-4441 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The performance of four tree-based classification techniques—classification and regression trees (CART), multi-adaptive regression splines (MARS), random forests (RF) and gradient boosting trees (GBT) were compared against the commonly used logistic regression (LR) analysis to assess aquifer vulnerability in the Ogallala Aquifer of Texas. The results indicate that the tree-based models performed better than the logistic regression model, as they were able to locally refine nitrate exceedance probabilities. RF exhibited the best generalizable capabilities. The CART model did better in predicting non-exceedances. Nitrate exceedances were sensitive to well depths—an indicator of aquifer redox conditions, which, in turn, was controlled by alkalinity increases brought forth by the dissolution of calcium carbonate. The clay content of soils and soil organic matter, which serve as indicators of agriculture activities, were also noted to have significant influences on nitrate exceedances. Likely nitrogen releases from confined animal feedlot operations in the northeast portions of the study area also appeared to be locally important. Integrated soil, hydrogeological and geochemical datasets, in conjunction with tree-based methods, help elucidate processes controlling nitrate exceedances. Overall, tree-based models offer flexible, transparent approaches for mapping nitrate exceedances, identifying underlying mechanisms and prioritizing monitoring activities. |
|---|---|
| AbstractList | The performance of four tree-based classification techniques—classification and regression trees (CART), multi-adaptive regression splines (MARS), random forests (RF) and gradient boosting trees (GBT) were compared against the commonly used logistic regression (LR) analysis to assess aquifer vulnerability in the Ogallala Aquifer of Texas. The results indicate that the tree-based models performed better than the logistic regression model, as they were able to locally refine nitrate exceedance probabilities. RF exhibited the best generalizable capabilities. The CART model did better in predicting non-exceedances. Nitrate exceedances were sensitive to well depths—an indicator of aquifer redox conditions, which, in turn, was controlled by alkalinity increases brought forth by the dissolution of calcium carbonate. The clay content of soils and soil organic matter, which serve as indicators of agriculture activities, were also noted to have significant influences on nitrate exceedances. Likely nitrogen releases from confined animal feedlot operations in the northeast portions of the study area also appeared to be locally important. Integrated soil, hydrogeological and geochemical datasets, in conjunction with tree-based methods, help elucidate processes controlling nitrate exceedances. Overall, tree-based models offer flexible, transparent approaches for mapping nitrate exceedances, identifying underlying mechanisms and prioritizing monitoring activities. |
| Audience | Academic |
| Author | Mohammadi, Ghazal Singaraju, Sreeram Hernandez, E. Silva, Ana Uddameri, Venkatesh |
| Author_xml | – sequence: 1 givenname: Venkatesh orcidid: 0000-0002-4998-0471 surname: Uddameri fullname: Uddameri, Venkatesh – sequence: 2 givenname: Ana surname: Silva fullname: Silva, Ana – sequence: 3 givenname: Sreeram surname: Singaraju fullname: Singaraju, Sreeram – sequence: 4 givenname: Ghazal orcidid: 0000-0002-7312-718X surname: Mohammadi fullname: Mohammadi, Ghazal – sequence: 5 givenname: E. orcidid: 0000-0002-7616-703X surname: Hernandez fullname: Hernandez, E. |
| BookMark | eNptkclKBDEQhoOM4HrwDQJe9NCarXvSx1HcYFwO48lDU52uHiM9iZNkUN_eyIiIWDlU-Pm_opYdMnLeISEHnJ1IWbPTNy6Y4kzIDbIt2FgWSik--vXfIvsxvrAcqta6ZNvkaRYQizOI2NFb3-Fg3ZzeYnr2XaTJ04eAnTWJ3tkUICG9eDeIHTiDkVpH0zPS-zkMAwxAJ8uV7TF86TN8h7hHNnsYIu5_513yeHkxO78upvdXN-eTaWFkpVKhhFK1EKLVtQYBVVuKctwhSIZ9zVsEVLzt215yaIWps85LkK1opQBZC5S75Ghd9zX45QpjahY2GsxNOfSr2IiSc15LJnW2Hv6xvvhVcLm7Rkg95pWsdJldJ2tXngwb63qfhzf5dbiwJu-8t1mfaJ63XVa6ysDpGjDBxxiwb4xNkKx3GbRDw1nzdaDm50CZOP5DvAa7gPDxj_cT4fWPeg |
| CitedBy_id | crossref_primary_10_1016_j_ocemod_2023_102263 crossref_primary_10_1007_s41748_025_00657_4 crossref_primary_10_1007_s11783_024_1789_2 crossref_primary_10_1029_2021GH000524 crossref_primary_10_1016_j_scitotenv_2022_155070 crossref_primary_10_1016_j_jwpe_2022_102920 crossref_primary_10_1016_j_jhydrol_2025_132682 crossref_primary_10_3390_s20205763 crossref_primary_10_3390_rs17101755 crossref_primary_10_1016_j_jhydrol_2023_129934 crossref_primary_10_1007_s40808_024_02127_8 crossref_primary_10_1016_j_scitotenv_2024_171312 crossref_primary_10_3390_w12113195 crossref_primary_10_1007_s11356_021_17224_9 crossref_primary_10_3390_w12061822 crossref_primary_10_1007_s12665_025_12420_z crossref_primary_10_1134_S0097807822030162 crossref_primary_10_1016_j_scitotenv_2024_176024 crossref_primary_10_3390_w17131855 crossref_primary_10_1007_s12665_025_12378_y crossref_primary_10_1016_j_jclepro_2022_130900 crossref_primary_10_3390_w13243507 crossref_primary_10_3390_w14152423 crossref_primary_10_1016_j_apgeochem_2022_105273 crossref_primary_10_1007_s11356_024_35874_3 crossref_primary_10_1016_j_jenvman_2025_127076 crossref_primary_10_1016_j_jhazmat_2025_138939 |
| Cites_doi | 10.1023/A:1010933404324 10.1086/627521 10.1016/j.ecolmodel.2007.05.011 10.1021/acs.est.7b04269 10.1016/S0031-3203(99)00223-X 10.1016/j.patrec.2005.10.010 10.1016/j.atmosenv.2011.02.017 10.1021/es9812148 10.1111/j.1365-2656.2008.01390.x 10.1016/S0167-9473(01)00065-2 10.1016/j.ecoleng.2014.03.094 10.3390/w10020101 10.1214/aos/1024691079 10.1002/sim.1501 10.1016/j.biombioe.2011.10.030 10.1111/j.1745-6584.2005.0031.x 10.1016/j.jconhyd.2013.07.004 10.1007/s12665-012-2082-4 10.1016/j.jhydrol.2015.10.025 10.1016/j.jhydrol.2012.06.028 10.1021/es100546y 10.1016/j.scitotenv.2018.07.054 10.1111/j.2517-6161.1996.tb02073.x 10.1016/S0169-7161(04)24011-1 10.1021/es300688b 10.1016/j.ecolmodel.2006.05.022 10.1021/es0113854 10.1016/S0016-7061(98)00137-2 10.1214/aos/1013203451 10.1080/09720502.2010.10700699 10.1016/j.scitotenv.2004.11.019 10.1016/j.jhydrol.2006.08.014 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 10.1214/aos/1016218223 10.1201/9781315370262 10.1088/1748-9326/9/7/074002 10.1007/s10661-018-7013-8 10.2489/jswc.63.3.153 10.1186/s40537-018-0143-6 10.1016/j.ejrh.2016.01.002 10.1021/bk-1986-0315.ch008 10.1111/j.1745-6584.1997.tb00175.x 10.1021/es060911u 10.3133/sir20105100 10.1021/es405452q 10.13031/2013.35808 10.1016/j.compag.2014.11.025 10.1093/bioinformatics/btm344 10.1016/j.chemolab.2004.11.001 10.1021/es800792w 10.1016/S1573-4412(05)80019-4 10.1016/j.scitotenv.2018.06.215 10.3133/sir20065050 10.1162/089976699300016106 10.1016/j.jhydrol.2017.08.006 10.1111/j.1747-6593.2011.00258.x 10.1007/978-3-642-50096-1_48 10.3390/w12020428 10.1016/j.scitotenv.2008.02.024 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 MDPI AG 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
| DOI | 10.3390/w12041023 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 2073-4441 |
| ExternalDocumentID | A810415686 10_3390_w12041023 |
| GeographicLocations | United States United States--US Texas |
| GeographicLocations_xml | – name: United States – name: Texas – name: United States--US |
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BANNL BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO ITC KQ8 MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c364t-42449222b898a2a6b5257dea30ef91beae41bfbf31ab2c9a3015a3b2b32a392e3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000539527500100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4441 |
| IngestDate | Mon Sep 08 16:22:52 EDT 2025 Mon Jun 30 07:44:29 EDT 2025 Sat Nov 29 10:33:09 EST 2025 Sat Nov 29 07:13:29 EST 2025 Tue Nov 18 21:55:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-42449222b898a2a6b5257dea30ef91beae41bfbf31ab2c9a3015a3b2b32a392e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7616-703X 0000-0002-4998-0471 0000-0002-7312-718X |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2387163685?pq-origsite=%requestingapplication% |
| PQID | 2387163685 |
| PQPubID | 2032318 |
| ParticipantIDs | proquest_miscellaneous_2511193038 proquest_journals_2387163685 gale_infotracacademiconefile_A810415686 crossref_citationtrail_10_3390_w12041023 crossref_primary_10_3390_w12041023 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Water (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Burow (ref_32) 2010; 44 Friedman (ref_79) 2003; 22 ref_14 Hastie (ref_55) 1996; 58 ref_57 ref_12 Nieto (ref_34) 2014; 68 Uddameri (ref_15) 2006; 51 Breiman (ref_37) 2001; 45 ref_53 DeSimone (ref_4) 2009; 63 Friedman (ref_33) 1991; 19 Friedman (ref_65) 2002; 38 Reeves (ref_77) 1970; 78 Saeys (ref_50) 2007; 23 Tesoriero (ref_16) 1997; 35 Mendes (ref_41) 2014; 476 Hosseini (ref_43) 2018; 644 Galloway (ref_75) 2003; 53 Costanza (ref_80) 2008; 398 Nolan (ref_20) 2006; 40 ref_61 ref_60 Midi (ref_74) 2010; 13 Gurdak (ref_8) 2017; 11 Qian (ref_51) 1999; 33 McKenzie (ref_29) 1999; 89 ref_69 ref_23 Venkataraman (ref_24) 2012; 458 ref_66 Mair (ref_25) 2013; 153 Hancock (ref_52) 2005; 76 Naganna (ref_36) 2017; 553 Smith (ref_49) 2018; 5 ref_28 Rizeei (ref_27) 2018; 190 Breiman (ref_38) 1999; 11 Schapire (ref_62) 2003; Volume 171 Padilla (ref_6) 2018; 643 ref_72 ref_71 ref_70 Rhoades (ref_81) 2010; 53 Kuncheva (ref_83) 2001; 34 Lewandowski (ref_13) 2008; 63 Antonakos (ref_21) 2007; 333 ref_30 ref_73 Pennino (ref_2) 2017; 51 Gardner (ref_18) 2005; 43 King (ref_10) 2012; 5 Friedman (ref_63) 2001; 29 Peters (ref_78) 2007; 207 Fortin (ref_35) 2015; 110 Wu (ref_7) 2012; 36 Nolan (ref_17) 2002; 36 Flores (ref_22) 2008; 57 ref_82 Freund (ref_59) 1996; 96 Burow (ref_68) 2012; 69 Scanlon (ref_47) 2008; 42 Nolan (ref_42) 2015; 531 Stidson (ref_31) 2011; 26 ref_45 Keeler (ref_11) 2014; 9 ref_44 ref_40 ref_1 Breiman (ref_58) 1998; 26 Elith (ref_64) 2008; 77 ref_3 Fawcett (ref_67) 2006; 27 Dayan (ref_76) 2011; 45 Gurdak (ref_5) 2012; 46 ref_48 ref_9 Liu (ref_19) 2005; 346 Friedman (ref_39) 2000; 28 Sutton (ref_56) 2005; 24 Enwright (ref_46) 2009; 58 Nolan (ref_26) 2014; 48 Leathwick (ref_54) 2006; 199 |
| References_xml | – volume: 45 start-page: 5 year: 2001 ident: ref_37 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 78 start-page: 352 year: 1970 ident: ref_77 article-title: Origin, Classification, and Geologic History of Caliche on the Southern High Plains, Texas and Eastern New Mexico publication-title: J. Geol. doi: 10.1086/627521 – volume: 207 start-page: 304 year: 2007 ident: ref_78 article-title: Random forests as a tool for ecohydrological distribution modelling publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2007.05.011 – volume: 51 start-page: 13450 year: 2017 ident: ref_2 article-title: Trends in Drinking Water Nitrate Violations Across the United States publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04269 – volume: Volume 171 start-page: 149 year: 2003 ident: ref_62 article-title: The Boosting Approach to Machine Learning: An Overview publication-title: Athens Conference on Applied Probability and Time Series Analysis – volume: 58 start-page: 1541 year: 2009 ident: ref_46 article-title: Spatial distribution of nitrate and related factors in the High Plains Aquifer, Texas publication-title: Environ. Earth Sci. – volume: 51 start-page: 931 year: 2006 ident: ref_15 article-title: Combining rough sets and GIS techniques to assess aquifer vulnerability characteristics in the semi-arid South Texas publication-title: Environ. Earth Sci. – volume: 34 start-page: 299 year: 2001 ident: ref_83 article-title: Decision templates for multiple classifier fusion: An experimental comparison publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00223-X – volume: 27 start-page: 861 year: 2006 ident: ref_67 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 45 start-page: 3325 year: 2011 ident: ref_76 article-title: The impact of local sources and meteorological factors on nitrogen oxide and particulate matter concentrations: A case study of the Day of Atonement in Israel publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.02.017 – volume: 33 start-page: 3332 year: 1999 ident: ref_51 article-title: Exploring Factors Controlling the Variability of Pesticide Concentrations in the Willamette River Basin Using Tree-Based Models publication-title: Environ. Sci. Technol. doi: 10.1021/es9812148 – ident: ref_61 – volume: 77 start-page: 802 year: 2008 ident: ref_64 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – ident: ref_1 – volume: 38 start-page: 367 year: 2002 ident: ref_65 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – ident: ref_71 – volume: 68 start-page: 80 year: 2014 ident: ref_34 article-title: Álvarez Modeling eutrophication and risk prevention in a reservoir in the Northwest of Spain by using multivariate adaptive regression splines analysis publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.03.094 – ident: ref_9 doi: 10.3390/w10020101 – volume: 26 start-page: 801 year: 1998 ident: ref_58 article-title: Arcing classifier (with discussion and a rejoinder by the author) publication-title: Ann. Stat. doi: 10.1214/aos/1024691079 – volume: 22 start-page: 1365 year: 2003 ident: ref_79 article-title: Multiple additive regression trees with application in epidemiology publication-title: Stat. Med. doi: 10.1002/sim.1501 – volume: 36 start-page: 182 year: 2012 ident: ref_7 article-title: Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.10.030 – volume: 43 start-page: 343 year: 2005 ident: ref_18 article-title: Predicting ground water nitrate concentration from land use publication-title: Ground Water doi: 10.1111/j.1745-6584.2005.0031.x – volume: 5 start-page: 1 year: 2012 ident: ref_10 article-title: Groundwater remediation and management for nitrate publication-title: Tech. Rep. – volume: 153 start-page: 1 year: 2013 ident: ref_25 article-title: Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2013.07.004 – volume: 69 start-page: 2609 year: 2012 ident: ref_68 article-title: Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s–2000s publication-title: Environ. Earth Sci. doi: 10.1007/s12665-012-2082-4 – volume: 531 start-page: 902 year: 2015 ident: ref_42 article-title: A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.10.025 – volume: 458 start-page: 16 year: 2012 ident: ref_24 article-title: Modeling simultaneous exceedance of drinking-water standards of arsenic and nitrate in the Southern Ogallala aquifer using multinomial logistic regression publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.06.028 – volume: 44 start-page: 4988 year: 2010 ident: ref_32 article-title: Nitrate in Groundwater of the United States, 1991−2003 publication-title: Environ. Sci. Technol. doi: 10.1021/es100546y – volume: 644 start-page: 954 year: 2018 ident: ref_43 article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2018.07.054 – ident: ref_69 – volume: 58 start-page: 155 year: 1996 ident: ref_55 article-title: Discriminant Analysis by Gaussian Mixtures publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02073.x – volume: 24 start-page: 303 year: 2005 ident: ref_56 article-title: Classification and Regression Trees, Bagging, and Boosting publication-title: Handb. Stat. doi: 10.1016/S0169-7161(04)24011-1 – volume: 46 start-page: 6004 year: 2012 ident: ref_5 article-title: Vulnerability of Recently Recharged Groundwater in Principle Aquifers of the United States to Nitrate Contamination publication-title: Environ. Sci. Technol. doi: 10.1021/es300688b – ident: ref_66 – volume: 199 start-page: 188 year: 2006 ident: ref_54 article-title: Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2006.05.022 – volume: 36 start-page: 2138 year: 2002 ident: ref_17 article-title: Probability of Nitrate Contamination of Recently Recharged Groundwaters in the Conterminous United States publication-title: Environ. Sci. Technol. doi: 10.1021/es0113854 – volume: 89 start-page: 67 year: 1999 ident: ref_29 article-title: Spatial prediction of soil properties using environmental correlation publication-title: Geoderma doi: 10.1016/S0016-7061(98)00137-2 – volume: 29 start-page: 1189 year: 2001 ident: ref_63 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – ident: ref_72 – volume: 13 start-page: 253 year: 2010 ident: ref_74 article-title: Collinearity diagnostics of binary logistic regression model publication-title: J. Interdiscip. Math. doi: 10.1080/09720502.2010.10700699 – volume: 346 start-page: 112 year: 2005 ident: ref_19 article-title: Nitrate contamination in private wells in rural Alabama, United States publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2004.11.019 – volume: 333 start-page: 288 year: 2007 ident: ref_21 article-title: Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.08.014 – volume: 53 start-page: 341 year: 2003 ident: ref_75 article-title: The Nitrogen Cascade publication-title: Bioscience doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 – ident: ref_28 – volume: 476 start-page: 189 year: 2014 ident: ref_41 article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain) publication-title: Sci. Total. Environ. – ident: ref_30 – ident: ref_3 – volume: 28 start-page: 337 year: 2000 ident: ref_39 article-title: Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors) publication-title: Ann. Stat. doi: 10.1214/aos/1016218223 – ident: ref_82 doi: 10.1201/9781315370262 – volume: 9 start-page: 074002 year: 2014 ident: ref_11 article-title: Land-use change and costs to rural households: A case study in groundwater nitrate contamination publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/7/074002 – volume: 190 start-page: 633 year: 2018 ident: ref_27 article-title: Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-018-7013-8 – volume: 63 start-page: 153 year: 2008 ident: ref_13 article-title: Groundwater nitrate contamination costs: A survey of private well owners publication-title: J. Soil Water Conserv. doi: 10.2489/jswc.63.3.153 – volume: 5 start-page: 32 year: 2018 ident: ref_49 article-title: Step away from stepwise publication-title: J. Big Data doi: 10.1186/s40537-018-0143-6 – volume: 11 start-page: 126 year: 2017 ident: ref_8 article-title: Scale dependence of controls on groundwater vulnerability in the water–energy–food nexus, California Coastal Basin aquifer system publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2016.01.002 – ident: ref_14 doi: 10.1021/bk-1986-0315.ch008 – volume: 35 start-page: 1029 year: 1997 ident: ref_16 article-title: Predicting the Probability of Elevated Nitrate Concentrations in the Puget Sound Basin: Implications for Aquifer Susceptibility and Vulnerability publication-title: Ground Water doi: 10.1111/j.1745-6584.1997.tb00175.x – volume: 40 start-page: 7834 year: 2006 ident: ref_20 article-title: Vulnerability of Shallow Groundwater and Drinking-Water Wells to Nitrate in the United States publication-title: Environ. Sci. Technol. doi: 10.1021/es060911u – ident: ref_23 doi: 10.3133/sir20105100 – volume: 48 start-page: 5643 year: 2014 ident: ref_26 article-title: Modeling Nitrate at Domestic and Public-Supply Well Depths in the Central Valley, California publication-title: Environ. Sci. Technol. doi: 10.1021/es405452q – ident: ref_40 – volume: 53 start-page: 1823 year: 2010 ident: ref_81 article-title: Continuous Ammonia Emission Measurements from a Commercial Beef Feedyard in Texas publication-title: Trans. ASABE doi: 10.13031/2013.35808 – volume: 110 start-page: 259 year: 2015 ident: ref_35 article-title: SVMLEACH—NK POTATO: A simple software tool to simulate nitrate and potassium co-leaching under potato crop publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.11.025 – ident: ref_44 – volume: 57 start-page: 1489 year: 2008 ident: ref_22 article-title: Well site conditions associated with nitrate contamination in a multilayer semiconfined aquifer of Buenos Aires, Argentina publication-title: Environ. Earth Sci. – ident: ref_73 – volume: 23 start-page: 2507 year: 2007 ident: ref_50 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 76 start-page: 185 year: 2005 ident: ref_52 article-title: A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.11.001 – volume: 42 start-page: 7566 year: 2008 ident: ref_47 article-title: Impacts of Land Use Change on Nitrogen Cycling Archived in Semiarid Unsaturated Zone Nitrate Profiles, Southern High Plains, Texas publication-title: Environ. Sci. Technol. doi: 10.1021/es800792w – volume: 63 start-page: 33 year: 2009 ident: ref_4 article-title: Quality of ground water from private domestic wells publication-title: Water Well J. – ident: ref_48 doi: 10.1016/S1573-4412(05)80019-4 – volume: 643 start-page: 400 year: 2018 ident: ref_6 article-title: Global trends in nitrate leaching research in the 1960–2017 period publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2018.06.215 – ident: ref_45 doi: 10.3133/sir20065050 – volume: 11 start-page: 1493 year: 1999 ident: ref_38 article-title: Prediction games and arcing algorithms publication-title: Neural Comput. doi: 10.1162/089976699300016106 – volume: 553 start-page: 356 year: 2017 ident: ref_36 article-title: Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.08.006 – volume: 26 start-page: 7 year: 2011 ident: ref_31 article-title: Development and use of modelling techniques for real-time bathing water quality predictions publication-title: Water Environ. J. doi: 10.1111/j.1747-6593.2011.00258.x – ident: ref_70 – ident: ref_60 – ident: ref_53 doi: 10.1007/978-3-642-50096-1_48 – ident: ref_57 – ident: ref_12 doi: 10.3390/w12020428 – volume: 19 start-page: 1 year: 1991 ident: ref_33 article-title: Multivariate Adaptive Regression Splines publication-title: Ann. Stat. – volume: 96 start-page: 148 year: 1996 ident: ref_59 article-title: Experiments with a new boosting algorithm publication-title: icml – volume: 398 start-page: 76 year: 2008 ident: ref_80 article-title: Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2008.02.024 |
| SSID | ssj0000498850 |
| Score | 2.319252 |
| Snippet | The performance of four tree-based classification techniques—classification and regression trees (CART), multi-adaptive regression splines (MARS), random... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1023 |
| SubjectTerms | Advantages agriculture Algorithms alkalinity animals Aquifers area calcium carbonate classification clay fraction data collection Datasets decision support systems Drinking water Environmental aspects feedlots Groundwater Hydrogeology Machine learning monitoring Nitrates Nitrogen prediction Random variables regression analysis soil organic matter Texas Trees water Water quality |
| Title | Tree-Based Modeling Methods to Predict Nitrate Exceedances in the Ogallala Aquifer in Texas |
| URI | https://www.proquest.com/docview/2387163685 https://www.proquest.com/docview/2511193038 |
| Volume | 12 |
| WOSCitedRecordID | wos000539527500100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED5Buwf2wPipFbrKIKTtJWoTO6nzNJWpCB4oEeokpj1E58SVKqEUmhT487lL3W6T0J54dSzLyvnuvvP5vgM468s8RqUsKVKgPKVj7WEYoadRs4eSGmVWN5voj0b67i5OXHl06Z5VrmxibaiXbM_8bpuMcDefZXxj3iVHQ0CfydO_Pzx63EOKc62uocYmNJl4SzegmVxdJ7_Wdy6EhrUOe0uCIUnRfvfZD3qK2Qv-cUtvG-fa41x8et-97sC2Q55isDwqu7Bhiz34-Bcf4T78Hs-t9c7JseWCm6Rxqbq4rntMl6KaiWTOaZ1KjKY1p60YvrDz43NTimkhCEuKG87k4z2KweOCX83w-Ni-YHkAPy-G4x-Xnuu-4GUyUpXHFXAxoQdD8sMAI8O8qblF2bOT2DcWrfLNxEykjybIYhr3Q5QmMDJAAl1WHkKjmBX2Mwjd70dMZGhCEykrY8ykH-ZWxZaiR6PDFnxb_fw0c9Tk3CHjPqUQheWUruXUgtP11IclH8dbk76yBFPWUVonQ1dqQLthtqt0oH1mJoh01IL2SoKpU94y_SOwFpysP5PacS4FCztb0BwCqoR9e1If_X-JY9gKOESvH_u0oVHNF_YLfMieqmk570DzfDhKbjvupL4CiCr3IA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDonxwG-0wgCDQPASLbGd1H5AqMCmVVtLH4o0xEM4J65UaUq3JmXjn-Jv5C5NCkgTb3vgNbEsJ_5899m--w7gZU_lFrX2tJCkDrSxJsA4wcCgYQ-lDKqsLjbRG43M8bEdb8DPNheGwypbm1gb6nye8Rn5LrkWovYsl_7u9CzgqlF8u9qW0FjB4tD_OKctW_l28JHm95WU-3uTDwdBU1UgyFSiq4Azuyx5RUfjQomJYz3Q3KMK_dRGzqPXkZu6qYrQyczS8yhG5aRTEolMeEX9XoNNTWA3HdgcD4bjL-tTHeLbxsThSsJIKRvunkcy1KyP8Jfju9z81z5t__b_9jfuwK2GPYv-Cu53YcMX9-DmH5qK9-HrZOF98J6ccy640Bun24thXSe7FNVcjBd8NVWJ0azW5RV7F-zAGfulmBWC-LD4xNEIeIKif7bkyB9-PvEXWD6Az1fydQ-hU8wLvw3C9HoJizG62CXaK4uZiuLca-tpB-xM3IU37fSmWSOvzlU-TlLaZjES0jUSuvBi3fR0pSlyWaPXjJGU7Qz1k2GTLkGjYcWutG8iVldITNKFnRYjaWOAyvQ3QLrwfP2aTAffB2Hh50tqQ2Sb-HuozKN_d_EMbhxMhkfp0WB0-Bi2JB851MFLO9CpFkv_BK5n36tZuXjarAcB364adL8AWZBHaw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDiF4GL9FYYBBIHiJmthO6jxMqLBVVGMlD0XaxEM4J65UaUq3JmXjX9tft7s0KSBNvO2B18SynPjzfWf77juAN32Vx6i1o4UktadNbDwMI_QMGmYoZVBldbGJ_nhsDg_jZAMu2lwYDqtsbWJtqPN5xmfkPaIWcu1ZLr03bcIikt3hh5NTjytI8U1rW05jBZF99-uMtm_lzmiX5vqtlMO9yafPXlNhwMtUpCuPs7xiYkhLY0SJkWVt0Nyh8t00DqxDpwM7tVMVoJVZTM-DEJWVVkkkx8Ip6vcGbJJLrnUHNpPRQXK0PuEh39uY0F_JGSkV-72zQPqatRL-IsGrqaDmt-Hd__nP3IOtxqsWg9UyuA8brngAd_7QWnwI3ycL57yPRNq54AJwnIYvDur62aWo5iJZ8JVVJcazWq9X7J0zsfOaKMWsEOQni68cpYDHKAanS44I4ucTd47lI_h2LV_3GDrFvHBPQJh-P2KRRhvaSDsVY6aCMHc6drQztibswvt2qtOskV3n6h_HKW2_GBXpGhVdeL1uerLSGrmq0TvGS8r2h_rJsEmjoNGwklc6MAGrLkQm6sJ2i5e0MUxl-hssXXi1fk0mhe-JsHDzJbUhJ5z8el-Zp__u4iXcIqSlX0bj_WdwW_JJRB3TtA2darF0z-Fm9rOalYsXzdIQ8OO6MXcJVOdQLA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tree-Based+Modeling+Methods+to+Predict+Nitrate+Exceedances+in+the+Ogallala+Aquifer+in+Texas&rft.jtitle=Water+%28Basel%29&rft.au=Uddameri%2C+Venkatesh&rft.au=Silva%2C+Ana+Luiza+Bessa&rft.au=Singaraju%2C+Sreeram&rft.au=Mohammadi%2C+Ghazal&rft.date=2020-04-01&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fw12041023&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |