A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy
In addition to the need for simultaneously optimizing several competing objectives, many real-world problems are also dynamic in nature. These problems are called dynamic multi-objective optimization problems. Applying evolutionary algorithms to solve dynamic optimization problems has obtained great...
Gespeichert in:
| Veröffentlicht in: | Soft computing (Berlin, Germany) Jg. 21; H. 4; S. 885 - 906 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2017
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In addition to the need for simultaneously optimizing several competing objectives, many real-world problems are also dynamic in nature. These problems are called dynamic multi-objective optimization problems. Applying evolutionary algorithms to solve dynamic optimization problems has obtained great attention among many researchers. However, most of works are restricted to the single-objective case. In this work, we propose an adaptive hybrid population management strategy using memory, local search and random strategies, to effectively handle environment dynamicity for the multi-objective case where objective functions change over time. Moreover, the proposed strategy is based on a new technique that detects the change severity, according to which it adjusts the number of memory and random solutions to be used. This ensures, on the one hand, a high level of convergence and on the other hand, the required diversity. We propose a dynamic version of the Non dominated Sorting Genetic Algorithm II, within which we integrate the above-mentioned strategies. Empirical results show that our proposal based on the use of the adaptive strategy is able to handle dynamic environments and to track the Pareto front as it changes over time. Moreover, when confronted with several recently proposed dynamic algorithms, it has presented competitive and better results on most problems. |
|---|---|
| AbstractList | In addition to the need for simultaneously optimizing several competing objectives, many real-world problems are also dynamic in nature. These problems are called dynamic multi-objective optimization problems. Applying evolutionary algorithms to solve dynamic optimization problems has obtained great attention among many researchers. However, most of works are restricted to the single-objective case. In this work, we propose an adaptive hybrid population management strategy using memory, local search and random strategies, to effectively handle environment dynamicity for the multi-objective case where objective functions change over time. Moreover, the proposed strategy is based on a new technique that detects the change severity, according to which it adjusts the number of memory and random solutions to be used. This ensures, on the one hand, a high level of convergence and on the other hand, the required diversity. We propose a dynamic version of the Non dominated Sorting Genetic Algorithm II, within which we integrate the above-mentioned strategies. Empirical results show that our proposal based on the use of the adaptive strategy is able to handle dynamic environments and to track the Pareto front as it changes over time. Moreover, when confronted with several recently proposed dynamic algorithms, it has presented competitive and better results on most problems. |
| Author | Bechikh, Slim Said, Lamjed Ben Azzouz, Radhia |
| Author_xml | – sequence: 1 givenname: Radhia orcidid: 0000-0002-0047-683X surname: Azzouz fullname: Azzouz, Radhia email: azouzradhia@gmail.com organization: SOIE Lab, University of Tunis – sequence: 2 givenname: Slim surname: Bechikh fullname: Bechikh, Slim organization: SOIE Lab, University of Tunis – sequence: 3 givenname: Lamjed Ben surname: Said fullname: Said, Lamjed Ben organization: SOIE Lab, University of Tunis |
| BookMark | eNp9kM1qGzEURkVxoY6bB8hO0LVS_WtmaUyaFgLdtGuh0chjmRlpImkMfvvKdqAQaFe6oO_c-3HuwCrE4AB4IPiRYKy-ZowFxggTgUhDMeIfwJpwxpDiql1dZ4qU5OwTuMv5iDElSrA1OG1hfw5m8hZOy1g8it3R2eJPDrpTHJfiYzDpDM04xOTLYYJL9mGABtqDCYOD2Z1c_TijzmTXQ9Ob-UrPcV5Gc8HhZIIZ3ORCgbkkU9xw_gw-7s2Y3f3buwG_vz392n1HLz-ff-y2L8gyyQuiVtKOcEk550bI1rS8HrC97HHbMKn2mOylIhZ3tu14I6hqDBOCCtLZTqqWbcCX2945xdfF5aKPcUmhntS0JQ0WinFRU-qWsinmnNxeW1-u3WtdP2qC9UWyvknWVbK-SNa8kuQdOSc_VWH_ZeiNyTVbFaa_nf4N_QFwVpJl |
| CitedBy_id | crossref_primary_10_1007_s00521_023_08369_4 crossref_primary_10_1016_j_ins_2019_02_020 crossref_primary_10_1109_TASE_2022_3168385 crossref_primary_10_1016_j_ins_2020_08_101 crossref_primary_10_1016_j_asoc_2022_109605 crossref_primary_10_1016_j_knosys_2022_108691 crossref_primary_10_1109_TEVC_2019_2912204 crossref_primary_10_1109_TCYB_2020_3017049 crossref_primary_10_1016_j_ins_2019_09_016 crossref_primary_10_1007_s10489_022_04429_9 crossref_primary_10_1016_j_neucom_2023_126761 crossref_primary_10_1016_j_eswa_2021_116127 crossref_primary_10_1109_TEVC_2022_3222844 crossref_primary_10_1016_j_ins_2021_06_054 crossref_primary_10_1109_TEVC_2022_3144180 crossref_primary_10_1109_TEVC_2017_2771451 crossref_primary_10_1016_j_ins_2024_121611 crossref_primary_10_1109_ACCESS_2019_2961980 crossref_primary_10_1007_s00500_021_05668_7 crossref_primary_10_1007_s40747_024_01369_4 crossref_primary_10_1016_j_engappai_2019_08_014 crossref_primary_10_1016_j_eswa_2025_128915 crossref_primary_10_1016_j_knosys_2022_108447 crossref_primary_10_1016_j_swevo_2022_101075 crossref_primary_10_1109_TNNLS_2023_3295461 crossref_primary_10_1016_j_jksuci_2022_11_002 crossref_primary_10_1016_j_engappai_2023_105966 crossref_primary_10_1016_j_ins_2023_119495 crossref_primary_10_1016_j_swevo_2024_101621 crossref_primary_10_1016_j_swevo_2024_101468 crossref_primary_10_1016_j_eswa_2025_129325 crossref_primary_10_1109_TIM_2025_3545216 crossref_primary_10_1145_3524495 crossref_primary_10_1109_TCC_2024_3450858 crossref_primary_10_1007_s00500_019_04365_w crossref_primary_10_1109_TEVC_2019_2922834 crossref_primary_10_1109_TEVC_2023_3241762 crossref_primary_10_1016_j_ins_2020_07_009 crossref_primary_10_1016_j_swevo_2023_101254 crossref_primary_10_1109_ACCESS_2025_3538537 crossref_primary_10_3846_tede_2019_10291 crossref_primary_10_1016_j_swevo_2024_101693 crossref_primary_10_1109_TEVC_2023_3253850 crossref_primary_10_1016_j_ins_2023_03_111 crossref_primary_10_1109_TCYB_2024_3364375 crossref_primary_10_1109_TCBB_2017_2652453 crossref_primary_10_1109_TEVC_2023_3313689 crossref_primary_10_1016_j_asoc_2019_105783 crossref_primary_10_1109_TSMC_2023_3324797 crossref_primary_10_3390_math10091587 crossref_primary_10_1016_j_ins_2022_08_072 crossref_primary_10_1016_j_swevo_2025_101900 crossref_primary_10_1007_s40747_021_00631_3 crossref_primary_10_1016_j_swevo_2025_101981 crossref_primary_10_1016_j_swevo_2023_101281 crossref_primary_10_1016_j_ins_2022_05_050 crossref_primary_10_1016_j_swevo_2023_101284 crossref_primary_10_1007_s13042_023_01918_2 crossref_primary_10_1016_j_ins_2023_04_006 crossref_primary_10_1016_j_cie_2022_108717 crossref_primary_10_1016_j_asoc_2024_112022 crossref_primary_10_1016_j_asoc_2019_105673 crossref_primary_10_1016_j_swevo_2023_101317 crossref_primary_10_1016_j_swevo_2024_101713 crossref_primary_10_1007_s00500_016_2353_1 crossref_primary_10_1016_j_ins_2024_120565 crossref_primary_10_1016_j_ins_2022_06_095 crossref_primary_10_1016_j_swevo_2023_101433 crossref_primary_10_1109_TEVC_2020_2985323 crossref_primary_10_1109_TEVC_2020_3004027 crossref_primary_10_1016_j_enconman_2023_117637 crossref_primary_10_1016_j_asoc_2024_111398 crossref_primary_10_1016_j_swevo_2020_100695 crossref_primary_10_1016_j_ins_2017_12_058 crossref_primary_10_1109_ACCESS_2020_2974324 crossref_primary_10_1016_j_knosys_2022_109173 crossref_primary_10_1016_j_eswa_2023_120951 crossref_primary_10_1016_j_neucom_2024_129291 crossref_primary_10_1109_TSMC_2023_3322718 crossref_primary_10_1109_TCYB_2021_3070434 crossref_primary_10_1016_j_engappai_2024_109741 crossref_primary_10_1007_s40815_023_01477_2 crossref_primary_10_1016_j_ins_2022_05_114 crossref_primary_10_1016_j_knosys_2022_110242 crossref_primary_10_1007_s12065_020_00523_4 crossref_primary_10_1016_j_swevo_2024_101773 crossref_primary_10_1016_j_engappai_2020_103582 crossref_primary_10_1016_j_energy_2023_128421 crossref_primary_10_1016_j_jmse_2021_05_004 crossref_primary_10_1016_j_ejor_2023_08_023 crossref_primary_10_1007_s11227_024_06832_0 crossref_primary_10_1016_j_petsci_2024_09_018 crossref_primary_10_3390_pr12010189 crossref_primary_10_1007_s10489_020_01772_7 crossref_primary_10_1109_TCYB_2021_3128584 crossref_primary_10_1016_j_swevo_2024_101529 crossref_primary_10_1109_TEVC_2019_2958075 crossref_primary_10_1109_TEVC_2021_3115036 crossref_primary_10_1016_j_ins_2024_120398 crossref_primary_10_1016_j_ins_2024_120794 crossref_primary_10_1016_j_swevo_2022_101164 crossref_primary_10_1016_j_eswa_2025_129304 |
| Cites_doi | 10.1109/TEVC.2011.2169966 10.1016/j.swevo.2011.03.001 10.1007/s10462-004-5900-6 10.1007/s12293-009-0026-7 10.1109/TEVC.2007.913070 10.1007/978-3-540-49774-5_6 10.1109/TCYB.2013.2245892 10.1007/3-540-45356-3_83 10.1007/978-3-642-38416-5_11 10.1109/CEC.2013.6557861 10.1016/j.ins.2010.12.015 10.1109/TEVC.2009.2024143 10.1109/CEC.2000.870759 10.1007/978-3-642-30665-5_12 10.1109/CEC.2014.6900569 10.1007/s00500-013-1085-8 10.1007/978-3-540-31880-4_35 10.1007/978-3-540-24653-4_53 10.1016/j.ress.2005.11.018 10.1145/2739480.2754708 10.1109/TEVC.2005.857074 10.1109/TEVC.2007.894202 10.1162/evco.2008.16.3.385 10.1007/s12293-009-0012-0 10.1109/ICEC.1997.592336 10.1145/1143997.1144187 10.1109/TEVC.2008.920671 10.1007/3-540-32400-3_9 10.1109/TEVC.2005.846356 10.1109/TEVC.2004.831456 10.1016/j.asoc.2007.07.005 10.21236/ADA229159 10.1145/2517649 10.1109/CEC.2009.4983004 10.1007/s00500-010-0547-5 10.1007/978-3-540-70928-2_60 10.1007/978-3-540-70928-2_62 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2015 Springer-Verlag Berlin Heidelberg 2015. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: Springer-Verlag Berlin Heidelberg 2015. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-015-1820-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 906 |
| ExternalDocumentID | 10_1007_s00500_015_1820_4 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c364t-2c62b1462444a569a94adacd6d098367f01f671c0bc9b485278a355251bcb6793 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394316900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Wed Nov 05 02:29:27 EST 2025 Tue Nov 18 22:15:18 EST 2025 Sat Nov 29 07:52:18 EST 2025 Fri Feb 21 02:39:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Local search-based strategy Dynamic multi-objective optimization Adaptive population management Change severity-based strategy Change severity sensing Time-changing objective functions Memory-based strategy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-2c62b1462444a569a94adacd6d098367f01f671c0bc9b485278a355251bcb6793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0047-683X |
| PQID | 2918057345 |
| PQPubID | 2043697 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2918057345 crossref_citationtrail_10_1007_s00500_015_1820_4 crossref_primary_10_1007_s00500_015_1820_4 springer_journals_10_1007_s00500_015_1820_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-01 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Ursem RK (2000) Multinational ga: multimodal optimization techniques in dynamic environments. In: Proceedings of the second genetic and evolutionary computation conference, pp 19–26 Deb K, Rao U, Karthik S (2007) Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling. In: Proceedings of the 4th international conference, EMO 2007, vol 4403, pp 803–817 JinYBrankeJEvolutionary optimization in uncertain environments: a surveyIEEE Trans Evolut Comput20059330331710.1109/TEVC.2005.846356 van Veldhuizen DA (1999) Multi-objective evolutionary algorithms: classification, analyses, and new innovations, Ph.D. thesis, Graduate School of engineering Air University GuanSUChenQMoWEvolving dynamic multi-objective optimization problems with objective replacementArtif Intell Rev200523326729310.1007/s10462-004-5900-6 LiZChenHXieZChenCSallamAEnvironment identification-based memory scheme for estimation of distribution algorithms in dynamic environmentsSci World J201420149 Ramsey CL, Grefenstette JJ (1993) Case-based initialization of genetic algorithms. In: Proceedings of the 5th international conference on genetic algorithms, pp 84–91 Bosman PAN (2007) Learning and anticipation in online dynamic optimization. In: Evolutionary computation in dynamic and uncertain environments, pp 129–152 KonakACoitDWSmithAEMulti-objective optimization using genetic algorithms: a tutorialReliab Eng Syst Saf2006919992100710.1016/j.ress.2005.11.018 Zhou A, Jin YC, Zhang Q, Sendhoff B, Tsang E (2007) Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization. In: Proceedings of the 4th international conference on evolutionary multi-criterion optimization, pp 832–846 Grefenstette JJ (1992) Genetic algorithms for changing environments. In: Proceedings of the second international conference on parallel problem solving from nature, pp 137–144 ZhangZMulti-objective optimization immune algorithm in dynamic environments and its application to greenhouse controlAppl Soft Comput20088295997110.1016/j.asoc.2007.07.005 Cámara M, Ortega J, de Toro F (2008) Parallel multi-objective optimization evolutionary algorithms in dynamic environments. In: Proceedings of the first international workshop on parallel architectures and bioinspired algorithms, vol 1, pp 13–20 YangSYaoXPopulation-based incremental learning with associative memory for dynamic environmentsIEEE Trans Evolut Comput200812554256110.1109/TEVC.2007.913070 PengXGaoXYangSEnvironment identification-based memory scheme for estimation of distribution algorithms in dynamic environmentsSoft Comput201115231132610.1007/s00500-010-0547-5 Azzouz R, Bechikh S, Said LB (2014) A multiple reference point-based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes. In: Proceedings of the IEEE congress on evolutionary computation, pp 3168–3175 Cobb HG (1990) An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments, Tech. Rep. AIC-90-001, Naval Research Laboratory GohCKTanKCA competitive–cooperative coevolutionary paradigm for dynamic multi-objective optimizationIEEE Trans Evolut Comput200913110312710.1109/TEVC.2008.920671 KooWTGohCTanKA predictive gradient strategy for multi-objective evolutionary algorithms in a fast changing environmentMemet Comput2010228711010.1007/s12293-009-0026-7 HelbigMEngelbrechtAPBenchmarks for dynamic multi-objective optimisation algorithmsACM Comput Surv20144633710.1145/25176491306.90144 Sierra M, Coello CC (2005) Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance. In: Proceedings of the third international conference on evolutionary multi-criterion optimization, vol 3410, pp 505–519 BlackwellTBrankeJMultiswarms, exclusion, and anti-convergence in dynamic environmentsIEEE Trans Evolut Comput200610445947210.1109/TEVC.2005.857074 Wang Y, Li B (2009) Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment. In: Proceedings of the IEEE congress on evolutionary computation, pp 630–637 ZhouAQuBLiHZhaoSZSuganthanbPNZhangQMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evolut Comput201111324910.1016/j.swevo.2011.03.001 Jin Y, Sendhoff B (2004) Constructing dynamic optimization test problems using the multi-objective optimization concept. In: Proceedings of the EvoWorkshops, pp 525–536 Cámara M, Ortega J, de Toro F (2007) Parallel processing for multi-objective optimization in dynamic environments. In: Proceedings of the IEEE international parallel and distributed processing symposium, pp 1–8 Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: Proceedings of the 6th international conference on parallel problem solving from nature, vol 1917, pp 849–858 Amato P, Farina M (2005) An alife-inspired evolutionary algorithm for dynamic multi-objective optimization problems. Adv Soft Comput 32:113–125 Wei J, Jia L (20113) A novel particle swarm optimization algorithm with local search for dynamic constrained multi-objective optimization problems. In: Proceedings of the IEEE congress on evolutionary computation, pp 2436–2443 Deb K (2011) Single and multi-objective dynamic optimization: two tales from an evolutionary perspective. Tech. Rep. 2011004, Kanpur Genetic Algorithms Laboratory Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution LiCYangSA general framework of multipopulation methods with clustering in undetectable dynamic environmentsIEEE Trans Evolut Comput201216455657710.1109/TEVC.2011.2169966 Oppacher F, Wineberg M (1999) The shifting balance genetic algorithm: Improving the ga in a dynamic environment. In: Proceedings of the genetic and evolutionary computation conference, vol 1, pp 504–510 WangYLiBMulti-strategy ensemble evolutionary algorithm for dynamic multi-objective optimizationMemet Comput20102132410.1007/s12293-009-0012-0 ShangRJiaoLRenYLiLWangLQuantum immune clonal coevolutionary algorithm for dynamic multiobjective optimizationSoft Comput201418474375610.1007/s00500-013-1085-81331.68212 Metaheuristics for Dynamic Optimization (2013) 433:265–289 Azzouz R, Bechikh S, Ben Said L (2015) Multi-objective optimization with dynamic constraints and objectives: new challenges for evolutionary algorithms. In: Genetic and evolutionary computation conference (GECCO 2015) Morrison RW, Jon KAD (2000) Triggered hypermutation revisited. In: Proceedings of the IEEE congress on evolutionary computation, vol. 2, pp 1025–1032 LaraASanchezGCoelloCACHcs: a new local search strategy for memetic multi-objective evolutionary algorithmsIEEE Trans Evolut Comput201014111213210.1109/TEVC.2009.2024143 ZhangQFZhouAMJinYCRm-meda: a regularity model-based multi-objective estimation of distribution algorithmIEEE Trans Evolut Comput2008121416310.1109/TEVC.2007.894202 FarinaMAmatoPDebKDynamic multi-objective optimization problems: test cases, approximations and applicationsIEEE Trans Evolut Comput20048542544210.1109/TEVC.2004.831456 Hatzakis I, Wallace D (2006) Dynamic multi-objective optimization with evolutionary algorithms: a foward-looking approach. In: Proceedings of the 2006 genetic and evolutionary computation conference, pp 1201–1208 Cedeno W, Vemuri VR (1997) On the use of niching for dynamic landscapes. In: Proceedings of the international conference on evolutionary computation, pp 361–366 Huang L, Suh I, Abraham A (2011) Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants. Inf Sci 181(11):2370–2391 Richter H (2013) Dynamic fitness landscape analysis. In: Evolutionary computation for dynamic optimization problems, vol 490, pp 269–297 YangSGenetic algorithms with memory and elitism-based immigrants in dynamic environmentEvolut Comput200816338541610.1162/evco.2008.16.3.385 ZhouAJinYZhangQA population prediction strategy for evolutionary dynamic multiobjective optimizationIEEE Trans Cybern2014441405310.1109/TCYB.2013.2245892 R Shang (1820_CR34) 2014; 18 1820_CR29 QF Zhang (1820_CR43) 2008; 12 Z Zhang (1820_CR44) 2008; 8 1820_CR9 A Lara (1820_CR25) 2010; 14 Y Jin (1820_CR21) 2005; 9 SU Guan (1820_CR17) 2005; 23 CK Goh (1820_CR15) 2009; 13 1820_CR2 M Farina (1820_CR13) 2004; 8 1820_CR40 1820_CR1 1820_CR20 1820_CR3 1820_CR6 T Blackwell (1820_CR4) 2006; 10 1820_CR5 1820_CR8 1820_CR7 1820_CR47 1820_CR28 1820_CR22 S Yang (1820_CR42) 2008; 12 C Li (1820_CR27) 2012; 16 A Zhou (1820_CR45) 2011; 1 1820_CR18 X Peng (1820_CR31) 2011; 15 A Zhou (1820_CR46) 2014; 44 A Konak (1820_CR23) 2006; 91 1820_CR30 S Yang (1820_CR41) 2008; 16 M Helbig (1820_CR19) 2014; 46 Y Wang (1820_CR39) 2010; 2 WT Koo (1820_CR24) 2010; 2 1820_CR37 1820_CR14 1820_CR36 1820_CR16 1820_CR38 1820_CR11 Z Li (1820_CR26) 2014; 2014 1820_CR33 1820_CR10 1820_CR32 1820_CR35 1820_CR12 |
| References_xml | – reference: Cobb HG (1990) An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments, Tech. Rep. AIC-90-001, Naval Research Laboratory – reference: KooWTGohCTanKA predictive gradient strategy for multi-objective evolutionary algorithms in a fast changing environmentMemet Comput2010228711010.1007/s12293-009-0026-7 – reference: Ursem RK (2000) Multinational ga: multimodal optimization techniques in dynamic environments. In: Proceedings of the second genetic and evolutionary computation conference, pp 19–26 – reference: PengXGaoXYangSEnvironment identification-based memory scheme for estimation of distribution algorithms in dynamic environmentsSoft Comput201115231132610.1007/s00500-010-0547-5 – reference: Wang Y, Li B (2009) Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment. In: Proceedings of the IEEE congress on evolutionary computation, pp 630–637 – reference: Cedeno W, Vemuri VR (1997) On the use of niching for dynamic landscapes. In: Proceedings of the international conference on evolutionary computation, pp 361–366 – reference: GohCKTanKCA competitive–cooperative coevolutionary paradigm for dynamic multi-objective optimizationIEEE Trans Evolut Comput200913110312710.1109/TEVC.2008.920671 – reference: Wei J, Jia L (20113) A novel particle swarm optimization algorithm with local search for dynamic constrained multi-objective optimization problems. In: Proceedings of the IEEE congress on evolutionary computation, pp 2436–2443 – reference: YangSYaoXPopulation-based incremental learning with associative memory for dynamic environmentsIEEE Trans Evolut Comput200812554256110.1109/TEVC.2007.913070 – reference: Hatzakis I, Wallace D (2006) Dynamic multi-objective optimization with evolutionary algorithms: a foward-looking approach. In: Proceedings of the 2006 genetic and evolutionary computation conference, pp 1201–1208 – reference: Huang L, Suh I, Abraham A (2011) Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants. Inf Sci 181(11):2370–2391 – reference: Deb K (2011) Single and multi-objective dynamic optimization: two tales from an evolutionary perspective. Tech. Rep. 2011004, Kanpur Genetic Algorithms Laboratory – reference: Richter H (2013) Dynamic fitness landscape analysis. In: Evolutionary computation for dynamic optimization problems, vol 490, pp 269–297 – reference: Azzouz R, Bechikh S, Ben Said L (2015) Multi-objective optimization with dynamic constraints and objectives: new challenges for evolutionary algorithms. In: Genetic and evolutionary computation conference (GECCO 2015) – reference: Deb K, Rao U, Karthik S (2007) Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling. In: Proceedings of the 4th international conference, EMO 2007, vol 4403, pp 803–817 – reference: Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution – reference: van Veldhuizen DA (1999) Multi-objective evolutionary algorithms: classification, analyses, and new innovations, Ph.D. thesis, Graduate School of engineering Air University – reference: LaraASanchezGCoelloCACHcs: a new local search strategy for memetic multi-objective evolutionary algorithmsIEEE Trans Evolut Comput201014111213210.1109/TEVC.2009.2024143 – reference: ShangRJiaoLRenYLiLWangLQuantum immune clonal coevolutionary algorithm for dynamic multiobjective optimizationSoft Comput201418474375610.1007/s00500-013-1085-81331.68212 – reference: Sierra M, Coello CC (2005) Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance. In: Proceedings of the third international conference on evolutionary multi-criterion optimization, vol 3410, pp 505–519 – reference: ZhangZMulti-objective optimization immune algorithm in dynamic environments and its application to greenhouse controlAppl Soft Comput20088295997110.1016/j.asoc.2007.07.005 – reference: JinYBrankeJEvolutionary optimization in uncertain environments: a surveyIEEE Trans Evolut Comput20059330331710.1109/TEVC.2005.846356 – reference: Morrison RW, Jon KAD (2000) Triggered hypermutation revisited. In: Proceedings of the IEEE congress on evolutionary computation, vol. 2, pp 1025–1032 – reference: Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: Proceedings of the 6th international conference on parallel problem solving from nature, vol 1917, pp 849–858 – reference: YangSGenetic algorithms with memory and elitism-based immigrants in dynamic environmentEvolut Comput200816338541610.1162/evco.2008.16.3.385 – reference: Cámara M, Ortega J, de Toro F (2008) Parallel multi-objective optimization evolutionary algorithms in dynamic environments. In: Proceedings of the first international workshop on parallel architectures and bioinspired algorithms, vol 1, pp 13–20 – reference: Bosman PAN (2007) Learning and anticipation in online dynamic optimization. In: Evolutionary computation in dynamic and uncertain environments, pp 129–152 – reference: FarinaMAmatoPDebKDynamic multi-objective optimization problems: test cases, approximations and applicationsIEEE Trans Evolut Comput20048542544210.1109/TEVC.2004.831456 – reference: WangYLiBMulti-strategy ensemble evolutionary algorithm for dynamic multi-objective optimizationMemet Comput20102132410.1007/s12293-009-0012-0 – reference: Zhou A, Jin YC, Zhang Q, Sendhoff B, Tsang E (2007) Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization. In: Proceedings of the 4th international conference on evolutionary multi-criterion optimization, pp 832–846 – reference: Azzouz R, Bechikh S, Said LB (2014) A multiple reference point-based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes. In: Proceedings of the IEEE congress on evolutionary computation, pp 3168–3175 – reference: Jin Y, Sendhoff B (2004) Constructing dynamic optimization test problems using the multi-objective optimization concept. In: Proceedings of the EvoWorkshops, pp 525–536 – reference: Cámara M, Ortega J, de Toro F (2007) Parallel processing for multi-objective optimization in dynamic environments. In: Proceedings of the IEEE international parallel and distributed processing symposium, pp 1–8 – reference: GuanSUChenQMoWEvolving dynamic multi-objective optimization problems with objective replacementArtif Intell Rev200523326729310.1007/s10462-004-5900-6 – reference: ZhangQFZhouAMJinYCRm-meda: a regularity model-based multi-objective estimation of distribution algorithmIEEE Trans Evolut Comput2008121416310.1109/TEVC.2007.894202 – reference: Oppacher F, Wineberg M (1999) The shifting balance genetic algorithm: Improving the ga in a dynamic environment. In: Proceedings of the genetic and evolutionary computation conference, vol 1, pp 504–510 – reference: Ramsey CL, Grefenstette JJ (1993) Case-based initialization of genetic algorithms. In: Proceedings of the 5th international conference on genetic algorithms, pp 84–91 – reference: HelbigMEngelbrechtAPBenchmarks for dynamic multi-objective optimisation algorithmsACM Comput Surv20144633710.1145/25176491306.90144 – reference: LiCYangSA general framework of multipopulation methods with clustering in undetectable dynamic environmentsIEEE Trans Evolut Comput201216455657710.1109/TEVC.2011.2169966 – reference: KonakACoitDWSmithAEMulti-objective optimization using genetic algorithms: a tutorialReliab Eng Syst Saf2006919992100710.1016/j.ress.2005.11.018 – reference: LiZChenHXieZChenCSallamAEnvironment identification-based memory scheme for estimation of distribution algorithms in dynamic environmentsSci World J201420149 – reference: ZhouAQuBLiHZhaoSZSuganthanbPNZhangQMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evolut Comput201111324910.1016/j.swevo.2011.03.001 – reference: BlackwellTBrankeJMultiswarms, exclusion, and anti-convergence in dynamic environmentsIEEE Trans Evolut Comput200610445947210.1109/TEVC.2005.857074 – reference: ZhouAJinYZhangQA population prediction strategy for evolutionary dynamic multiobjective optimizationIEEE Trans Cybern2014441405310.1109/TCYB.2013.2245892 – reference: Metaheuristics for Dynamic Optimization (2013) 433:265–289 – reference: Amato P, Farina M (2005) An alife-inspired evolutionary algorithm for dynamic multi-objective optimization problems. Adv Soft Comput 32:113–125 – reference: Grefenstette JJ (1992) Genetic algorithms for changing environments. In: Proceedings of the second international conference on parallel problem solving from nature, pp 137–144 – volume: 16 start-page: 556 issue: 4 year: 2012 ident: 1820_CR27 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2011.2169966 – volume: 1 start-page: 32 issue: 1 year: 2011 ident: 1820_CR45 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2011.03.001 – volume: 23 start-page: 267 issue: 3 year: 2005 ident: 1820_CR17 publication-title: Artif Intell Rev doi: 10.1007/s10462-004-5900-6 – volume: 2 start-page: 87 issue: 2 year: 2010 ident: 1820_CR24 publication-title: Memet Comput doi: 10.1007/s12293-009-0026-7 – ident: 1820_CR16 – volume: 2014 start-page: 9 year: 2014 ident: 1820_CR26 publication-title: Sci World J – ident: 1820_CR7 – volume: 12 start-page: 542 issue: 5 year: 2008 ident: 1820_CR42 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2007.913070 – ident: 1820_CR37 – ident: 1820_CR5 doi: 10.1007/978-3-540-49774-5_6 – volume: 44 start-page: 40 issue: 1 year: 2014 ident: 1820_CR46 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2245892 – ident: 1820_CR14 – ident: 1820_CR10 – ident: 1820_CR11 doi: 10.1007/3-540-45356-3_83 – ident: 1820_CR33 doi: 10.1007/978-3-642-38416-5_11 – ident: 1820_CR40 doi: 10.1109/CEC.2013.6557861 – ident: 1820_CR20 doi: 10.1016/j.ins.2010.12.015 – ident: 1820_CR30 – ident: 1820_CR32 – volume: 14 start-page: 112 issue: 1 year: 2010 ident: 1820_CR25 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2009.2024143 – ident: 1820_CR6 – ident: 1820_CR29 doi: 10.1109/CEC.2000.870759 – ident: 1820_CR28 doi: 10.1007/978-3-642-30665-5_12 – ident: 1820_CR3 doi: 10.1109/CEC.2014.6900569 – volume: 18 start-page: 743 issue: 4 year: 2014 ident: 1820_CR34 publication-title: Soft Comput doi: 10.1007/s00500-013-1085-8 – ident: 1820_CR35 doi: 10.1007/978-3-540-31880-4_35 – ident: 1820_CR22 doi: 10.1007/978-3-540-24653-4_53 – volume: 91 start-page: 992 issue: 9 year: 2006 ident: 1820_CR23 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2005.11.018 – ident: 1820_CR2 doi: 10.1145/2739480.2754708 – volume: 10 start-page: 459 issue: 4 year: 2006 ident: 1820_CR4 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2005.857074 – volume: 12 start-page: 41 issue: 1 year: 2008 ident: 1820_CR43 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2007.894202 – ident: 1820_CR36 – volume: 16 start-page: 385 issue: 3 year: 2008 ident: 1820_CR41 publication-title: Evolut Comput doi: 10.1162/evco.2008.16.3.385 – volume: 2 start-page: 3 issue: 1 year: 2010 ident: 1820_CR39 publication-title: Memet Comput doi: 10.1007/s12293-009-0012-0 – ident: 1820_CR8 doi: 10.1109/ICEC.1997.592336 – ident: 1820_CR18 doi: 10.1145/1143997.1144187 – volume: 13 start-page: 103 issue: 1 year: 2009 ident: 1820_CR15 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2008.920671 – ident: 1820_CR1 doi: 10.1007/3-540-32400-3_9 – volume: 9 start-page: 303 issue: 3 year: 2005 ident: 1820_CR21 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2005.846356 – volume: 8 start-page: 425 issue: 5 year: 2004 ident: 1820_CR13 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2004.831456 – volume: 8 start-page: 959 issue: 2 year: 2008 ident: 1820_CR44 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.07.005 – ident: 1820_CR9 doi: 10.21236/ADA229159 – volume: 46 start-page: 37 issue: 3 year: 2014 ident: 1820_CR19 publication-title: ACM Comput Surv doi: 10.1145/2517649 – ident: 1820_CR38 doi: 10.1109/CEC.2009.4983004 – volume: 15 start-page: 311 issue: 2 year: 2011 ident: 1820_CR31 publication-title: Soft Comput doi: 10.1007/s00500-010-0547-5 – ident: 1820_CR12 doi: 10.1007/978-3-540-70928-2_60 – ident: 1820_CR47 doi: 10.1007/978-3-540-70928-2_62 |
| SSID | ssj0021753 |
| Score | 2.5011606 |
| Snippet | In addition to the need for simultaneously optimizing several competing objectives, many real-world problems are also dynamic in nature. These problems are... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 885 |
| SubjectTerms | Artificial Intelligence Classification Computational Intelligence Control Engineering Evolutionary algorithms Genetic algorithms Mathematical Logic and Foundations Mechatronics Methodologies and Application Multiple objective analysis Optimization techniques Pareto optimization Robotics Sorting algorithms Strategy |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwGA06PXhx_sTplBw8KcEmTdv0JEMcgjA8KOxW8mtTmVtd62D_vUmadii4i-c2aeAl3_eafHkPgMskjFOOlUZcG_pGIy2QMANGKWX23qRgI6yc2UQyGLDhMH3yG26FL6usY6IL1Gom7R75DUkxs-J9NLrNP5F1jbKnq95CYxNsYUKwneePCWp-uLwKpaEEhkWa1FufagZORDSyd6pxhKyEOaI_89KKbP46H3Vpp9_-74D3wK4nnLBXzZB9sKGnB6BdmzlAv7YPwaIHVeVOD12RIZqJ9yoYQr3w85PPl5BPxuYr5esHtCXzY8hhdXcYmhSrrRMesolRQa547lrnjUUY_GhqbWBRqeIuj8BL__757gF5UwYkw5iWiMiYCBNeDS2gPDJAp9R0KFWsgpSFcTIK8ChOsAyETAVlEUkYN5zG0CghRWyiwTFoTWdTfQIgZiOVWD03LhIqRcAkDqOUR0KFsSYy7ICghiSTXrHcGmdMskZr2aGYGRQzi2JGO-CqaZJXch3rXu7WyGV-5RbZCrYOuK6xXz3-s7PT9Z2dgR1iCYGr9-6CVjn_0udgWy7Kt2J-4abtN6g_8-s priority: 102 providerName: ProQuest |
| Title | A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy |
| URI | https://link.springer.com/article/10.1007/s00500-015-1820-4 https://www.proquest.com/docview/2918057345 |
| Volume | 21 |
| WOSCitedRecordID | wos000394316900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-7479 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-7479 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6setCDj6pYrSUHT0qgu5vdzR6rVAShFF8UL0terRVtS7sW_PdO9lUVFfSylzwImWTmWzLzfQDHoRdEwtGGCoPwjflGUokLphHjtm5S8r6jU7GJsNPhvV7Uzeu4Z0W2e_EkmXrqstjNUpXYJCqfWtJxyiqwgtGO29t4fXNf_mXl1JOIAxA6YrwtnjK_m-JzMFogzC-Pommsudj81yq3YCOHlqSVnYVtWDKjKmwWsg0kv8VVWP_AQbgD8xbRmSo9SZML6Vg-ZU6QmHl-LsX0jYjnwXg6TB5fiE2VHxBBspphgqHVWAU8agOiJkKLSTp6UkqDkZcyx4bMMjbct124u2jfnl_SXIyBKi9gCXVV4Ep0qwgHmPDRwBHDCZUONNrAC8J-0-kHoaOaUkWScd8NuUAsg_BJKhmgF9iD5dF4ZPaBOLyvQ8vjJmTIlGxy5Xh-JHypvcC4yqtBs7BKrHKmciuY8RyXHMvpLse4y7Hd5ZjV4KQcMsloOn7rXC9MHec3dha7kcMtOSTza3BamHbR_ONkB3_qfQhrrsUFadp3HZaT6as5glU1T4azaQNWztqd7nUDKlchxW_Xf2ikh_sd75zxVw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH5CFKlcGGhBDIXiQ7lQWWSxE-eAKgRFIOiIA5UQl-BtWDQbM9Op5k_xG_vsLCOQ4Mah5ySWnXxvcfze9wF8S-Mkk6GxVFpM3xi3iiqcMM2YcH2TSrRD48Um0lZLXF1lF3PwVPXCuLLKyid6R2362v0j34uyUDjyPsZ_DB6pU41yp6uVhEYBizM7_YtbttH-6RF-350oOv55eXhCS1UBquOEjWmkk0ihf8C4xiTHmWZMGqlNYoJMxEnaDsJ2koY6UDpTTPAoFRKDMuYBSqskdeRL6PI_MIabJbSfC35db_BK1ktMQTBrxVBfnaIGnrSUux7ukFNHmU7Z8zg4S25fnMf6MHfc-N9e0DIslQk1OSgsYAXmbO8TNCqxClL6rs8wOSBm2pPde018ESXtq4fC2RM7Ke1PDqdEdm5xVeO7LnEtAbdEkqI3mmAKYZ3SH3WB3xCc7MA_Pagl0Ei3riUio4L1d7oKv99l9Wsw3-v37DqQULRN6vjqpEqZVoHQYcwzyZWJExvpuAlBBYFcl4zsThikk9dc0h41OaImd6jJWRN260cGBR3JWzdvVkjJS880ymcwacL3Cmuzy68OtvH2YNvw8eTy13l-fto6-wKLkUt-fG37JsyPh3_sFizoyfh-NPzqTYbAzXtD8B8dz067 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oFdGD1apY1xw8KcFZMjOZY1GLopSCC96GbFMr3WjHQv-9yWxVUUE8ZyHkveR9Ie99H8BJ4Pohs6XCTGn4RjzFMdcLxiGhpm6S09iWqdhE0GrR5-ewneucTops9-JLMqtpMCxNg-R8JOPzsvDN0JaYhCoPGwJyTBZhiRjNIPNcv38qX1w5DaXGBBpG6thbfGt-N8XnwDRHm18-SNO406z-e8UbsJ5DTtTIfGQTFtSgBtVCzgHlp7sGax-4Cbdg2kAyU6tHadIhHvLX7HJEapr7KxvPEOt1huNu8tJHJoW-gxjKaomRDrnKKONhEyglYpKN0tGjUjIM9cvcGzTJWHJn2_DYvHq4uMa5SAMWrk8S7Ajf4fq61TCBME8bPiR6QiF9aYXU9YPYsmM_sIXFRcgJ9ZyAMo1xNKzigvv6dtiBymA4ULuAbBrLwPC7MR4QwS0qbNcLmcel6ytHuHWwCgtFImcwN0IavajkXk53OdK7HJldjkgdTssho4y-47fOB4XZo_wkTyIntKkhjSReHc4KM8-bf5xs70-9j2GlfdmM7m5at_uw6hjokGaGH0AlGb-pQ1gW06Q7GR-l_v0ObWP5tQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+multi-objective+evolutionary+algorithm+using+a+change+severity-based+adaptive+population+management+strategy&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Azzouz%2C+Radhia&rft.au=Bechikh%2C+Slim&rft.au=Said%2C+Lamjed+Ben&rft.date=2017-02-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=21&rft.issue=4&rft.spage=885&rft.epage=906&rft_id=info:doi/10.1007%2Fs00500-015-1820-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_015_1820_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |