Optimization of the Geometric Characteristics of Damping Layers for Acoustic Black Hole Beams Based on the Backpropagation Algorithm

In real-world scenarios, it is common to apply a damping layer of a specific thickness to the surface of an acoustic black hole (ABH) beam to boost its energy dissipation capacity. However, it has become apparent that excessive damping layers might result in negative consequences. The present study...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 15; číslo 3; s. 1227
Hlavní autori: Ouyang, Lijun, Zhang, Jiahao, Zhen, Bin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.02.2025
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In real-world scenarios, it is common to apply a damping layer of a specific thickness to the surface of an acoustic black hole (ABH) beam to boost its energy dissipation capacity. However, it has become apparent that excessive damping layers might result in negative consequences. The present study suggests employing the backpropagation (BP) algorithm to refine the positioning, thickness, and contour of the damping layer for optimal results. This study begins with the derivation of a semi-analytical solution for the vibration characteristics of an ABH beam under a harmonic load using the Gaussian expansion method (GEM). This process results in the preliminary identification of a thickness profile for the damping layer that exhibits significant potential for energy dissipation. Subsequently, a BP neural network is trained on the data produced by the semi-analytical solution to further optimize this thickness variation function. The findings reveal that the geometry of the damping layer has a more complex influence on performance than previously recognized. The optimization guided by the BP neural network suggests that achieving a strong ABH effect does not require uniform application of the damping layer across the entire ABH section. Rather, the most effective approach is to concentrate the damping layer thickness at the ABH tip, with a rapid decrease in thickness as one moves away from this point. It is also determined that applying a damping layer in areas far from the tip is unnecessary. Additionally, an innovative strategy is proposed to enhance the system’s energy dissipation capabilities without changing the truncation thickness of the ABH beam. This research contributes to a deeper understanding of how the damping layer affects the energy dissipation performance of ABH beams.
AbstractList In real-world scenarios, it is common to apply a damping layer of a specific thickness to the surface of an acoustic black hole (ABH) beam to boost its energy dissipation capacity. However, it has become apparent that excessive damping layers might result in negative consequences. The present study suggests employing the backpropagation (BP) algorithm to refine the positioning, thickness, and contour of the damping layer for optimal results. This study begins with the derivation of a semi-analytical solution for the vibration characteristics of an ABH beam under a harmonic load using the Gaussian expansion method (GEM). This process results in the preliminary identification of a thickness profile for the damping layer that exhibits significant potential for energy dissipation. Subsequently, a BP neural network is trained on the data produced by the semi-analytical solution to further optimize this thickness variation function. The findings reveal that the geometry of the damping layer has a more complex influence on performance than previously recognized. The optimization guided by the BP neural network suggests that achieving a strong ABH effect does not require uniform application of the damping layer across the entire ABH section. Rather, the most effective approach is to concentrate the damping layer thickness at the ABH tip, with a rapid decrease in thickness as one moves away from this point. It is also determined that applying a damping layer in areas far from the tip is unnecessary. Additionally, an innovative strategy is proposed to enhance the system’s energy dissipation capabilities without changing the truncation thickness of the ABH beam. This research contributes to a deeper understanding of how the damping layer affects the energy dissipation performance of ABH beams.
Author Ouyang, Lijun
Zhang, Jiahao
Zhen, Bin
Author_xml – sequence: 1
  givenname: Lijun
  surname: Ouyang
  fullname: Ouyang, Lijun
– sequence: 2
  givenname: Jiahao
  surname: Zhang
  fullname: Zhang, Jiahao
– sequence: 3
  givenname: Bin
  surname: Zhen
  fullname: Zhen, Bin
BookMark eNptkU1vEzEQhi1UJErpiT9giSMK9Vfs9TEJ0FaK1AucrVnvbOKwu15s51DO_HCcpkgVYi4eed55Zl7NW3IxxQkJec_ZJyktu4F55ksmuRDmFbkUzOiFVNxcvMjfkOucD6yG5bLh7JL8fphLGMMvKCFONPa07JHeYhyxpODpZg8JfMEUcgk-nwSfYZzDtKNbeMSUaR8TXfl4PNXpegD_g97FAekaYcx0DRk7Wskn7LoW5xRn2J2nrYZdTKHsx3fkdQ9Dxuvn94p8__rl2-ZusX24vd-stgsvtSoL6S1XCGJpwLYSOVhspBRCq06LRmPvPdeKsZ4Bg8YKaUWnrWe8FW0nhZVX5P7M7SIc3JzCCOnRRQju6SOmnYNUfQzoRLM0ShrDmlaqvvdNp7hViFZwwVXLK-vDmVUd_TxiLu4Qj2mq6zvJ9dIYrRpWVfys8inmnLB3PpQn9yVBGBxn7nQ79-J2tefjPz1_N_2f-g-WtJtx
CitedBy_id crossref_primary_10_1016_j_isci_2025_113308
Cites_doi 10.1016/j.jsv.2003.05.010
10.1121/1.4904501
10.1016/j.jsv.2024.118384
10.1016/j.apacoust.2015.10.018
10.1016/0925-2312(93)90006-O
10.1007/978-1-4471-0985-3
10.1115/1.4034080
10.1016/j.ymssp.2017.10.036
10.1016/j.ijmecsci.2022.108025
10.1063/1.4983459
10.1016/j.econmod.2020.06.008
10.1016/j.apacoust.2022.109001
10.1016/j.ymssp.2023.110182
10.1016/j.jsv.2021.116024
10.1016/j.jsv.2020.115316
10.1016/j.jsv.2010.12.001
10.1016/j.tws.2022.110459
10.1016/j.jsv.2018.04.042
10.35848/1882-0786/acc567
10.1016/j.jsv.2010.11.017
10.3390/mi14030538
10.1016/j.conbuildmat.2021.122802
10.1016/j.rinp.2019.102192
10.1088/0964-1726/23/6/065021
10.1016/j.jsv.2023.118235
10.1121/1.5081680
10.1016/j.ymssp.2019.05.024
10.1016/j.apacoust.2011.12.010
10.1016/j.compstruct.2023.117224
10.1016/j.jsv.2016.03.031
10.1006/jsvi.1996.0471
10.1016/j.ymssp.2018.08.053
10.1016/j.engstruct.2024.117647
10.1016/j.apacoust.2019.04.029
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15031227
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_2857437708b34ffc8d4194ee921214b1
10_3390_app15031227
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-3c914ea257a9b3e1a9e8332264d6286efcc16400f0a0a892392d69c01b2bd3293
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001418454400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 10 04:33:36 EST 2025
Mon Jun 30 12:40:48 EDT 2025
Tue Nov 18 22:20:28 EST 2025
Sat Nov 29 07:11:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-3c914ea257a9b3e1a9e8332264d6286efcc16400f0a0a892392d69c01b2bd3293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3165776480?pq-origsite=%requestingapplication%
PQID 3165776480
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_2857437708b34ffc8d4194ee921214b1
proquest_journals_3165776480
crossref_citationtrail_10_3390_app15031227
crossref_primary_10_3390_app15031227
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Deng (ref_21) 2024; 574
Bowyer (ref_34) 2012; 73
Deng (ref_22) 2023; 191
Ma (ref_25) 2018; 429
Deng (ref_17) 2019; 131
ref_35
Tang (ref_29) 2016; 374
Krylov (ref_36) 2004; 90
Gao (ref_12) 2019; 154
Georgiev (ref_33) 2011; 330
Mironov (ref_1) 1988; 34
Ma (ref_28) 2019; 145
Amari (ref_41) 1993; 5
Zenkour (ref_6) 2019; 13
Ma (ref_14) 2018; 255
Krylov (ref_27) 2016; 104
ref_18
Zhu (ref_16) 2023; 242
ref_39
Krylov (ref_3) 2004; 274
Tang (ref_11) 2017; 121
Xiong (ref_7) 2023; 16
ref_37
Xiao (ref_5) 2024; 304
Ji (ref_32) 2018; 104
Huang (ref_31) 2016; 138
Zhao (ref_10) 2014; 23
Pelat (ref_4) 2020; 476
Krylov (ref_13) 2011; 330
Ji (ref_19) 2021; 500
Chen (ref_24) 2024; 580
Conlon (ref_26) 2015; 137
Zhao (ref_15) 2021; 283
ref_43
ref_42
Gao (ref_9) 2023; 321
ref_40
Deng (ref_30) 2019; 118
Deng (ref_23) 2023; 184
Jahn (ref_38) 2020; 91
Li (ref_20) 2022; 198
ref_8
Vemula (ref_2) 1996; 196
References_xml – volume: 274
  start-page: 605
  year: 2004
  ident: ref_3
  article-title: Acoustic black holes’ for flexural waves as effective vibration dampers
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2003.05.010
– volume: 137
  start-page: 447
  year: 2015
  ident: ref_26
  article-title: Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4904501
– volume: 580
  start-page: 118384
  year: 2024
  ident: ref_24
  article-title: Tunable shunting periodic acoustic black holes for low-frequency and broadband vibration suppression
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2024.118384
– volume: 104
  start-page: 24
  year: 2016
  ident: ref_27
  article-title: Vibration of a rectangular plate with a central power-law profiled groove by the Rayleigh-Ritz method
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2015.10.018
– volume: 5
  start-page: 185
  year: 1993
  ident: ref_41
  article-title: Backpropagation and stochastic gradient descent method
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(93)90006-O
– ident: ref_42
  doi: 10.1007/978-1-4471-0985-3
– volume: 138
  start-page: 061004
  year: 2016
  ident: ref_31
  article-title: Wave energy focalization in a plate with imperfect two-dimensional acoustic black hole indentation
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4034080
– volume: 104
  start-page: 19
  year: 2018
  ident: ref_32
  article-title: Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.10.036
– volume: 242
  start-page: 10802
  year: 2023
  ident: ref_16
  article-title: Vibration attenuation of rotating disks via acoustic black holes
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.108025
– volume: 121
  start-page: 605
  year: 2017
  ident: ref_11
  article-title: Broadband locally resonant band gaps in periodic beam structures with embedded acoustic black holes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4983459
– volume: 91
  start-page: 148
  year: 2020
  ident: ref_38
  article-title: Artificial neural network regression models in a panel setting: Predicting economic growth
  publication-title: Econ. Model.
  doi: 10.1016/j.econmod.2020.06.008
– volume: 198
  start-page: 109001
  year: 2022
  ident: ref_20
  article-title: Vibration mitigation via integrated acoustic black holes
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2022.109001
– volume: 191
  start-page: 110182
  year: 2023
  ident: ref_22
  article-title: Evanescent waves in a metabeam attached with lossy acoustic black hole pillars
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110182
– volume: 500
  start-page: 116024
  year: 2021
  ident: ref_19
  article-title: A vibration absorber based on two-dimensional acoustic black holes
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2021.116024
– ident: ref_39
– ident: ref_40
– ident: ref_37
– volume: 476
  start-page: 115316
  year: 2020
  ident: ref_4
  article-title: The acoustic black hole: A review of theory and applications
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115316
– volume: 330
  start-page: 2497
  year: 2011
  ident: ref_33
  article-title: Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2010.12.001
– ident: ref_18
– volume: 184
  start-page: 110459
  year: 2023
  ident: ref_23
  article-title: Ultrawide attenuation bands in gradient metabeams with acoustic black hole pillars
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2022.110459
– ident: ref_35
– volume: 429
  start-page: 130
  year: 2018
  ident: ref_25
  article-title: A 2D Daubechies wavelet model on the vibration of rectangular plates containing strip indentations with a parabolic thickness profile
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.04.042
– volume: 16
  start-page: 045502
  year: 2023
  ident: ref_7
  article-title: Enhanced acoustic black hole energy harvesters with multipiezoelectric array designs
  publication-title: Appl. Phys. Express
  doi: 10.35848/1882-0786/acc567
– volume: 330
  start-page: 2220
  year: 2011
  ident: ref_13
  article-title: Damping of flexural vibrations in circular plates with tapered central holes
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2010.11.017
– ident: ref_8
  doi: 10.3390/mi14030538
– volume: 34
  start-page: 318
  year: 1988
  ident: ref_1
  article-title: Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval
  publication-title: Sov. Phys. Acoust.
– volume: 283
  start-page: 122802
  year: 2021
  ident: ref_15
  article-title: Computational analysis of phononic crystal vibration isolators via FEM coupled with the acoustic black hole effect to attenuate railway-induced vibration
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122802
– volume: 13
  start-page: 102192
  year: 2019
  ident: ref_6
  article-title: Thermo-electrical buckling response of actuated functionally graded piezoelectric nanoscale plates
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2019.102192
– volume: 23
  start-page: 065021
  year: 2014
  ident: ref_10
  article-title: Broadband energy harvesting using acoustic black hole structural tailoring
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/6/065021
– volume: 574
  start-page: 118235
  year: 2024
  ident: ref_21
  article-title: Vibration damping by periodic additive acoustic black holes
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2023.118235
– volume: 145
  start-page: 164
  year: 2019
  ident: ref_28
  article-title: Sound radiation and transonic boundaries of a plate with an acoustic black hole
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5081680
– volume: 131
  start-page: 317
  year: 2019
  ident: ref_17
  article-title: Gaussian expansion for the vibration analysis of plates with multiple acoustic black holes indentations
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.024
– volume: 73
  start-page: 514
  year: 2012
  ident: ref_34
  article-title: Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2011.12.010
– volume: 321
  start-page: 117224
  year: 2023
  ident: ref_9
  article-title: Flexural wave manipulation in perforated metamaterial plates with acoustic blackholes interconnected by piezoelectric studs
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2023.117224
– volume: 255
  start-page: 1014
  year: 2018
  ident: ref_14
  article-title: Vibration of a plate with power-law-profiled thickness variation by wavelet decomposed Rayleigh-Ritz method
  publication-title: Int. Congr. Expo. Noise Control Eng.
– volume: 374
  start-page: 172
  year: 2016
  ident: ref_29
  article-title: Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.03.031
– volume: 196
  start-page: 107
  year: 1996
  ident: ref_2
  article-title: Attenuation of waves in plates and bars using a graded impedance interface at edges
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1996.0471
– volume: 90
  start-page: 830
  year: 2004
  ident: ref_36
  article-title: New type of vibration dampers utilizing the effect of acoustic black holes
  publication-title: Acta Acust. United Acust.
– ident: ref_43
– volume: 118
  start-page: 461
  year: 2019
  ident: ref_30
  article-title: Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.08.053
– volume: 304
  start-page: 117647
  year: 2024
  ident: ref_5
  article-title: An acoustic black hole absorber for rail vibration suppression: Simulation and full-scale experiment
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2024.117647
– volume: 154
  start-page: 68
  year: 2019
  ident: ref_12
  article-title: Low-frequency elastic wave attenuation in a composite acoustic black hole beam
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2019.04.029
SSID ssj0000913810
Score 2.3160505
Snippet In real-world scenarios, it is common to apply a damping layer of a specific thickness to the surface of an acoustic black hole (ABH) beam to boost its energy...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1227
SubjectTerms ABH beam
Acoustics
Algorithms
Back propagation
BP algorithm
damping layers
Efficiency
Energy consumption
Energy dissipation
Gaussian expansion method
Neural networks
optimization
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoABQQFRXvLAAEgRdpzG9tiW14CAARBb5CcgNQ1qC7-AH87ZCSgIJBbWxLKt3Ou72PcdQvuCK89TrRKXO5JklrBEC8sTyaUxglmTx4P2-0t-dSUeHuRNq9VXuBNW0wPXH-44FT0IcpwToVnmvRE2g7zbOQk-l2Y6Jj6Ey1YyFX2wpIG6qi7IY5DXh_NgwD6MpqF_TCsERab-H444RpezFbTcwELcr7eziubcuIOWWmSBHbTamOEUHzRc0Ydr6P0aTL5sailx5THgOXzuqjI0yjJ4-J2OOQw4UWUokcKXKoBtDJgV900Ve3rh-DcPX1QjhwdOlVM8gBhnMcwcph3AS9g_eKB6tf7osZo8z57KdXR3dno7vEiaxgqJYXk2S5iRNHMKrFVJzRxV0gnGQkmtDZWqzhsDWRQhniiiBEBAmdpcGkJ1qi0DgLCB5sfV2G0irD3XgEgsJLoio8KrlFkPE0oqpfI-7aKjz29dmIZ1PDS_GBWQfQTBFC3BdNH-1-CXmmzj92GDILSvIYEhOz4AvSkavSn-0psu2vkUedGY7bRgNO9xnmeCbP3HGttoMQ3tguMl7x00P5u8ul20YN5mz9PJXtTYD_7-7tg
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimization of the Geometric Characteristics of Damping Layers for Acoustic Black Hole Beams Based on the Backpropagation Algorithm
URI https://www.proquest.com/docview/3165776480
https://doaj.org/article/2857437708b34ffc8d4194ee921214b1
Volume 15
WOSCitedRecordID wos001418454400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAHSgsVC23lQw-AFGHHaWyf0KYPilSWFQJUTpGfBWmzKZuFX8AP70zWuywCceGY2HJieTzzzdjzDSGHSpooc2uyUAaWFZ6JzCovMy21c0p4V_YH7Z8u5GikLi_1OAXcunStcqkTe0XtW4cx8peCl0dSloVir66_ZVg1Ck9XUwmN22QTmcpAzjer09H4_SrKgqyXirNFYp4A_x7PhQEDCZ5jHZk1U9Qz9v-hkHsrc7b1v__3gNxP-JIOFwKxTW6F6Q65t8Y6uEO2037u6LNEOv38Ifn5DnRHk5IyaRspAEP6OrQNVtxy9Ph3XmfscGIazLWiFwZROwXwS4eu7YuD0T4sSM_bSaBVME1HKzCWnsLIOGwFjTA7UGWLrw0nVzCT-ZfmEfl4dvrh-DxLFRoyJ8pingmneREMbHujrQjc6KCEwNxcjymvIToH7hhjkRlmFGBJnftSO8Ztbr0ApLFLNqbtNDwm1EZpAdp48JhVwVU0ufARBtRcaxNjPiAvlotVu0RfjlU0JjW4Mbiy9drKDsjhqvP1grXj790qXPVVF6Ta7l-0s6s67dw6V0eAsqRkyooiRqd8wXURggajzwvLB2RvKRB12v9d_Usanvy7-Sm5m2NF4f4e-B7ZmM--h31yx_2Yf-1mB0mcD_pIATyN37wdf74BqekCVg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKRJwAFpABArsoUiAZLEP1949IJS0lERNQw4FlZNZ76MgJXGJA4g7v4ffyIwfIQjErQeu3tFaGn-e_WZ3Zz5CdlVqQipyE_nEsyh2TEa5cmmkU22tks4m1UH721E6HqvTUz3ZID_aWhi8VtnGxCpQu8LiHvkzyZO9NE1ixV6cf4pQNQpPV1sJjRoWR_7bV0jZyufDA_i-j4Q4fHmyP4gaVYHIyiReRtJqHnsDUDU6l54b7ZWUWE_qsEzTB2shhWAsMMOMAv6jhUu0ZTwXuZMCmy9ByN-MEewdsjkZHk_erXZ1sMum4qwuBJRSMzyHBs4luUDdmrWlr1II-GMBqFa1w-v_mz9ukGsNf6a9GvBbZMPPt8nVta6K22SriVclfdw01X5yk3x_DbFx1hSd0iJQIL70lS9mqChm6f7vfavR4MDMsJaMjgxmJRTIPe3ZohI_o9W2Jx0UU0_73sxK2gcy4CjMjNP2YRC8CaG6fltvegaeW36Y3SJvLsQ3t0lnXsz9HULzkOZA3ZxUUsVcBSOkCzCh5lqbEESXPG3BkdmmPTuqhEwzSNMQSdkakrpkd2V8Xncl-btZH1G2MsFW4tWDYnGWNZEpE2oPWGSaMpXLOASrXMx17L0GUsPjnHfJTgvArIlvZfYLfXf_PfyQXB6cHI-y0XB8dI9cEaieXN153yGd5eKzv08u2S_Lj-XiQfMrUfL-otH6E75cWqQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLamDiE4ABsgCgN8GBIgRfOPLLEPCLUrZdVK6QHQdgqOf2yTmmY0BcSdv4q_jufEKUUgbjtwTZ4c6eXz8_dsv_chtCtS5VKWq8gmlkSxITzKhUkjmUqtBTc6qQ_aP4zTyUQcH8vpBvrR1sL4a5VtTKwDtSm13yPf4zTZT9MkFmTPhWsR08Hw5cWnyCtI-ZPWVk6jgciR_fYV0rfqxWgA__oJY8NX7w4Oo6AwEGmexMuIa0ljqwC2SubcUiWt4NzXlhpfsmmd1pBOEOKIIkoAF5LMJFITmrPccOYbMUH43wRKHrMO2pyO3kxPVjs8vuOmoKQpCuRcEn8mDfyLU-Y1bNaWwVot4I_FoF7hhjf_Z9_cQjcCr8a9ZiJsoQ0730bX17otbqOtEMcq_DQ02352G31_CzGzCMWouHQYCDF-bcvCK41pfPB7P2tvMFCFrzHDY-WzFQykH_d0WYui4Xo7FB-WM4v7VhUV7gNJMBhG9sP24SV4FkJ487Xe7BQ8tzwr7qD3l-Kbu6gzL-f2HsK5S3OgdIYLLmIqnGLcOBhQUimVc6yLnrdAyXRo2-7VQ2YZpG8eVdkaqrpod2V80XQr-btZ3yNuZeJbjNcPysVpFiJWxsQ-sMs0JSLnsXNamJjK2FoJZIfGOe2inRaMWYh7VfYLiff__foxugoQzcajydEDdI15UeX6KvwO6iwXn-1DdEV_WZ5Xi0dhVmH08bLB-hPJC2Nk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+the+Geometric+Characteristics+of+Damping+Layers+for+Acoustic+Black+Hole+Beams+Based+on+the+Backpropagation+Algorithm&rft.jtitle=Applied+sciences&rft.au=Ouyang%2C+Lijun&rft.au=Zhang%2C+Jiahao&rft.au=Zhen%2C+Bin&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=3&rft.spage=1227&rft_id=info:doi/10.3390%2Fapp15031227&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon