An uncertain multi-objective programming model for machine scheduling problem

This paper discusses a parallel machine scheduling problem in which the processing times of jobs and the release dates are independent uncertain variables with known uncertainty distributions. An uncertain programming model with multiple objectives is obtained, whose first objective is to minimize t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics Jg. 8; H. 5; S. 1493 - 1500
Hauptverfasser: Ning, Yufu, Chen, Xiumei, Wang, Zhiyong, Li, Xiangying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2017
Springer Nature B.V
Schlagworte:
ISSN:1868-8071, 1868-808X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses a parallel machine scheduling problem in which the processing times of jobs and the release dates are independent uncertain variables with known uncertainty distributions. An uncertain programming model with multiple objectives is obtained, whose first objective is to minimize the maximum completion time or makespan, and second objective is to minimize the maximum tardiness time. A genetic algorithm is employed to solve the proposed uncertain machine scheduling model, and its efficiency is illustrated by some numerical experiments.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-8071
1868-808X
DOI:10.1007/s13042-016-0522-2