On Coding by (2,q)-Distance Fibonacci Numbers

In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov’s papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 8; no. 11; p. 2058
Main Authors: Matoušová, Ivana, Trojovský, Pavel
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2020
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov’s papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients into recurrence of Fibonacci p-numbers. In 2013, I. Włoch et al. studied (2,q)-distance Fibonacci numbers F2(q,n) and found some of their combinatorial properties. In this paper, we state a new coding theory based on the sequence (Tq(n))n=−∞∞, which is an extension of Włoch’s sequence (F2(q,n))n=0∞.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math8112058