Tree-Based Modeling Methods to Predict Nitrate Exceedances in the Ogallala Aquifer in Texas

The performance of four tree-based classification techniques—classification and regression trees (CART), multi-adaptive regression splines (MARS), random forests (RF) and gradient boosting trees (GBT) were compared against the commonly used logistic regression (LR) analysis to assess aquifer vulnera...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water (Basel) Ročník 12; číslo 4; s. 1023
Hlavní autoři: Uddameri, Venkatesh, Silva, Ana, Singaraju, Sreeram, Mohammadi, Ghazal, Hernandez, E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.04.2020
Témata:
ISSN:2073-4441, 2073-4441
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The performance of four tree-based classification techniques—classification and regression trees (CART), multi-adaptive regression splines (MARS), random forests (RF) and gradient boosting trees (GBT) were compared against the commonly used logistic regression (LR) analysis to assess aquifer vulnerability in the Ogallala Aquifer of Texas. The results indicate that the tree-based models performed better than the logistic regression model, as they were able to locally refine nitrate exceedance probabilities. RF exhibited the best generalizable capabilities. The CART model did better in predicting non-exceedances. Nitrate exceedances were sensitive to well depths—an indicator of aquifer redox conditions, which, in turn, was controlled by alkalinity increases brought forth by the dissolution of calcium carbonate. The clay content of soils and soil organic matter, which serve as indicators of agriculture activities, were also noted to have significant influences on nitrate exceedances. Likely nitrogen releases from confined animal feedlot operations in the northeast portions of the study area also appeared to be locally important. Integrated soil, hydrogeological and geochemical datasets, in conjunction with tree-based methods, help elucidate processes controlling nitrate exceedances. Overall, tree-based models offer flexible, transparent approaches for mapping nitrate exceedances, identifying underlying mechanisms and prioritizing monitoring activities.
AbstractList The performance of four tree-based classification techniques—classification and regression trees (CART), multi-adaptive regression splines (MARS), random forests (RF) and gradient boosting trees (GBT) were compared against the commonly used logistic regression (LR) analysis to assess aquifer vulnerability in the Ogallala Aquifer of Texas. The results indicate that the tree-based models performed better than the logistic regression model, as they were able to locally refine nitrate exceedance probabilities. RF exhibited the best generalizable capabilities. The CART model did better in predicting non-exceedances. Nitrate exceedances were sensitive to well depths—an indicator of aquifer redox conditions, which, in turn, was controlled by alkalinity increases brought forth by the dissolution of calcium carbonate. The clay content of soils and soil organic matter, which serve as indicators of agriculture activities, were also noted to have significant influences on nitrate exceedances. Likely nitrogen releases from confined animal feedlot operations in the northeast portions of the study area also appeared to be locally important. Integrated soil, hydrogeological and geochemical datasets, in conjunction with tree-based methods, help elucidate processes controlling nitrate exceedances. Overall, tree-based models offer flexible, transparent approaches for mapping nitrate exceedances, identifying underlying mechanisms and prioritizing monitoring activities.
Audience Academic
Author Mohammadi, Ghazal
Singaraju, Sreeram
Hernandez, E.
Silva, Ana
Uddameri, Venkatesh
Author_xml – sequence: 1
  givenname: Venkatesh
  orcidid: 0000-0002-4998-0471
  surname: Uddameri
  fullname: Uddameri, Venkatesh
– sequence: 2
  givenname: Ana
  surname: Silva
  fullname: Silva, Ana
– sequence: 3
  givenname: Sreeram
  surname: Singaraju
  fullname: Singaraju, Sreeram
– sequence: 4
  givenname: Ghazal
  orcidid: 0000-0002-7312-718X
  surname: Mohammadi
  fullname: Mohammadi, Ghazal
– sequence: 5
  givenname: E.
  orcidid: 0000-0002-7616-703X
  surname: Hernandez
  fullname: Hernandez, E.
BookMark eNptkclKBDEQhoOM4HrwDQJe9NCarXvSx1HcYFwO48lDU52uHiM9iZNkUN_eyIiIWDlU-Pm_opYdMnLeISEHnJ1IWbPTNy6Y4kzIDbIt2FgWSik--vXfIvsxvrAcqta6ZNvkaRYQizOI2NFb3-Fg3ZzeYnr2XaTJ04eAnTWJ3tkUICG9eDeIHTiDkVpH0zPS-zkMAwxAJ8uV7TF86TN8h7hHNnsYIu5_513yeHkxO78upvdXN-eTaWFkpVKhhFK1EKLVtQYBVVuKctwhSIZ9zVsEVLzt215yaIWps85LkK1opQBZC5S75Ghd9zX45QpjahY2GsxNOfSr2IiSc15LJnW2Hv6xvvhVcLm7Rkg95pWsdJldJ2tXngwb63qfhzf5dbiwJu-8t1mfaJ63XVa6ysDpGjDBxxiwb4xNkKx3GbRDw1nzdaDm50CZOP5DvAa7gPDxj_cT4fWPeg
CitedBy_id crossref_primary_10_1016_j_ocemod_2023_102263
crossref_primary_10_1007_s41748_025_00657_4
crossref_primary_10_1007_s11783_024_1789_2
crossref_primary_10_1029_2021GH000524
crossref_primary_10_1016_j_scitotenv_2022_155070
crossref_primary_10_1016_j_jwpe_2022_102920
crossref_primary_10_1016_j_jhydrol_2025_132682
crossref_primary_10_3390_s20205763
crossref_primary_10_3390_rs17101755
crossref_primary_10_1016_j_jhydrol_2023_129934
crossref_primary_10_1007_s40808_024_02127_8
crossref_primary_10_1016_j_scitotenv_2024_171312
crossref_primary_10_3390_w12113195
crossref_primary_10_1007_s11356_021_17224_9
crossref_primary_10_3390_w12061822
crossref_primary_10_1007_s12665_025_12420_z
crossref_primary_10_1134_S0097807822030162
crossref_primary_10_1016_j_scitotenv_2024_176024
crossref_primary_10_3390_w17131855
crossref_primary_10_1007_s12665_025_12378_y
crossref_primary_10_1016_j_jclepro_2022_130900
crossref_primary_10_3390_w13243507
crossref_primary_10_3390_w14152423
crossref_primary_10_1016_j_apgeochem_2022_105273
crossref_primary_10_1007_s11356_024_35874_3
crossref_primary_10_1016_j_jenvman_2025_127076
crossref_primary_10_1016_j_jhazmat_2025_138939
Cites_doi 10.1023/A:1010933404324
10.1086/627521
10.1016/j.ecolmodel.2007.05.011
10.1021/acs.est.7b04269
10.1016/S0031-3203(99)00223-X
10.1016/j.patrec.2005.10.010
10.1016/j.atmosenv.2011.02.017
10.1021/es9812148
10.1111/j.1365-2656.2008.01390.x
10.1016/S0167-9473(01)00065-2
10.1016/j.ecoleng.2014.03.094
10.3390/w10020101
10.1214/aos/1024691079
10.1002/sim.1501
10.1016/j.biombioe.2011.10.030
10.1111/j.1745-6584.2005.0031.x
10.1016/j.jconhyd.2013.07.004
10.1007/s12665-012-2082-4
10.1016/j.jhydrol.2015.10.025
10.1016/j.jhydrol.2012.06.028
10.1021/es100546y
10.1016/j.scitotenv.2018.07.054
10.1111/j.2517-6161.1996.tb02073.x
10.1016/S0169-7161(04)24011-1
10.1021/es300688b
10.1016/j.ecolmodel.2006.05.022
10.1021/es0113854
10.1016/S0016-7061(98)00137-2
10.1214/aos/1013203451
10.1080/09720502.2010.10700699
10.1016/j.scitotenv.2004.11.019
10.1016/j.jhydrol.2006.08.014
10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
10.1214/aos/1016218223
10.1201/9781315370262
10.1088/1748-9326/9/7/074002
10.1007/s10661-018-7013-8
10.2489/jswc.63.3.153
10.1186/s40537-018-0143-6
10.1016/j.ejrh.2016.01.002
10.1021/bk-1986-0315.ch008
10.1111/j.1745-6584.1997.tb00175.x
10.1021/es060911u
10.3133/sir20105100
10.1021/es405452q
10.13031/2013.35808
10.1016/j.compag.2014.11.025
10.1093/bioinformatics/btm344
10.1016/j.chemolab.2004.11.001
10.1021/es800792w
10.1016/S1573-4412(05)80019-4
10.1016/j.scitotenv.2018.06.215
10.3133/sir20065050
10.1162/089976699300016106
10.1016/j.jhydrol.2017.08.006
10.1111/j.1747-6593.2011.00258.x
10.1007/978-3-642-50096-1_48
10.3390/w12020428
10.1016/j.scitotenv.2008.02.024
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
DOI 10.3390/w12041023
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 2073-4441
ExternalDocumentID A810415686
10_3390_w12041023
GeographicLocations United States
United States--US
Texas
GeographicLocations_xml – name: United States
– name: Texas
– name: United States--US
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BANNL
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c364t-42449222b898a2a6b5257dea30ef91beae41bfbf31ab2c9a3015a3b2b32a392e3
IEDL.DBID PIMPY
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000539527500100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4441
IngestDate Mon Sep 08 16:22:52 EDT 2025
Mon Jun 30 07:44:29 EDT 2025
Sat Nov 29 10:33:09 EST 2025
Sat Nov 29 07:13:29 EST 2025
Tue Nov 18 21:55:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-42449222b898a2a6b5257dea30ef91beae41bfbf31ab2c9a3015a3b2b32a392e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7616-703X
0000-0002-4998-0471
0000-0002-7312-718X
OpenAccessLink https://www.proquest.com/publiccontent/docview/2387163685?pq-origsite=%requestingapplication%
PQID 2387163685
PQPubID 2032318
ParticipantIDs proquest_miscellaneous_2511193038
proquest_journals_2387163685
gale_infotracacademiconefile_A810415686
crossref_citationtrail_10_3390_w12041023
crossref_primary_10_3390_w12041023
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Burow (ref_32) 2010; 44
Friedman (ref_79) 2003; 22
ref_14
Hastie (ref_55) 1996; 58
ref_57
ref_12
Nieto (ref_34) 2014; 68
Uddameri (ref_15) 2006; 51
Breiman (ref_37) 2001; 45
ref_53
DeSimone (ref_4) 2009; 63
Friedman (ref_33) 1991; 19
Friedman (ref_65) 2002; 38
Reeves (ref_77) 1970; 78
Saeys (ref_50) 2007; 23
Tesoriero (ref_16) 1997; 35
Mendes (ref_41) 2014; 476
Hosseini (ref_43) 2018; 644
Galloway (ref_75) 2003; 53
Costanza (ref_80) 2008; 398
Nolan (ref_20) 2006; 40
ref_61
ref_60
Midi (ref_74) 2010; 13
Gurdak (ref_8) 2017; 11
Qian (ref_51) 1999; 33
McKenzie (ref_29) 1999; 89
ref_69
ref_23
Venkataraman (ref_24) 2012; 458
ref_66
Mair (ref_25) 2013; 153
Hancock (ref_52) 2005; 76
Naganna (ref_36) 2017; 553
Smith (ref_49) 2018; 5
ref_28
Rizeei (ref_27) 2018; 190
Breiman (ref_38) 1999; 11
Schapire (ref_62) 2003; Volume 171
Padilla (ref_6) 2018; 643
ref_72
ref_71
ref_70
Rhoades (ref_81) 2010; 53
Kuncheva (ref_83) 2001; 34
Lewandowski (ref_13) 2008; 63
Antonakos (ref_21) 2007; 333
ref_30
ref_73
Pennino (ref_2) 2017; 51
Gardner (ref_18) 2005; 43
King (ref_10) 2012; 5
Friedman (ref_63) 2001; 29
Peters (ref_78) 2007; 207
Fortin (ref_35) 2015; 110
Wu (ref_7) 2012; 36
Nolan (ref_17) 2002; 36
Flores (ref_22) 2008; 57
ref_82
Freund (ref_59) 1996; 96
Burow (ref_68) 2012; 69
Scanlon (ref_47) 2008; 42
Nolan (ref_42) 2015; 531
Stidson (ref_31) 2011; 26
ref_45
Keeler (ref_11) 2014; 9
ref_44
ref_40
ref_1
Breiman (ref_58) 1998; 26
Elith (ref_64) 2008; 77
ref_3
Fawcett (ref_67) 2006; 27
Dayan (ref_76) 2011; 45
Gurdak (ref_5) 2012; 46
ref_48
ref_9
Liu (ref_19) 2005; 346
Friedman (ref_39) 2000; 28
Sutton (ref_56) 2005; 24
Enwright (ref_46) 2009; 58
Nolan (ref_26) 2014; 48
Leathwick (ref_54) 2006; 199
References_xml – volume: 45
  start-page: 5
  year: 2001
  ident: ref_37
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 78
  start-page: 352
  year: 1970
  ident: ref_77
  article-title: Origin, Classification, and Geologic History of Caliche on the Southern High Plains, Texas and Eastern New Mexico
  publication-title: J. Geol.
  doi: 10.1086/627521
– volume: 207
  start-page: 304
  year: 2007
  ident: ref_78
  article-title: Random forests as a tool for ecohydrological distribution modelling
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2007.05.011
– volume: 51
  start-page: 13450
  year: 2017
  ident: ref_2
  article-title: Trends in Drinking Water Nitrate Violations Across the United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04269
– volume: Volume 171
  start-page: 149
  year: 2003
  ident: ref_62
  article-title: The Boosting Approach to Machine Learning: An Overview
  publication-title: Athens Conference on Applied Probability and Time Series Analysis
– volume: 58
  start-page: 1541
  year: 2009
  ident: ref_46
  article-title: Spatial distribution of nitrate and related factors in the High Plains Aquifer, Texas
  publication-title: Environ. Earth Sci.
– volume: 51
  start-page: 931
  year: 2006
  ident: ref_15
  article-title: Combining rough sets and GIS techniques to assess aquifer vulnerability characteristics in the semi-arid South Texas
  publication-title: Environ. Earth Sci.
– volume: 34
  start-page: 299
  year: 2001
  ident: ref_83
  article-title: Decision templates for multiple classifier fusion: An experimental comparison
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00223-X
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_67
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 45
  start-page: 3325
  year: 2011
  ident: ref_76
  article-title: The impact of local sources and meteorological factors on nitrogen oxide and particulate matter concentrations: A case study of the Day of Atonement in Israel
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.02.017
– volume: 33
  start-page: 3332
  year: 1999
  ident: ref_51
  article-title: Exploring Factors Controlling the Variability of Pesticide Concentrations in the Willamette River Basin Using Tree-Based Models
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9812148
– ident: ref_61
– volume: 77
  start-page: 802
  year: 2008
  ident: ref_64
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– ident: ref_1
– volume: 38
  start-page: 367
  year: 2002
  ident: ref_65
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– ident: ref_71
– volume: 68
  start-page: 80
  year: 2014
  ident: ref_34
  article-title: Álvarez Modeling eutrophication and risk prevention in a reservoir in the Northwest of Spain by using multivariate adaptive regression splines analysis
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.03.094
– ident: ref_9
  doi: 10.3390/w10020101
– volume: 26
  start-page: 801
  year: 1998
  ident: ref_58
  article-title: Arcing classifier (with discussion and a rejoinder by the author)
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1024691079
– volume: 22
  start-page: 1365
  year: 2003
  ident: ref_79
  article-title: Multiple additive regression trees with application in epidemiology
  publication-title: Stat. Med.
  doi: 10.1002/sim.1501
– volume: 36
  start-page: 182
  year: 2012
  ident: ref_7
  article-title: Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.10.030
– volume: 43
  start-page: 343
  year: 2005
  ident: ref_18
  article-title: Predicting ground water nitrate concentration from land use
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2005.0031.x
– volume: 5
  start-page: 1
  year: 2012
  ident: ref_10
  article-title: Groundwater remediation and management for nitrate
  publication-title: Tech. Rep.
– volume: 153
  start-page: 1
  year: 2013
  ident: ref_25
  article-title: Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2013.07.004
– volume: 69
  start-page: 2609
  year: 2012
  ident: ref_68
  article-title: Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s–2000s
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-012-2082-4
– volume: 531
  start-page: 902
  year: 2015
  ident: ref_42
  article-title: A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.025
– volume: 458
  start-page: 16
  year: 2012
  ident: ref_24
  article-title: Modeling simultaneous exceedance of drinking-water standards of arsenic and nitrate in the Southern Ogallala aquifer using multinomial logistic regression
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.06.028
– volume: 44
  start-page: 4988
  year: 2010
  ident: ref_32
  article-title: Nitrate in Groundwater of the United States, 1991−2003
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100546y
– volume: 644
  start-page: 954
  year: 2018
  ident: ref_43
  article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2018.07.054
– ident: ref_69
– volume: 58
  start-page: 155
  year: 1996
  ident: ref_55
  article-title: Discriminant Analysis by Gaussian Mixtures
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02073.x
– volume: 24
  start-page: 303
  year: 2005
  ident: ref_56
  article-title: Classification and Regression Trees, Bagging, and Boosting
  publication-title: Handb. Stat.
  doi: 10.1016/S0169-7161(04)24011-1
– volume: 46
  start-page: 6004
  year: 2012
  ident: ref_5
  article-title: Vulnerability of Recently Recharged Groundwater in Principle Aquifers of the United States to Nitrate Contamination
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300688b
– ident: ref_66
– volume: 199
  start-page: 188
  year: 2006
  ident: ref_54
  article-title: Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2006.05.022
– volume: 36
  start-page: 2138
  year: 2002
  ident: ref_17
  article-title: Probability of Nitrate Contamination of Recently Recharged Groundwaters in the Conterminous United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0113854
– volume: 89
  start-page: 67
  year: 1999
  ident: ref_29
  article-title: Spatial prediction of soil properties using environmental correlation
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(98)00137-2
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_63
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– ident: ref_72
– volume: 13
  start-page: 253
  year: 2010
  ident: ref_74
  article-title: Collinearity diagnostics of binary logistic regression model
  publication-title: J. Interdiscip. Math.
  doi: 10.1080/09720502.2010.10700699
– volume: 346
  start-page: 112
  year: 2005
  ident: ref_19
  article-title: Nitrate contamination in private wells in rural Alabama, United States
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2004.11.019
– volume: 333
  start-page: 288
  year: 2007
  ident: ref_21
  article-title: Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.08.014
– volume: 53
  start-page: 341
  year: 2003
  ident: ref_75
  article-title: The Nitrogen Cascade
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
– ident: ref_28
– volume: 476
  start-page: 189
  year: 2014
  ident: ref_41
  article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain)
  publication-title: Sci. Total. Environ.
– ident: ref_30
– ident: ref_3
– volume: 28
  start-page: 337
  year: 2000
  ident: ref_39
  article-title: Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– ident: ref_82
  doi: 10.1201/9781315370262
– volume: 9
  start-page: 074002
  year: 2014
  ident: ref_11
  article-title: Land-use change and costs to rural households: A case study in groundwater nitrate contamination
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/7/074002
– volume: 190
  start-page: 633
  year: 2018
  ident: ref_27
  article-title: Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-018-7013-8
– volume: 63
  start-page: 153
  year: 2008
  ident: ref_13
  article-title: Groundwater nitrate contamination costs: A survey of private well owners
  publication-title: J. Soil Water Conserv.
  doi: 10.2489/jswc.63.3.153
– volume: 5
  start-page: 32
  year: 2018
  ident: ref_49
  article-title: Step away from stepwise
  publication-title: J. Big Data
  doi: 10.1186/s40537-018-0143-6
– volume: 11
  start-page: 126
  year: 2017
  ident: ref_8
  article-title: Scale dependence of controls on groundwater vulnerability in the water–energy–food nexus, California Coastal Basin aquifer system
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2016.01.002
– ident: ref_14
  doi: 10.1021/bk-1986-0315.ch008
– volume: 35
  start-page: 1029
  year: 1997
  ident: ref_16
  article-title: Predicting the Probability of Elevated Nitrate Concentrations in the Puget Sound Basin: Implications for Aquifer Susceptibility and Vulnerability
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1997.tb00175.x
– volume: 40
  start-page: 7834
  year: 2006
  ident: ref_20
  article-title: Vulnerability of Shallow Groundwater and Drinking-Water Wells to Nitrate in the United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060911u
– ident: ref_23
  doi: 10.3133/sir20105100
– volume: 48
  start-page: 5643
  year: 2014
  ident: ref_26
  article-title: Modeling Nitrate at Domestic and Public-Supply Well Depths in the Central Valley, California
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405452q
– ident: ref_40
– volume: 53
  start-page: 1823
  year: 2010
  ident: ref_81
  article-title: Continuous Ammonia Emission Measurements from a Commercial Beef Feedyard in Texas
  publication-title: Trans. ASABE
  doi: 10.13031/2013.35808
– volume: 110
  start-page: 259
  year: 2015
  ident: ref_35
  article-title: SVMLEACH—NK POTATO: A simple software tool to simulate nitrate and potassium co-leaching under potato crop
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.11.025
– ident: ref_44
– volume: 57
  start-page: 1489
  year: 2008
  ident: ref_22
  article-title: Well site conditions associated with nitrate contamination in a multilayer semiconfined aquifer of Buenos Aires, Argentina
  publication-title: Environ. Earth Sci.
– ident: ref_73
– volume: 23
  start-page: 2507
  year: 2007
  ident: ref_50
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 76
  start-page: 185
  year: 2005
  ident: ref_52
  article-title: A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.11.001
– volume: 42
  start-page: 7566
  year: 2008
  ident: ref_47
  article-title: Impacts of Land Use Change on Nitrogen Cycling Archived in Semiarid Unsaturated Zone Nitrate Profiles, Southern High Plains, Texas
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800792w
– volume: 63
  start-page: 33
  year: 2009
  ident: ref_4
  article-title: Quality of ground water from private domestic wells
  publication-title: Water Well J.
– ident: ref_48
  doi: 10.1016/S1573-4412(05)80019-4
– volume: 643
  start-page: 400
  year: 2018
  ident: ref_6
  article-title: Global trends in nitrate leaching research in the 1960–2017 period
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2018.06.215
– ident: ref_45
  doi: 10.3133/sir20065050
– volume: 11
  start-page: 1493
  year: 1999
  ident: ref_38
  article-title: Prediction games and arcing algorithms
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016106
– volume: 553
  start-page: 356
  year: 2017
  ident: ref_36
  article-title: Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.08.006
– volume: 26
  start-page: 7
  year: 2011
  ident: ref_31
  article-title: Development and use of modelling techniques for real-time bathing water quality predictions
  publication-title: Water Environ. J.
  doi: 10.1111/j.1747-6593.2011.00258.x
– ident: ref_70
– ident: ref_60
– ident: ref_53
  doi: 10.1007/978-3-642-50096-1_48
– ident: ref_57
– ident: ref_12
  doi: 10.3390/w12020428
– volume: 19
  start-page: 1
  year: 1991
  ident: ref_33
  article-title: Multivariate Adaptive Regression Splines
  publication-title: Ann. Stat.
– volume: 96
  start-page: 148
  year: 1996
  ident: ref_59
  article-title: Experiments with a new boosting algorithm
  publication-title: icml
– volume: 398
  start-page: 76
  year: 2008
  ident: ref_80
  article-title: Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2008.02.024
SSID ssj0000498850
Score 2.319252
Snippet The performance of four tree-based classification techniques—classification and regression trees (CART), multi-adaptive regression splines (MARS), random...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1023
SubjectTerms Advantages
agriculture
Algorithms
alkalinity
animals
Aquifers
area
calcium carbonate
classification
clay fraction
data collection
Datasets
decision support systems
Drinking water
Environmental aspects
feedlots
Groundwater
Hydrogeology
Machine learning
monitoring
Nitrates
Nitrogen
prediction
Random variables
regression analysis
soil organic matter
Texas
Trees
water
Water quality
Title Tree-Based Modeling Methods to Predict Nitrate Exceedances in the Ogallala Aquifer in Texas
URI https://www.proquest.com/docview/2387163685
https://www.proquest.com/docview/2511193038
Volume 12
WOSCitedRecordID wos000539527500100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED5Buwf2wPipFbrKIKTtJWoTO6nzNJWpCB4oEeokpj1E58SVKqEUmhT487lL3W6T0J54dSzLyvnuvvP5vgM468s8RqUsKVKgPKVj7WEYoadRs4eSGmVWN5voj0b67i5OXHl06Z5VrmxibaiXbM_8bpuMcDefZXxj3iVHQ0CfydO_Pzx63EOKc62uocYmNJl4SzegmVxdJ7_Wdy6EhrUOe0uCIUnRfvfZD3qK2Qv-cUtvG-fa41x8et-97sC2Q55isDwqu7Bhiz34-Bcf4T78Hs-t9c7JseWCm6Rxqbq4rntMl6KaiWTOaZ1KjKY1p60YvrDz43NTimkhCEuKG87k4z2KweOCX83w-Ni-YHkAPy-G4x-Xnuu-4GUyUpXHFXAxoQdD8sMAI8O8qblF2bOT2DcWrfLNxEykjybIYhr3Q5QmMDJAAl1WHkKjmBX2Mwjd70dMZGhCEykrY8ykH-ZWxZaiR6PDFnxb_fw0c9Tk3CHjPqUQheWUruXUgtP11IclH8dbk76yBFPWUVonQ1dqQLthtqt0oH1mJoh01IL2SoKpU94y_SOwFpysP5PacS4FCztb0BwCqoR9e1If_X-JY9gKOESvH_u0oVHNF_YLfMieqmk570DzfDhKbjvupL4CiCr3IA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDonxwG-0wgCDQPASLbGd1H5AqMCmVVtLH4o0xEM4J65UaUq3JmXjn-Jv5C5NCkgTb3vgNbEsJ_5899m--w7gZU_lFrX2tJCkDrSxJsA4wcCgYQ-lDKqsLjbRG43M8bEdb8DPNheGwypbm1gb6nye8Rn5LrkWovYsl_7u9CzgqlF8u9qW0FjB4tD_OKctW_l28JHm95WU-3uTDwdBU1UgyFSiq4Azuyx5RUfjQomJYz3Q3KMK_dRGzqPXkZu6qYrQyczS8yhG5aRTEolMeEX9XoNNTWA3HdgcD4bjL-tTHeLbxsThSsJIKRvunkcy1KyP8Jfju9z81z5t__b_9jfuwK2GPYv-Cu53YcMX9-DmH5qK9-HrZOF98J6ccy640Bun24thXSe7FNVcjBd8NVWJ0azW5RV7F-zAGfulmBWC-LD4xNEIeIKif7bkyB9-PvEXWD6Az1fydQ-hU8wLvw3C9HoJizG62CXaK4uZiuLca-tpB-xM3IU37fSmWSOvzlU-TlLaZjES0jUSuvBi3fR0pSlyWaPXjJGU7Qz1k2GTLkGjYcWutG8iVldITNKFnRYjaWOAyvQ3QLrwfP2aTAffB2Hh50tqQ2Sb-HuozKN_d_EMbhxMhkfp0WB0-Bi2JB851MFLO9CpFkv_BK5n36tZuXjarAcB364adL8AWZBHaw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDiF4GL9FYYBBIHiJmthO6jxMqLBVVGMlD0XaxEM4J65UaUq3JmXjX9tft7s0KSBNvO2B18SynPjzfWf77juAN32Vx6i1o4UktadNbDwMI_QMGmYoZVBldbGJ_nhsDg_jZAMu2lwYDqtsbWJtqPN5xmfkPaIWcu1ZLr03bcIikt3hh5NTjytI8U1rW05jBZF99-uMtm_lzmiX5vqtlMO9yafPXlNhwMtUpCuPs7xiYkhLY0SJkWVt0Nyh8t00DqxDpwM7tVMVoJVZTM-DEJWVVkkkx8Ip6vcGbJJLrnUHNpPRQXK0PuEh39uY0F_JGSkV-72zQPqatRL-IsGrqaDmt-Hd__nP3IOtxqsWg9UyuA8brngAd_7QWnwI3ycL57yPRNq54AJwnIYvDur62aWo5iJZ8JVVJcazWq9X7J0zsfOaKMWsEOQni68cpYDHKAanS44I4ucTd47lI_h2LV_3GDrFvHBPQJh-P2KRRhvaSDsVY6aCMHc6drQztibswvt2qtOskV3n6h_HKW2_GBXpGhVdeL1uerLSGrmq0TvGS8r2h_rJsEmjoNGwklc6MAGrLkQm6sJ2i5e0MUxl-hssXXi1fk0mhe-JsHDzJbUhJ5z8el-Zp__u4iXcIqSlX0bj_WdwW_JJRB3TtA2darF0z-Fm9rOalYsXzdIQ8OO6MXcJVOdQLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tree-Based+Modeling+Methods+to+Predict+Nitrate+Exceedances+in+the+Ogallala+Aquifer+in+Texas&rft.jtitle=Water+%28Basel%29&rft.au=Uddameri%2C+Venkatesh&rft.au=Silva%2C+Ana+Luiza+Bessa&rft.au=Singaraju%2C+Sreeram&rft.au=Mohammadi%2C+Ghazal&rft.date=2020-04-01&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fw12041023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon