Optimization of the Geometric Characteristics of Damping Layers for Acoustic Black Hole Beams Based on the Backpropagation Algorithm
In real-world scenarios, it is common to apply a damping layer of a specific thickness to the surface of an acoustic black hole (ABH) beam to boost its energy dissipation capacity. However, it has become apparent that excessive damping layers might result in negative consequences. The present study...
Uložené v:
| Vydané v: | Applied sciences Ročník 15; číslo 3; s. 1227 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.02.2025
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In real-world scenarios, it is common to apply a damping layer of a specific thickness to the surface of an acoustic black hole (ABH) beam to boost its energy dissipation capacity. However, it has become apparent that excessive damping layers might result in negative consequences. The present study suggests employing the backpropagation (BP) algorithm to refine the positioning, thickness, and contour of the damping layer for optimal results. This study begins with the derivation of a semi-analytical solution for the vibration characteristics of an ABH beam under a harmonic load using the Gaussian expansion method (GEM). This process results in the preliminary identification of a thickness profile for the damping layer that exhibits significant potential for energy dissipation. Subsequently, a BP neural network is trained on the data produced by the semi-analytical solution to further optimize this thickness variation function. The findings reveal that the geometry of the damping layer has a more complex influence on performance than previously recognized. The optimization guided by the BP neural network suggests that achieving a strong ABH effect does not require uniform application of the damping layer across the entire ABH section. Rather, the most effective approach is to concentrate the damping layer thickness at the ABH tip, with a rapid decrease in thickness as one moves away from this point. It is also determined that applying a damping layer in areas far from the tip is unnecessary. Additionally, an innovative strategy is proposed to enhance the system’s energy dissipation capabilities without changing the truncation thickness of the ABH beam. This research contributes to a deeper understanding of how the damping layer affects the energy dissipation performance of ABH beams. |
|---|---|
| AbstractList | In real-world scenarios, it is common to apply a damping layer of a specific thickness to the surface of an acoustic black hole (ABH) beam to boost its energy dissipation capacity. However, it has become apparent that excessive damping layers might result in negative consequences. The present study suggests employing the backpropagation (BP) algorithm to refine the positioning, thickness, and contour of the damping layer for optimal results. This study begins with the derivation of a semi-analytical solution for the vibration characteristics of an ABH beam under a harmonic load using the Gaussian expansion method (GEM). This process results in the preliminary identification of a thickness profile for the damping layer that exhibits significant potential for energy dissipation. Subsequently, a BP neural network is trained on the data produced by the semi-analytical solution to further optimize this thickness variation function. The findings reveal that the geometry of the damping layer has a more complex influence on performance than previously recognized. The optimization guided by the BP neural network suggests that achieving a strong ABH effect does not require uniform application of the damping layer across the entire ABH section. Rather, the most effective approach is to concentrate the damping layer thickness at the ABH tip, with a rapid decrease in thickness as one moves away from this point. It is also determined that applying a damping layer in areas far from the tip is unnecessary. Additionally, an innovative strategy is proposed to enhance the system’s energy dissipation capabilities without changing the truncation thickness of the ABH beam. This research contributes to a deeper understanding of how the damping layer affects the energy dissipation performance of ABH beams. |
| Author | Ouyang, Lijun Zhang, Jiahao Zhen, Bin |
| Author_xml | – sequence: 1 givenname: Lijun surname: Ouyang fullname: Ouyang, Lijun – sequence: 2 givenname: Jiahao surname: Zhang fullname: Zhang, Jiahao – sequence: 3 givenname: Bin surname: Zhen fullname: Zhen, Bin |
| BookMark | eNptkU1vEzEQhi1UJErpiT9giSMK9Vfs9TEJ0FaK1AucrVnvbOKwu15s51DO_HCcpkgVYi4eed55Zl7NW3IxxQkJec_ZJyktu4F55ksmuRDmFbkUzOiFVNxcvMjfkOucD6yG5bLh7JL8fphLGMMvKCFONPa07JHeYhyxpODpZg8JfMEUcgk-nwSfYZzDtKNbeMSUaR8TXfl4PNXpegD_g97FAekaYcx0DRk7Wskn7LoW5xRn2J2nrYZdTKHsx3fkdQ9Dxuvn94p8__rl2-ZusX24vd-stgsvtSoL6S1XCGJpwLYSOVhspBRCq06LRmPvPdeKsZ4Bg8YKaUWnrWe8FW0nhZVX5P7M7SIc3JzCCOnRRQju6SOmnYNUfQzoRLM0ShrDmlaqvvdNp7hViFZwwVXLK-vDmVUd_TxiLu4Qj2mq6zvJ9dIYrRpWVfys8inmnLB3PpQn9yVBGBxn7nQ79-J2tefjPz1_N_2f-g-WtJtx |
| CitedBy_id | crossref_primary_10_1016_j_isci_2025_113308 |
| Cites_doi | 10.1016/j.jsv.2003.05.010 10.1121/1.4904501 10.1016/j.jsv.2024.118384 10.1016/j.apacoust.2015.10.018 10.1016/0925-2312(93)90006-O 10.1007/978-1-4471-0985-3 10.1115/1.4034080 10.1016/j.ymssp.2017.10.036 10.1016/j.ijmecsci.2022.108025 10.1063/1.4983459 10.1016/j.econmod.2020.06.008 10.1016/j.apacoust.2022.109001 10.1016/j.ymssp.2023.110182 10.1016/j.jsv.2021.116024 10.1016/j.jsv.2020.115316 10.1016/j.jsv.2010.12.001 10.1016/j.tws.2022.110459 10.1016/j.jsv.2018.04.042 10.35848/1882-0786/acc567 10.1016/j.jsv.2010.11.017 10.3390/mi14030538 10.1016/j.conbuildmat.2021.122802 10.1016/j.rinp.2019.102192 10.1088/0964-1726/23/6/065021 10.1016/j.jsv.2023.118235 10.1121/1.5081680 10.1016/j.ymssp.2019.05.024 10.1016/j.apacoust.2011.12.010 10.1016/j.compstruct.2023.117224 10.1016/j.jsv.2016.03.031 10.1006/jsvi.1996.0471 10.1016/j.ymssp.2018.08.053 10.1016/j.engstruct.2024.117647 10.1016/j.apacoust.2019.04.029 |
| ContentType | Journal Article |
| Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app15031227 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_2857437708b34ffc8d4194ee921214b1 10_3390_app15031227 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c364t-3c914ea257a9b3e1a9e8332264d6286efcc16400f0a0a892392d69c01b2bd3293 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001418454400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Mon Nov 10 04:33:36 EST 2025 Mon Jun 30 12:40:48 EDT 2025 Tue Nov 18 22:20:28 EST 2025 Sat Nov 29 07:11:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-3c914ea257a9b3e1a9e8332264d6286efcc16400f0a0a892392d69c01b2bd3293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3165776480?pq-origsite=%requestingapplication% |
| PQID | 3165776480 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2857437708b34ffc8d4194ee921214b1 proquest_journals_3165776480 crossref_citationtrail_10_3390_app15031227 crossref_primary_10_3390_app15031227 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Deng (ref_21) 2024; 574 Bowyer (ref_34) 2012; 73 Deng (ref_22) 2023; 191 Ma (ref_25) 2018; 429 Deng (ref_17) 2019; 131 ref_35 Tang (ref_29) 2016; 374 Krylov (ref_36) 2004; 90 Gao (ref_12) 2019; 154 Georgiev (ref_33) 2011; 330 Mironov (ref_1) 1988; 34 Ma (ref_28) 2019; 145 Amari (ref_41) 1993; 5 Zenkour (ref_6) 2019; 13 Ma (ref_14) 2018; 255 Krylov (ref_27) 2016; 104 ref_18 Zhu (ref_16) 2023; 242 ref_39 Krylov (ref_3) 2004; 274 Tang (ref_11) 2017; 121 Xiong (ref_7) 2023; 16 ref_37 Xiao (ref_5) 2024; 304 Ji (ref_32) 2018; 104 Huang (ref_31) 2016; 138 Zhao (ref_10) 2014; 23 Pelat (ref_4) 2020; 476 Krylov (ref_13) 2011; 330 Ji (ref_19) 2021; 500 Chen (ref_24) 2024; 580 Conlon (ref_26) 2015; 137 Zhao (ref_15) 2021; 283 ref_43 ref_42 Gao (ref_9) 2023; 321 ref_40 Deng (ref_30) 2019; 118 Deng (ref_23) 2023; 184 Jahn (ref_38) 2020; 91 Li (ref_20) 2022; 198 ref_8 Vemula (ref_2) 1996; 196 |
| References_xml | – volume: 274 start-page: 605 year: 2004 ident: ref_3 article-title: Acoustic black holes’ for flexural waves as effective vibration dampers publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2003.05.010 – volume: 137 start-page: 447 year: 2015 ident: ref_26 article-title: Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4904501 – volume: 580 start-page: 118384 year: 2024 ident: ref_24 article-title: Tunable shunting periodic acoustic black holes for low-frequency and broadband vibration suppression publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2024.118384 – volume: 104 start-page: 24 year: 2016 ident: ref_27 article-title: Vibration of a rectangular plate with a central power-law profiled groove by the Rayleigh-Ritz method publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2015.10.018 – volume: 5 start-page: 185 year: 1993 ident: ref_41 article-title: Backpropagation and stochastic gradient descent method publication-title: Neurocomputing doi: 10.1016/0925-2312(93)90006-O – ident: ref_42 doi: 10.1007/978-1-4471-0985-3 – volume: 138 start-page: 061004 year: 2016 ident: ref_31 article-title: Wave energy focalization in a plate with imperfect two-dimensional acoustic black hole indentation publication-title: J. Vib. Acoust. doi: 10.1115/1.4034080 – volume: 104 start-page: 19 year: 2018 ident: ref_32 article-title: Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.10.036 – volume: 242 start-page: 10802 year: 2023 ident: ref_16 article-title: Vibration attenuation of rotating disks via acoustic black holes publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.108025 – volume: 121 start-page: 605 year: 2017 ident: ref_11 article-title: Broadband locally resonant band gaps in periodic beam structures with embedded acoustic black holes publication-title: J. Appl. Phys. doi: 10.1063/1.4983459 – volume: 91 start-page: 148 year: 2020 ident: ref_38 article-title: Artificial neural network regression models in a panel setting: Predicting economic growth publication-title: Econ. Model. doi: 10.1016/j.econmod.2020.06.008 – volume: 198 start-page: 109001 year: 2022 ident: ref_20 article-title: Vibration mitigation via integrated acoustic black holes publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2022.109001 – volume: 191 start-page: 110182 year: 2023 ident: ref_22 article-title: Evanescent waves in a metabeam attached with lossy acoustic black hole pillars publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110182 – volume: 500 start-page: 116024 year: 2021 ident: ref_19 article-title: A vibration absorber based on two-dimensional acoustic black holes publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2021.116024 – ident: ref_39 – ident: ref_40 – ident: ref_37 – volume: 476 start-page: 115316 year: 2020 ident: ref_4 article-title: The acoustic black hole: A review of theory and applications publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115316 – volume: 330 start-page: 2497 year: 2011 ident: ref_33 article-title: Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2010.12.001 – ident: ref_18 – volume: 184 start-page: 110459 year: 2023 ident: ref_23 article-title: Ultrawide attenuation bands in gradient metabeams with acoustic black hole pillars publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2022.110459 – ident: ref_35 – volume: 429 start-page: 130 year: 2018 ident: ref_25 article-title: A 2D Daubechies wavelet model on the vibration of rectangular plates containing strip indentations with a parabolic thickness profile publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.04.042 – volume: 16 start-page: 045502 year: 2023 ident: ref_7 article-title: Enhanced acoustic black hole energy harvesters with multipiezoelectric array designs publication-title: Appl. Phys. Express doi: 10.35848/1882-0786/acc567 – volume: 330 start-page: 2220 year: 2011 ident: ref_13 article-title: Damping of flexural vibrations in circular plates with tapered central holes publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2010.11.017 – ident: ref_8 doi: 10.3390/mi14030538 – volume: 34 start-page: 318 year: 1988 ident: ref_1 article-title: Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval publication-title: Sov. Phys. Acoust. – volume: 283 start-page: 122802 year: 2021 ident: ref_15 article-title: Computational analysis of phononic crystal vibration isolators via FEM coupled with the acoustic black hole effect to attenuate railway-induced vibration publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122802 – volume: 13 start-page: 102192 year: 2019 ident: ref_6 article-title: Thermo-electrical buckling response of actuated functionally graded piezoelectric nanoscale plates publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102192 – volume: 23 start-page: 065021 year: 2014 ident: ref_10 article-title: Broadband energy harvesting using acoustic black hole structural tailoring publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/6/065021 – volume: 574 start-page: 118235 year: 2024 ident: ref_21 article-title: Vibration damping by periodic additive acoustic black holes publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2023.118235 – volume: 145 start-page: 164 year: 2019 ident: ref_28 article-title: Sound radiation and transonic boundaries of a plate with an acoustic black hole publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5081680 – volume: 131 start-page: 317 year: 2019 ident: ref_17 article-title: Gaussian expansion for the vibration analysis of plates with multiple acoustic black holes indentations publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.05.024 – volume: 73 start-page: 514 year: 2012 ident: ref_34 article-title: Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2011.12.010 – volume: 321 start-page: 117224 year: 2023 ident: ref_9 article-title: Flexural wave manipulation in perforated metamaterial plates with acoustic blackholes interconnected by piezoelectric studs publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2023.117224 – volume: 255 start-page: 1014 year: 2018 ident: ref_14 article-title: Vibration of a plate with power-law-profiled thickness variation by wavelet decomposed Rayleigh-Ritz method publication-title: Int. Congr. Expo. Noise Control Eng. – volume: 374 start-page: 172 year: 2016 ident: ref_29 article-title: Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.03.031 – volume: 196 start-page: 107 year: 1996 ident: ref_2 article-title: Attenuation of waves in plates and bars using a graded impedance interface at edges publication-title: J. Sound Vib. doi: 10.1006/jsvi.1996.0471 – volume: 90 start-page: 830 year: 2004 ident: ref_36 article-title: New type of vibration dampers utilizing the effect of acoustic black holes publication-title: Acta Acust. United Acust. – ident: ref_43 – volume: 118 start-page: 461 year: 2019 ident: ref_30 article-title: Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.08.053 – volume: 304 start-page: 117647 year: 2024 ident: ref_5 article-title: An acoustic black hole absorber for rail vibration suppression: Simulation and full-scale experiment publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2024.117647 – volume: 154 start-page: 68 year: 2019 ident: ref_12 article-title: Low-frequency elastic wave attenuation in a composite acoustic black hole beam publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2019.04.029 |
| SSID | ssj0000913810 |
| Score | 2.3160505 |
| Snippet | In real-world scenarios, it is common to apply a damping layer of a specific thickness to the surface of an acoustic black hole (ABH) beam to boost its energy... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1227 |
| SubjectTerms | ABH beam Acoustics Algorithms Back propagation BP algorithm damping layers Efficiency Energy consumption Energy dissipation Gaussian expansion method Neural networks optimization |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoABQQFRXvLAAEgRdpzG9tiW14CAARBb5CcgNQ1qC7-AH87ZCSgIJBbWxLKt3Ou72PcdQvuCK89TrRKXO5JklrBEC8sTyaUxglmTx4P2-0t-dSUeHuRNq9VXuBNW0wPXH-44FT0IcpwToVnmvRE2g7zbOQk-l2Y6Jj6Ey1YyFX2wpIG6qi7IY5DXh_NgwD6MpqF_TCsERab-H444RpezFbTcwELcr7eziubcuIOWWmSBHbTamOEUHzRc0Ydr6P0aTL5sailx5THgOXzuqjI0yjJ4-J2OOQw4UWUokcKXKoBtDJgV900Ve3rh-DcPX1QjhwdOlVM8gBhnMcwcph3AS9g_eKB6tf7osZo8z57KdXR3dno7vEiaxgqJYXk2S5iRNHMKrFVJzRxV0gnGQkmtDZWqzhsDWRQhniiiBEBAmdpcGkJ1qi0DgLCB5sfV2G0irD3XgEgsJLoio8KrlFkPE0oqpfI-7aKjz29dmIZ1PDS_GBWQfQTBFC3BdNH-1-CXmmzj92GDILSvIYEhOz4AvSkavSn-0psu2vkUedGY7bRgNO9xnmeCbP3HGttoMQ3tguMl7x00P5u8ul20YN5mz9PJXtTYD_7-7tg priority: 102 providerName: Directory of Open Access Journals |
| Title | Optimization of the Geometric Characteristics of Damping Layers for Acoustic Black Hole Beams Based on the Backpropagation Algorithm |
| URI | https://www.proquest.com/docview/3165776480 https://doaj.org/article/2857437708b34ffc8d4194ee921214b1 |
| Volume | 15 |
| WOSCitedRecordID | wos001418454400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAHSgsVC23lQw-AFGHHaWyf0KYPilSWFQJUTpGfBWmzKZuFX8AP70zWuywCceGY2HJieTzzzdjzDSGHSpooc2uyUAaWFZ6JzCovMy21c0p4V_YH7Z8u5GikLi_1OAXcunStcqkTe0XtW4cx8peCl0dSloVir66_ZVg1Ck9XUwmN22QTmcpAzjer09H4_SrKgqyXirNFYp4A_x7PhQEDCZ5jHZk1U9Qz9v-hkHsrc7b1v__3gNxP-JIOFwKxTW6F6Q65t8Y6uEO2037u6LNEOv38Ifn5DnRHk5IyaRspAEP6OrQNVtxy9Ph3XmfscGIazLWiFwZROwXwS4eu7YuD0T4sSM_bSaBVME1HKzCWnsLIOGwFjTA7UGWLrw0nVzCT-ZfmEfl4dvrh-DxLFRoyJ8pingmneREMbHujrQjc6KCEwNxcjymvIToH7hhjkRlmFGBJnftSO8Ztbr0ApLFLNqbtNDwm1EZpAdp48JhVwVU0ufARBtRcaxNjPiAvlotVu0RfjlU0JjW4Mbiy9drKDsjhqvP1grXj790qXPVVF6Ta7l-0s6s67dw6V0eAsqRkyooiRqd8wXURggajzwvLB2RvKRB12v9d_Usanvy7-Sm5m2NF4f4e-B7ZmM--h31yx_2Yf-1mB0mcD_pIATyN37wdf74BqekCVg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKRJwAFpABArsoUiAZLEP1949IJS0lERNQw4FlZNZ76MgJXGJA4g7v4ffyIwfIQjErQeu3tFaGn-e_WZ3Zz5CdlVqQipyE_nEsyh2TEa5cmmkU22tks4m1UH721E6HqvTUz3ZID_aWhi8VtnGxCpQu8LiHvkzyZO9NE1ixV6cf4pQNQpPV1sJjRoWR_7bV0jZyufDA_i-j4Q4fHmyP4gaVYHIyiReRtJqHnsDUDU6l54b7ZWUWE_qsEzTB2shhWAsMMOMAv6jhUu0ZTwXuZMCmy9ByN-MEewdsjkZHk_erXZ1sMum4qwuBJRSMzyHBs4luUDdmrWlr1II-GMBqFa1w-v_mz9ukGsNf6a9GvBbZMPPt8nVta6K22SriVclfdw01X5yk3x_DbFx1hSd0iJQIL70lS9mqChm6f7vfavR4MDMsJaMjgxmJRTIPe3ZohI_o9W2Jx0UU0_73sxK2gcy4CjMjNP2YRC8CaG6fltvegaeW36Y3SJvLsQ3t0lnXsz9HULzkOZA3ZxUUsVcBSOkCzCh5lqbEESXPG3BkdmmPTuqhEwzSNMQSdkakrpkd2V8Xncl-btZH1G2MsFW4tWDYnGWNZEpE2oPWGSaMpXLOASrXMx17L0GUsPjnHfJTgvArIlvZfYLfXf_PfyQXB6cHI-y0XB8dI9cEaieXN153yGd5eKzv08u2S_Lj-XiQfMrUfL-otH6E75cWqQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLamDiE4ABsgCgN8GBIgRfOPLLEPCLUrZdVK6QHQdgqOf2yTmmY0BcSdv4q_jufEKUUgbjtwTZ4c6eXz8_dsv_chtCtS5VKWq8gmlkSxITzKhUkjmUqtBTc6qQ_aP4zTyUQcH8vpBvrR1sL4a5VtTKwDtSm13yPf4zTZT9MkFmTPhWsR08Hw5cWnyCtI-ZPWVk6jgciR_fYV0rfqxWgA__oJY8NX7w4Oo6AwEGmexMuIa0ljqwC2SubcUiWt4NzXlhpfsmmd1pBOEOKIIkoAF5LMJFITmrPccOYbMUH43wRKHrMO2pyO3kxPVjs8vuOmoKQpCuRcEn8mDfyLU-Y1bNaWwVot4I_FoF7hhjf_Z9_cQjcCr8a9ZiJsoQ0730bX17otbqOtEMcq_DQ02352G31_CzGzCMWouHQYCDF-bcvCK41pfPB7P2tvMFCFrzHDY-WzFQykH_d0WYui4Xo7FB-WM4v7VhUV7gNJMBhG9sP24SV4FkJ487Xe7BQ8tzwr7qD3l-Kbu6gzL-f2HsK5S3OgdIYLLmIqnGLcOBhQUimVc6yLnrdAyXRo2-7VQ2YZpG8eVdkaqrpod2V80XQr-btZ3yNuZeJbjNcPysVpFiJWxsQ-sMs0JSLnsXNamJjK2FoJZIfGOe2inRaMWYh7VfYLiff__foxugoQzcajydEDdI15UeX6KvwO6iwXn-1DdEV_WZ5Xi0dhVmH08bLB-hPJC2Nk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+the+Geometric+Characteristics+of+Damping+Layers+for+Acoustic+Black+Hole+Beams+Based+on+the+Backpropagation+Algorithm&rft.jtitle=Applied+sciences&rft.au=Ouyang%2C+Lijun&rft.au=Zhang%2C+Jiahao&rft.au=Zhen%2C+Bin&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=3&rft.spage=1227&rft_id=info:doi/10.3390%2Fapp15031227&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |