A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy

In addition to the need for simultaneously optimizing several competing objectives, many real-world problems are also dynamic in nature. These problems are called dynamic multi-objective optimization problems. Applying evolutionary algorithms to solve dynamic optimization problems has obtained great...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Jg. 21; H. 4; S. 885 - 906
Hauptverfasser: Azzouz, Radhia, Bechikh, Slim, Said, Lamjed Ben
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2017
Springer Nature B.V
Schlagworte:
ISSN:1432-7643, 1433-7479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In addition to the need for simultaneously optimizing several competing objectives, many real-world problems are also dynamic in nature. These problems are called dynamic multi-objective optimization problems. Applying evolutionary algorithms to solve dynamic optimization problems has obtained great attention among many researchers. However, most of works are restricted to the single-objective case. In this work, we propose an adaptive hybrid population management strategy using memory, local search and random strategies, to effectively handle environment dynamicity for the multi-objective case where objective functions change over time. Moreover, the proposed strategy is based on a new technique that detects the change severity, according to which it adjusts the number of memory and random solutions to be used. This ensures, on the one hand, a high level of convergence and on the other hand, the required diversity. We propose a dynamic version of the Non dominated Sorting Genetic Algorithm II, within which we integrate the above-mentioned strategies. Empirical results show that our proposal based on the use of the adaptive strategy is able to handle dynamic environments and to track the Pareto front as it changes over time. Moreover, when confronted with several recently proposed dynamic algorithms, it has presented competitive and better results on most problems.
AbstractList In addition to the need for simultaneously optimizing several competing objectives, many real-world problems are also dynamic in nature. These problems are called dynamic multi-objective optimization problems. Applying evolutionary algorithms to solve dynamic optimization problems has obtained great attention among many researchers. However, most of works are restricted to the single-objective case. In this work, we propose an adaptive hybrid population management strategy using memory, local search and random strategies, to effectively handle environment dynamicity for the multi-objective case where objective functions change over time. Moreover, the proposed strategy is based on a new technique that detects the change severity, according to which it adjusts the number of memory and random solutions to be used. This ensures, on the one hand, a high level of convergence and on the other hand, the required diversity. We propose a dynamic version of the Non dominated Sorting Genetic Algorithm II, within which we integrate the above-mentioned strategies. Empirical results show that our proposal based on the use of the adaptive strategy is able to handle dynamic environments and to track the Pareto front as it changes over time. Moreover, when confronted with several recently proposed dynamic algorithms, it has presented competitive and better results on most problems.
Author Bechikh, Slim
Said, Lamjed Ben
Azzouz, Radhia
Author_xml – sequence: 1
  givenname: Radhia
  orcidid: 0000-0002-0047-683X
  surname: Azzouz
  fullname: Azzouz, Radhia
  email: azouzradhia@gmail.com
  organization: SOIE Lab, University of Tunis
– sequence: 2
  givenname: Slim
  surname: Bechikh
  fullname: Bechikh, Slim
  organization: SOIE Lab, University of Tunis
– sequence: 3
  givenname: Lamjed Ben
  surname: Said
  fullname: Said, Lamjed Ben
  organization: SOIE Lab, University of Tunis
BookMark eNp9kM1qGzEURkVxoY6bB8hO0LVS_WtmaUyaFgLdtGuh0chjmRlpImkMfvvKdqAQaFe6oO_c-3HuwCrE4AB4IPiRYKy-ZowFxggTgUhDMeIfwJpwxpDiql1dZ4qU5OwTuMv5iDElSrA1OG1hfw5m8hZOy1g8it3R2eJPDrpTHJfiYzDpDM04xOTLYYJL9mGABtqDCYOD2Z1c_TijzmTXQ9Ob-UrPcV5Gc8HhZIIZ3ORCgbkkU9xw_gw-7s2Y3f3buwG_vz392n1HLz-ff-y2L8gyyQuiVtKOcEk550bI1rS8HrC97HHbMKn2mOylIhZ3tu14I6hqDBOCCtLZTqqWbcCX2945xdfF5aKPcUmhntS0JQ0WinFRU-qWsinmnNxeW1-u3WtdP2qC9UWyvknWVbK-SNa8kuQdOSc_VWH_ZeiNyTVbFaa_nf4N_QFwVpJl
CitedBy_id crossref_primary_10_1007_s00521_023_08369_4
crossref_primary_10_1016_j_ins_2019_02_020
crossref_primary_10_1109_TASE_2022_3168385
crossref_primary_10_1016_j_ins_2020_08_101
crossref_primary_10_1016_j_asoc_2022_109605
crossref_primary_10_1016_j_knosys_2022_108691
crossref_primary_10_1109_TEVC_2019_2912204
crossref_primary_10_1109_TCYB_2020_3017049
crossref_primary_10_1016_j_ins_2019_09_016
crossref_primary_10_1007_s10489_022_04429_9
crossref_primary_10_1016_j_neucom_2023_126761
crossref_primary_10_1016_j_eswa_2021_116127
crossref_primary_10_1109_TEVC_2022_3222844
crossref_primary_10_1016_j_ins_2021_06_054
crossref_primary_10_1109_TEVC_2022_3144180
crossref_primary_10_1109_TEVC_2017_2771451
crossref_primary_10_1016_j_ins_2024_121611
crossref_primary_10_1109_ACCESS_2019_2961980
crossref_primary_10_1007_s00500_021_05668_7
crossref_primary_10_1007_s40747_024_01369_4
crossref_primary_10_1016_j_engappai_2019_08_014
crossref_primary_10_1016_j_eswa_2025_128915
crossref_primary_10_1016_j_knosys_2022_108447
crossref_primary_10_1016_j_swevo_2022_101075
crossref_primary_10_1109_TNNLS_2023_3295461
crossref_primary_10_1016_j_jksuci_2022_11_002
crossref_primary_10_1016_j_engappai_2023_105966
crossref_primary_10_1016_j_ins_2023_119495
crossref_primary_10_1016_j_swevo_2024_101621
crossref_primary_10_1016_j_swevo_2024_101468
crossref_primary_10_1016_j_eswa_2025_129325
crossref_primary_10_1109_TIM_2025_3545216
crossref_primary_10_1145_3524495
crossref_primary_10_1109_TCC_2024_3450858
crossref_primary_10_1007_s00500_019_04365_w
crossref_primary_10_1109_TEVC_2019_2922834
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_1016_j_ins_2020_07_009
crossref_primary_10_1016_j_swevo_2023_101254
crossref_primary_10_1109_ACCESS_2025_3538537
crossref_primary_10_3846_tede_2019_10291
crossref_primary_10_1016_j_swevo_2024_101693
crossref_primary_10_1109_TEVC_2023_3253850
crossref_primary_10_1016_j_ins_2023_03_111
crossref_primary_10_1109_TCYB_2024_3364375
crossref_primary_10_1109_TCBB_2017_2652453
crossref_primary_10_1109_TEVC_2023_3313689
crossref_primary_10_1016_j_asoc_2019_105783
crossref_primary_10_1109_TSMC_2023_3324797
crossref_primary_10_3390_math10091587
crossref_primary_10_1016_j_ins_2022_08_072
crossref_primary_10_1016_j_swevo_2025_101900
crossref_primary_10_1007_s40747_021_00631_3
crossref_primary_10_1016_j_swevo_2025_101981
crossref_primary_10_1016_j_swevo_2023_101281
crossref_primary_10_1016_j_ins_2022_05_050
crossref_primary_10_1016_j_swevo_2023_101284
crossref_primary_10_1007_s13042_023_01918_2
crossref_primary_10_1016_j_ins_2023_04_006
crossref_primary_10_1016_j_cie_2022_108717
crossref_primary_10_1016_j_asoc_2024_112022
crossref_primary_10_1016_j_asoc_2019_105673
crossref_primary_10_1016_j_swevo_2023_101317
crossref_primary_10_1016_j_swevo_2024_101713
crossref_primary_10_1007_s00500_016_2353_1
crossref_primary_10_1016_j_ins_2024_120565
crossref_primary_10_1016_j_ins_2022_06_095
crossref_primary_10_1016_j_swevo_2023_101433
crossref_primary_10_1109_TEVC_2020_2985323
crossref_primary_10_1109_TEVC_2020_3004027
crossref_primary_10_1016_j_enconman_2023_117637
crossref_primary_10_1016_j_asoc_2024_111398
crossref_primary_10_1016_j_swevo_2020_100695
crossref_primary_10_1016_j_ins_2017_12_058
crossref_primary_10_1109_ACCESS_2020_2974324
crossref_primary_10_1016_j_knosys_2022_109173
crossref_primary_10_1016_j_eswa_2023_120951
crossref_primary_10_1016_j_neucom_2024_129291
crossref_primary_10_1109_TSMC_2023_3322718
crossref_primary_10_1109_TCYB_2021_3070434
crossref_primary_10_1016_j_engappai_2024_109741
crossref_primary_10_1007_s40815_023_01477_2
crossref_primary_10_1016_j_ins_2022_05_114
crossref_primary_10_1016_j_knosys_2022_110242
crossref_primary_10_1007_s12065_020_00523_4
crossref_primary_10_1016_j_swevo_2024_101773
crossref_primary_10_1016_j_engappai_2020_103582
crossref_primary_10_1016_j_energy_2023_128421
crossref_primary_10_1016_j_jmse_2021_05_004
crossref_primary_10_1016_j_ejor_2023_08_023
crossref_primary_10_1007_s11227_024_06832_0
crossref_primary_10_1016_j_petsci_2024_09_018
crossref_primary_10_3390_pr12010189
crossref_primary_10_1007_s10489_020_01772_7
crossref_primary_10_1109_TCYB_2021_3128584
crossref_primary_10_1016_j_swevo_2024_101529
crossref_primary_10_1109_TEVC_2019_2958075
crossref_primary_10_1109_TEVC_2021_3115036
crossref_primary_10_1016_j_ins_2024_120398
crossref_primary_10_1016_j_ins_2024_120794
crossref_primary_10_1016_j_swevo_2022_101164
crossref_primary_10_1016_j_eswa_2025_129304
Cites_doi 10.1109/TEVC.2011.2169966
10.1016/j.swevo.2011.03.001
10.1007/s10462-004-5900-6
10.1007/s12293-009-0026-7
10.1109/TEVC.2007.913070
10.1007/978-3-540-49774-5_6
10.1109/TCYB.2013.2245892
10.1007/3-540-45356-3_83
10.1007/978-3-642-38416-5_11
10.1109/CEC.2013.6557861
10.1016/j.ins.2010.12.015
10.1109/TEVC.2009.2024143
10.1109/CEC.2000.870759
10.1007/978-3-642-30665-5_12
10.1109/CEC.2014.6900569
10.1007/s00500-013-1085-8
10.1007/978-3-540-31880-4_35
10.1007/978-3-540-24653-4_53
10.1016/j.ress.2005.11.018
10.1145/2739480.2754708
10.1109/TEVC.2005.857074
10.1109/TEVC.2007.894202
10.1162/evco.2008.16.3.385
10.1007/s12293-009-0012-0
10.1109/ICEC.1997.592336
10.1145/1143997.1144187
10.1109/TEVC.2008.920671
10.1007/3-540-32400-3_9
10.1109/TEVC.2005.846356
10.1109/TEVC.2004.831456
10.1016/j.asoc.2007.07.005
10.21236/ADA229159
10.1145/2517649
10.1109/CEC.2009.4983004
10.1007/s00500-010-0547-5
10.1007/978-3-540-70928-2_60
10.1007/978-3-540-70928-2_62
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Springer-Verlag Berlin Heidelberg 2015.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: Springer-Verlag Berlin Heidelberg 2015.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-015-1820-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 906
ExternalDocumentID 10_1007_s00500_015_1820_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c364t-2c62b1462444a569a94adacd6d098367f01f671c0bc9b485278a355251bcb6793
IEDL.DBID RSV
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394316900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 02:29:27 EST 2025
Tue Nov 18 22:15:18 EST 2025
Sat Nov 29 07:52:18 EST 2025
Fri Feb 21 02:39:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Local search-based strategy
Dynamic multi-objective optimization
Adaptive population management
Change severity-based strategy
Change severity sensing
Time-changing objective functions
Memory-based strategy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-2c62b1462444a569a94adacd6d098367f01f671c0bc9b485278a355251bcb6793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0047-683X
PQID 2918057345
PQPubID 2043697
PageCount 22
ParticipantIDs proquest_journals_2918057345
crossref_citationtrail_10_1007_s00500_015_1820_4
crossref_primary_10_1007_s00500_015_1820_4
springer_journals_10_1007_s00500_015_1820_4
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ursem RK (2000) Multinational ga: multimodal optimization techniques in dynamic environments. In: Proceedings of the second genetic and evolutionary computation conference, pp 19–26
Deb K, Rao U, Karthik S (2007) Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling. In: Proceedings of the 4th international conference, EMO 2007, vol 4403, pp 803–817
JinYBrankeJEvolutionary optimization in uncertain environments: a surveyIEEE Trans Evolut Comput20059330331710.1109/TEVC.2005.846356
van Veldhuizen DA (1999) Multi-objective evolutionary algorithms: classification, analyses, and new innovations, Ph.D. thesis, Graduate School of engineering Air University
GuanSUChenQMoWEvolving dynamic multi-objective optimization problems with objective replacementArtif Intell Rev200523326729310.1007/s10462-004-5900-6
LiZChenHXieZChenCSallamAEnvironment identification-based memory scheme for estimation of distribution algorithms in dynamic environmentsSci World J201420149
Ramsey CL, Grefenstette JJ (1993) Case-based initialization of genetic algorithms. In: Proceedings of the 5th international conference on genetic algorithms, pp 84–91
Bosman PAN (2007) Learning and anticipation in online dynamic optimization. In: Evolutionary computation in dynamic and uncertain environments, pp 129–152
KonakACoitDWSmithAEMulti-objective optimization using genetic algorithms: a tutorialReliab Eng Syst Saf2006919992100710.1016/j.ress.2005.11.018
Zhou A, Jin YC, Zhang Q, Sendhoff B, Tsang E (2007) Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization. In: Proceedings of the 4th international conference on evolutionary multi-criterion optimization, pp 832–846
Grefenstette JJ (1992) Genetic algorithms for changing environments. In: Proceedings of the second international conference on parallel problem solving from nature, pp 137–144
ZhangZMulti-objective optimization immune algorithm in dynamic environments and its application to greenhouse controlAppl Soft Comput20088295997110.1016/j.asoc.2007.07.005
Cámara M, Ortega J, de Toro F (2008) Parallel multi-objective optimization evolutionary algorithms in dynamic environments. In: Proceedings of the first international workshop on parallel architectures and bioinspired algorithms, vol 1, pp 13–20
YangSYaoXPopulation-based incremental learning with associative memory for dynamic environmentsIEEE Trans Evolut Comput200812554256110.1109/TEVC.2007.913070
PengXGaoXYangSEnvironment identification-based memory scheme for estimation of distribution algorithms in dynamic environmentsSoft Comput201115231132610.1007/s00500-010-0547-5
Azzouz R, Bechikh S, Said LB (2014) A multiple reference point-based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes. In: Proceedings of the IEEE congress on evolutionary computation, pp 3168–3175
Cobb HG (1990) An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments, Tech. Rep. AIC-90-001, Naval Research Laboratory
GohCKTanKCA competitive–cooperative coevolutionary paradigm for dynamic multi-objective optimizationIEEE Trans Evolut Comput200913110312710.1109/TEVC.2008.920671
KooWTGohCTanKA predictive gradient strategy for multi-objective evolutionary algorithms in a fast changing environmentMemet Comput2010228711010.1007/s12293-009-0026-7
HelbigMEngelbrechtAPBenchmarks for dynamic multi-objective optimisation algorithmsACM Comput Surv20144633710.1145/25176491306.90144
Sierra M, Coello CC (2005) Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance. In: Proceedings of the third international conference on evolutionary multi-criterion optimization, vol 3410, pp 505–519
BlackwellTBrankeJMultiswarms, exclusion, and anti-convergence in dynamic environmentsIEEE Trans Evolut Comput200610445947210.1109/TEVC.2005.857074
Wang Y, Li B (2009) Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment. In: Proceedings of the IEEE congress on evolutionary computation, pp 630–637
ZhouAQuBLiHZhaoSZSuganthanbPNZhangQMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evolut Comput201111324910.1016/j.swevo.2011.03.001
Jin Y, Sendhoff B (2004) Constructing dynamic optimization test problems using the multi-objective optimization concept. In: Proceedings of the EvoWorkshops, pp 525–536
Cámara M, Ortega J, de Toro F (2007) Parallel processing for multi-objective optimization in dynamic environments. In: Proceedings of the IEEE international parallel and distributed processing symposium, pp 1–8
Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: Proceedings of the 6th international conference on parallel problem solving from nature, vol 1917, pp 849–858
Amato P, Farina M (2005) An alife-inspired evolutionary algorithm for dynamic multi-objective optimization problems. Adv Soft Comput 32:113–125
Wei J, Jia L (20113) A novel particle swarm optimization algorithm with local search for dynamic constrained multi-objective optimization problems. In: Proceedings of the IEEE congress on evolutionary computation, pp 2436–2443
Deb K (2011) Single and multi-objective dynamic optimization: two tales from an evolutionary perspective. Tech. Rep. 2011004, Kanpur Genetic Algorithms Laboratory
Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution
LiCYangSA general framework of multipopulation methods with clustering in undetectable dynamic environmentsIEEE Trans Evolut Comput201216455657710.1109/TEVC.2011.2169966
Oppacher F, Wineberg M (1999) The shifting balance genetic algorithm: Improving the ga in a dynamic environment. In: Proceedings of the genetic and evolutionary computation conference, vol 1, pp 504–510
WangYLiBMulti-strategy ensemble evolutionary algorithm for dynamic multi-objective optimizationMemet Comput20102132410.1007/s12293-009-0012-0
ShangRJiaoLRenYLiLWangLQuantum immune clonal coevolutionary algorithm for dynamic multiobjective optimizationSoft Comput201418474375610.1007/s00500-013-1085-81331.68212
Metaheuristics for Dynamic Optimization (2013) 433:265–289
Azzouz R, Bechikh S, Ben Said L (2015) Multi-objective optimization with dynamic constraints and objectives: new challenges for evolutionary algorithms. In: Genetic and evolutionary computation conference (GECCO 2015)
Morrison RW, Jon KAD (2000) Triggered hypermutation revisited. In: Proceedings of the IEEE congress on evolutionary computation, vol. 2, pp 1025–1032
LaraASanchezGCoelloCACHcs: a new local search strategy for memetic multi-objective evolutionary algorithmsIEEE Trans Evolut Comput201014111213210.1109/TEVC.2009.2024143
ZhangQFZhouAMJinYCRm-meda: a regularity model-based multi-objective estimation of distribution algorithmIEEE Trans Evolut Comput2008121416310.1109/TEVC.2007.894202
FarinaMAmatoPDebKDynamic multi-objective optimization problems: test cases, approximations and applicationsIEEE Trans Evolut Comput20048542544210.1109/TEVC.2004.831456
Hatzakis I, Wallace D (2006) Dynamic multi-objective optimization with evolutionary algorithms: a foward-looking approach. In: Proceedings of the 2006 genetic and evolutionary computation conference, pp 1201–1208
Cedeno W, Vemuri VR (1997) On the use of niching for dynamic landscapes. In: Proceedings of the international conference on evolutionary computation, pp 361–366
Huang L, Suh I, Abraham A (2011) Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants. Inf Sci 181(11):2370–2391
Richter H (2013) Dynamic fitness landscape analysis. In: Evolutionary computation for dynamic optimization problems, vol 490, pp 269–297
YangSGenetic algorithms with memory and elitism-based immigrants in dynamic environmentEvolut Comput200816338541610.1162/evco.2008.16.3.385
ZhouAJinYZhangQA population prediction strategy for evolutionary dynamic multiobjective optimizationIEEE Trans Cybern2014441405310.1109/TCYB.2013.2245892
R Shang (1820_CR34) 2014; 18
1820_CR29
QF Zhang (1820_CR43) 2008; 12
Z Zhang (1820_CR44) 2008; 8
1820_CR9
A Lara (1820_CR25) 2010; 14
Y Jin (1820_CR21) 2005; 9
SU Guan (1820_CR17) 2005; 23
CK Goh (1820_CR15) 2009; 13
1820_CR2
M Farina (1820_CR13) 2004; 8
1820_CR40
1820_CR1
1820_CR20
1820_CR3
1820_CR6
T Blackwell (1820_CR4) 2006; 10
1820_CR5
1820_CR8
1820_CR7
1820_CR47
1820_CR28
1820_CR22
S Yang (1820_CR42) 2008; 12
C Li (1820_CR27) 2012; 16
A Zhou (1820_CR45) 2011; 1
1820_CR18
X Peng (1820_CR31) 2011; 15
A Zhou (1820_CR46) 2014; 44
A Konak (1820_CR23) 2006; 91
1820_CR30
S Yang (1820_CR41) 2008; 16
M Helbig (1820_CR19) 2014; 46
Y Wang (1820_CR39) 2010; 2
WT Koo (1820_CR24) 2010; 2
1820_CR37
1820_CR14
1820_CR36
1820_CR16
1820_CR38
1820_CR11
Z Li (1820_CR26) 2014; 2014
1820_CR33
1820_CR10
1820_CR32
1820_CR35
1820_CR12
References_xml – reference: Cobb HG (1990) An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments, Tech. Rep. AIC-90-001, Naval Research Laboratory
– reference: KooWTGohCTanKA predictive gradient strategy for multi-objective evolutionary algorithms in a fast changing environmentMemet Comput2010228711010.1007/s12293-009-0026-7
– reference: Ursem RK (2000) Multinational ga: multimodal optimization techniques in dynamic environments. In: Proceedings of the second genetic and evolutionary computation conference, pp 19–26
– reference: PengXGaoXYangSEnvironment identification-based memory scheme for estimation of distribution algorithms in dynamic environmentsSoft Comput201115231132610.1007/s00500-010-0547-5
– reference: Wang Y, Li B (2009) Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment. In: Proceedings of the IEEE congress on evolutionary computation, pp 630–637
– reference: Cedeno W, Vemuri VR (1997) On the use of niching for dynamic landscapes. In: Proceedings of the international conference on evolutionary computation, pp 361–366
– reference: GohCKTanKCA competitive–cooperative coevolutionary paradigm for dynamic multi-objective optimizationIEEE Trans Evolut Comput200913110312710.1109/TEVC.2008.920671
– reference: Wei J, Jia L (20113) A novel particle swarm optimization algorithm with local search for dynamic constrained multi-objective optimization problems. In: Proceedings of the IEEE congress on evolutionary computation, pp 2436–2443
– reference: YangSYaoXPopulation-based incremental learning with associative memory for dynamic environmentsIEEE Trans Evolut Comput200812554256110.1109/TEVC.2007.913070
– reference: Hatzakis I, Wallace D (2006) Dynamic multi-objective optimization with evolutionary algorithms: a foward-looking approach. In: Proceedings of the 2006 genetic and evolutionary computation conference, pp 1201–1208
– reference: Huang L, Suh I, Abraham A (2011) Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants. Inf Sci 181(11):2370–2391
– reference: Deb K (2011) Single and multi-objective dynamic optimization: two tales from an evolutionary perspective. Tech. Rep. 2011004, Kanpur Genetic Algorithms Laboratory
– reference: Richter H (2013) Dynamic fitness landscape analysis. In: Evolutionary computation for dynamic optimization problems, vol 490, pp 269–297
– reference: Azzouz R, Bechikh S, Ben Said L (2015) Multi-objective optimization with dynamic constraints and objectives: new challenges for evolutionary algorithms. In: Genetic and evolutionary computation conference (GECCO 2015)
– reference: Deb K, Rao U, Karthik S (2007) Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling. In: Proceedings of the 4th international conference, EMO 2007, vol 4403, pp 803–817
– reference: Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution
– reference: van Veldhuizen DA (1999) Multi-objective evolutionary algorithms: classification, analyses, and new innovations, Ph.D. thesis, Graduate School of engineering Air University
– reference: LaraASanchezGCoelloCACHcs: a new local search strategy for memetic multi-objective evolutionary algorithmsIEEE Trans Evolut Comput201014111213210.1109/TEVC.2009.2024143
– reference: ShangRJiaoLRenYLiLWangLQuantum immune clonal coevolutionary algorithm for dynamic multiobjective optimizationSoft Comput201418474375610.1007/s00500-013-1085-81331.68212
– reference: Sierra M, Coello CC (2005) Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance. In: Proceedings of the third international conference on evolutionary multi-criterion optimization, vol 3410, pp 505–519
– reference: ZhangZMulti-objective optimization immune algorithm in dynamic environments and its application to greenhouse controlAppl Soft Comput20088295997110.1016/j.asoc.2007.07.005
– reference: JinYBrankeJEvolutionary optimization in uncertain environments: a surveyIEEE Trans Evolut Comput20059330331710.1109/TEVC.2005.846356
– reference: Morrison RW, Jon KAD (2000) Triggered hypermutation revisited. In: Proceedings of the IEEE congress on evolutionary computation, vol. 2, pp 1025–1032
– reference: Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: Proceedings of the 6th international conference on parallel problem solving from nature, vol 1917, pp 849–858
– reference: YangSGenetic algorithms with memory and elitism-based immigrants in dynamic environmentEvolut Comput200816338541610.1162/evco.2008.16.3.385
– reference: Cámara M, Ortega J, de Toro F (2008) Parallel multi-objective optimization evolutionary algorithms in dynamic environments. In: Proceedings of the first international workshop on parallel architectures and bioinspired algorithms, vol 1, pp 13–20
– reference: Bosman PAN (2007) Learning and anticipation in online dynamic optimization. In: Evolutionary computation in dynamic and uncertain environments, pp 129–152
– reference: FarinaMAmatoPDebKDynamic multi-objective optimization problems: test cases, approximations and applicationsIEEE Trans Evolut Comput20048542544210.1109/TEVC.2004.831456
– reference: WangYLiBMulti-strategy ensemble evolutionary algorithm for dynamic multi-objective optimizationMemet Comput20102132410.1007/s12293-009-0012-0
– reference: Zhou A, Jin YC, Zhang Q, Sendhoff B, Tsang E (2007) Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization. In: Proceedings of the 4th international conference on evolutionary multi-criterion optimization, pp 832–846
– reference: Azzouz R, Bechikh S, Said LB (2014) A multiple reference point-based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes. In: Proceedings of the IEEE congress on evolutionary computation, pp 3168–3175
– reference: Jin Y, Sendhoff B (2004) Constructing dynamic optimization test problems using the multi-objective optimization concept. In: Proceedings of the EvoWorkshops, pp 525–536
– reference: Cámara M, Ortega J, de Toro F (2007) Parallel processing for multi-objective optimization in dynamic environments. In: Proceedings of the IEEE international parallel and distributed processing symposium, pp 1–8
– reference: GuanSUChenQMoWEvolving dynamic multi-objective optimization problems with objective replacementArtif Intell Rev200523326729310.1007/s10462-004-5900-6
– reference: ZhangQFZhouAMJinYCRm-meda: a regularity model-based multi-objective estimation of distribution algorithmIEEE Trans Evolut Comput2008121416310.1109/TEVC.2007.894202
– reference: Oppacher F, Wineberg M (1999) The shifting balance genetic algorithm: Improving the ga in a dynamic environment. In: Proceedings of the genetic and evolutionary computation conference, vol 1, pp 504–510
– reference: Ramsey CL, Grefenstette JJ (1993) Case-based initialization of genetic algorithms. In: Proceedings of the 5th international conference on genetic algorithms, pp 84–91
– reference: HelbigMEngelbrechtAPBenchmarks for dynamic multi-objective optimisation algorithmsACM Comput Surv20144633710.1145/25176491306.90144
– reference: LiCYangSA general framework of multipopulation methods with clustering in undetectable dynamic environmentsIEEE Trans Evolut Comput201216455657710.1109/TEVC.2011.2169966
– reference: KonakACoitDWSmithAEMulti-objective optimization using genetic algorithms: a tutorialReliab Eng Syst Saf2006919992100710.1016/j.ress.2005.11.018
– reference: LiZChenHXieZChenCSallamAEnvironment identification-based memory scheme for estimation of distribution algorithms in dynamic environmentsSci World J201420149
– reference: ZhouAQuBLiHZhaoSZSuganthanbPNZhangQMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evolut Comput201111324910.1016/j.swevo.2011.03.001
– reference: BlackwellTBrankeJMultiswarms, exclusion, and anti-convergence in dynamic environmentsIEEE Trans Evolut Comput200610445947210.1109/TEVC.2005.857074
– reference: ZhouAJinYZhangQA population prediction strategy for evolutionary dynamic multiobjective optimizationIEEE Trans Cybern2014441405310.1109/TCYB.2013.2245892
– reference: Metaheuristics for Dynamic Optimization (2013) 433:265–289
– reference: Amato P, Farina M (2005) An alife-inspired evolutionary algorithm for dynamic multi-objective optimization problems. Adv Soft Comput 32:113–125
– reference: Grefenstette JJ (1992) Genetic algorithms for changing environments. In: Proceedings of the second international conference on parallel problem solving from nature, pp 137–144
– volume: 16
  start-page: 556
  issue: 4
  year: 2012
  ident: 1820_CR27
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2011.2169966
– volume: 1
  start-page: 32
  issue: 1
  year: 2011
  ident: 1820_CR45
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2011.03.001
– volume: 23
  start-page: 267
  issue: 3
  year: 2005
  ident: 1820_CR17
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-004-5900-6
– volume: 2
  start-page: 87
  issue: 2
  year: 2010
  ident: 1820_CR24
  publication-title: Memet Comput
  doi: 10.1007/s12293-009-0026-7
– ident: 1820_CR16
– volume: 2014
  start-page: 9
  year: 2014
  ident: 1820_CR26
  publication-title: Sci World J
– ident: 1820_CR7
– volume: 12
  start-page: 542
  issue: 5
  year: 2008
  ident: 1820_CR42
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2007.913070
– ident: 1820_CR37
– ident: 1820_CR5
  doi: 10.1007/978-3-540-49774-5_6
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: 1820_CR46
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2245892
– ident: 1820_CR14
– ident: 1820_CR10
– ident: 1820_CR11
  doi: 10.1007/3-540-45356-3_83
– ident: 1820_CR33
  doi: 10.1007/978-3-642-38416-5_11
– ident: 1820_CR40
  doi: 10.1109/CEC.2013.6557861
– ident: 1820_CR20
  doi: 10.1016/j.ins.2010.12.015
– ident: 1820_CR30
– ident: 1820_CR32
– volume: 14
  start-page: 112
  issue: 1
  year: 2010
  ident: 1820_CR25
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2009.2024143
– ident: 1820_CR6
– ident: 1820_CR29
  doi: 10.1109/CEC.2000.870759
– ident: 1820_CR28
  doi: 10.1007/978-3-642-30665-5_12
– ident: 1820_CR3
  doi: 10.1109/CEC.2014.6900569
– volume: 18
  start-page: 743
  issue: 4
  year: 2014
  ident: 1820_CR34
  publication-title: Soft Comput
  doi: 10.1007/s00500-013-1085-8
– ident: 1820_CR35
  doi: 10.1007/978-3-540-31880-4_35
– ident: 1820_CR22
  doi: 10.1007/978-3-540-24653-4_53
– volume: 91
  start-page: 992
  issue: 9
  year: 2006
  ident: 1820_CR23
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.11.018
– ident: 1820_CR2
  doi: 10.1145/2739480.2754708
– volume: 10
  start-page: 459
  issue: 4
  year: 2006
  ident: 1820_CR4
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2005.857074
– volume: 12
  start-page: 41
  issue: 1
  year: 2008
  ident: 1820_CR43
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2007.894202
– ident: 1820_CR36
– volume: 16
  start-page: 385
  issue: 3
  year: 2008
  ident: 1820_CR41
  publication-title: Evolut Comput
  doi: 10.1162/evco.2008.16.3.385
– volume: 2
  start-page: 3
  issue: 1
  year: 2010
  ident: 1820_CR39
  publication-title: Memet Comput
  doi: 10.1007/s12293-009-0012-0
– ident: 1820_CR8
  doi: 10.1109/ICEC.1997.592336
– ident: 1820_CR18
  doi: 10.1145/1143997.1144187
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 1820_CR15
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2008.920671
– ident: 1820_CR1
  doi: 10.1007/3-540-32400-3_9
– volume: 9
  start-page: 303
  issue: 3
  year: 2005
  ident: 1820_CR21
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2005.846356
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 1820_CR13
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2004.831456
– volume: 8
  start-page: 959
  issue: 2
  year: 2008
  ident: 1820_CR44
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.07.005
– ident: 1820_CR9
  doi: 10.21236/ADA229159
– volume: 46
  start-page: 37
  issue: 3
  year: 2014
  ident: 1820_CR19
  publication-title: ACM Comput Surv
  doi: 10.1145/2517649
– ident: 1820_CR38
  doi: 10.1109/CEC.2009.4983004
– volume: 15
  start-page: 311
  issue: 2
  year: 2011
  ident: 1820_CR31
  publication-title: Soft Comput
  doi: 10.1007/s00500-010-0547-5
– ident: 1820_CR12
  doi: 10.1007/978-3-540-70928-2_60
– ident: 1820_CR47
  doi: 10.1007/978-3-540-70928-2_62
SSID ssj0021753
Score 2.5011606
Snippet In addition to the need for simultaneously optimizing several competing objectives, many real-world problems are also dynamic in nature. These problems are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 885
SubjectTerms Artificial Intelligence
Classification
Computational Intelligence
Control
Engineering
Evolutionary algorithms
Genetic algorithms
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Multiple objective analysis
Optimization techniques
Pareto optimization
Robotics
Sorting algorithms
Strategy
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwGA06PXhx_sTplBw8KcEmTdv0JEMcgjA8KOxW8mtTmVtd62D_vUmadii4i-c2aeAl3_eafHkPgMskjFOOlUZcG_pGIy2QMANGKWX23qRgI6yc2UQyGLDhMH3yG26FL6usY6IL1Gom7R75DUkxs-J9NLrNP5F1jbKnq95CYxNsYUKwneePCWp-uLwKpaEEhkWa1FufagZORDSyd6pxhKyEOaI_89KKbP46H3Vpp9_-74D3wK4nnLBXzZB9sKGnB6BdmzlAv7YPwaIHVeVOD12RIZqJ9yoYQr3w85PPl5BPxuYr5esHtCXzY8hhdXcYmhSrrRMesolRQa547lrnjUUY_GhqbWBRqeIuj8BL__757gF5UwYkw5iWiMiYCBNeDS2gPDJAp9R0KFWsgpSFcTIK8ChOsAyETAVlEUkYN5zG0CghRWyiwTFoTWdTfQIgZiOVWD03LhIqRcAkDqOUR0KFsSYy7ICghiSTXrHcGmdMskZr2aGYGRQzi2JGO-CqaZJXch3rXu7WyGV-5RbZCrYOuK6xXz3-s7PT9Z2dgR1iCYGr9-6CVjn_0udgWy7Kt2J-4abtN6g_8-s
  priority: 102
  providerName: ProQuest
Title A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy
URI https://link.springer.com/article/10.1007/s00500-015-1820-4
https://www.proquest.com/docview/2918057345
Volume 21
WOSCitedRecordID wos000394316900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6setCDj6pYrSUHT0qgu5vdzR6rVAShFF8UL0terRVtS7sW_PdO9lUVFfSylzwImWTmWzLzfQDHoRdEwtGGCoPwjflGUokLphHjtm5S8r6jU7GJsNPhvV7Uzeu4Z0W2e_EkmXrqstjNUpXYJCqfWtJxyiqwgtGO29t4fXNf_mXl1JOIAxA6YrwtnjK_m-JzMFogzC-Pommsudj81yq3YCOHlqSVnYVtWDKjKmwWsg0kv8VVWP_AQbgD8xbRmSo9SZML6Vg-ZU6QmHl-LsX0jYjnwXg6TB5fiE2VHxBBspphgqHVWAU8agOiJkKLSTp6UkqDkZcyx4bMMjbct124u2jfnl_SXIyBKi9gCXVV4Ep0qwgHmPDRwBHDCZUONNrAC8J-0-kHoaOaUkWScd8NuUAsg_BJKhmgF9iD5dF4ZPaBOLyvQ8vjJmTIlGxy5Xh-JHypvcC4yqtBs7BKrHKmciuY8RyXHMvpLse4y7Hd5ZjV4KQcMsloOn7rXC9MHec3dha7kcMtOSTza3BamHbR_ONkB3_qfQhrrsUFadp3HZaT6as5glU1T4azaQNWztqd7nUDKlchxW_Xf2ikh_sd75zxVw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH5CFKlcGGhBDIXiQ7lQWWSxE-eAKgRFIOiIA5UQl-BtWDQbM9Op5k_xG_vsLCOQ4Mah5ySWnXxvcfze9wF8S-Mkk6GxVFpM3xi3iiqcMM2YcH2TSrRD48Um0lZLXF1lF3PwVPXCuLLKyid6R2362v0j34uyUDjyPsZ_DB6pU41yp6uVhEYBizM7_YtbttH-6RF-350oOv55eXhCS1UBquOEjWmkk0ihf8C4xiTHmWZMGqlNYoJMxEnaDsJ2koY6UDpTTPAoFRKDMuYBSqskdeRL6PI_MIabJbSfC35db_BK1ktMQTBrxVBfnaIGnrSUux7ukFNHmU7Z8zg4S25fnMf6MHfc-N9e0DIslQk1OSgsYAXmbO8TNCqxClL6rs8wOSBm2pPde018ESXtq4fC2RM7Ke1PDqdEdm5xVeO7LnEtAbdEkqI3mmAKYZ3SH3WB3xCc7MA_Pagl0Ei3riUio4L1d7oKv99l9Wsw3-v37DqQULRN6vjqpEqZVoHQYcwzyZWJExvpuAlBBYFcl4zsThikk9dc0h41OaImd6jJWRN260cGBR3JWzdvVkjJS880ymcwacL3Cmuzy68OtvH2YNvw8eTy13l-fto6-wKLkUt-fG37JsyPh3_sFizoyfh-NPzqTYbAzXtD8B8dz067
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oFdGD1apY1xw8KcFZMjOZY1GLopSCC96GbFMr3WjHQv-9yWxVUUE8ZyHkveR9Ie99H8BJ4Pohs6XCTGn4RjzFMdcLxiGhpm6S09iWqdhE0GrR5-ewneucTops9-JLMqtpMCxNg-R8JOPzsvDN0JaYhCoPGwJyTBZhiRjNIPNcv38qX1w5DaXGBBpG6thbfGt-N8XnwDRHm18-SNO406z-e8UbsJ5DTtTIfGQTFtSgBtVCzgHlp7sGax-4Cbdg2kAyU6tHadIhHvLX7HJEapr7KxvPEOt1huNu8tJHJoW-gxjKaomRDrnKKONhEyglYpKN0tGjUjIM9cvcGzTJWHJn2_DYvHq4uMa5SAMWrk8S7Ajf4fq61TCBME8bPiR6QiF9aYXU9YPYsmM_sIXFRcgJ9ZyAMo1xNKzigvv6dtiBymA4ULuAbBrLwPC7MR4QwS0qbNcLmcel6ytHuHWwCgtFImcwN0IavajkXk53OdK7HJldjkgdTssho4y-47fOB4XZo_wkTyIntKkhjSReHc4KM8-bf5xs70-9j2GlfdmM7m5at_uw6hjokGaGH0AlGb-pQ1gW06Q7GR-l_v0ObWP5tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+multi-objective+evolutionary+algorithm+using+a+change+severity-based+adaptive+population+management+strategy&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Azzouz%2C+Radhia&rft.au=Bechikh%2C+Slim&rft.au=Said%2C+Lamjed+Ben&rft.date=2017-02-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=21&rft.issue=4&rft.spage=885&rft.epage=906&rft_id=info:doi/10.1007%2Fs00500-015-1820-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_015_1820_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon