A Trajectory Generation Algorithm for a Re-Entry Gliding Vehicle Based on Convex Optimization in the Flight Range Domain and Distributed Grid Points Adjustment
Optimal trajectory generation for the guidance of re-entry glide vehicles is of great significance. To realize a faster generation speed and consistency with the guidance mechanism, an improved convex optimization trajectory generation algorithm based on the flight range domain for the re-entry glid...
Saved in:
| Published in: | Applied sciences Vol. 13; no. 3; p. 1988 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.02.2023
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Optimal trajectory generation for the guidance of re-entry glide vehicles is of great significance. To realize a faster generation speed and consistency with the guidance mechanism, an improved convex optimization trajectory generation algorithm based on the flight range domain for the re-entry glide vehicles is proposed in this paper. Firstly, according to the definition of the range-to-go, the projected range-to-go of the re-entry glide vehicle is presented when the dynamic model is converted to the flight range domain. Then, the attack angle and bank angle are expanded to the state variables and the change rate, which is designed as a new control variable. When the dynamic models and constraints are convexificated and discretized, the vehicle trajectory discrete convex model in the flight range domain is proposed. In order to further improve the generation speed and accuracy, an initial trajectory generation method that is close to the guidance requirements is proposed by the landing points of different control laws. In addition, by analyzing the nonlinear illegal degree of grid points, the probability density of grid points and the adjustment strategy of grid points are proposed. Finally, the ablation experiment shows that the initial trajectory generation and distributed grid points method works. With different target points, different no-fly zones, different initial states, and the Monte Carlo experiment, our method can effectively and robustly complete the generation. The lateral and longitudinal generation error is less than 1 km. And compared with the Gaussian pseudo-spectral method, our method obtained comparable accuracy and faster speed. |
|---|---|
| AbstractList | Optimal trajectory generation for the guidance of re-entry glide vehicles is of great significance. To realize a faster generation speed and consistency with the guidance mechanism, an improved convex optimization trajectory generation algorithm based on the flight range domain for the re-entry glide vehicles is proposed in this paper. Firstly, according to the definition of the range-to-go, the projected range-to-go of the re-entry glide vehicle is presented when the dynamic model is converted to the flight range domain. Then, the attack angle and bank angle are expanded to the state variables and the change rate, which is designed as a new control variable. When the dynamic models and constraints are convexificated and discretized, the vehicle trajectory discrete convex model in the flight range domain is proposed. In order to further improve the generation speed and accuracy, an initial trajectory generation method that is close to the guidance requirements is proposed by the landing points of different control laws. In addition, by analyzing the nonlinear illegal degree of grid points, the probability density of grid points and the adjustment strategy of grid points are proposed. Finally, the ablation experiment shows that the initial trajectory generation and distributed grid points method works. With different target points, different no-fly zones, different initial states, and the Monte Carlo experiment, our method can effectively and robustly complete the generation. The lateral and longitudinal generation error is less than 1 km. And compared with the Gaussian pseudo-spectral method, our method obtained comparable accuracy and faster speed. Featured ApplicationThe method proposed can be used for accurate trajectory generation of a re-entry glide vehicle in the flight range domain with distributed grid points. It also provides ideas for trajectory generation based on the guidance mechanism.AbstractOptimal trajectory generation for the guidance of re-entry glide vehicles is of great significance. To realize a faster generation speed and consistency with the guidance mechanism, an improved convex optimization trajectory generation algorithm based on the flight range domain for the re-entry glide vehicles is proposed in this paper. Firstly, according to the definition of the range-to-go, the projected range-to-go of the re-entry glide vehicle is presented when the dynamic model is converted to the flight range domain. Then, the attack angle and bank angle are expanded to the state variables and the change rate, which is designed as a new control variable. When the dynamic models and constraints are convexificated and discretized, the vehicle trajectory discrete convex model in the flight range domain is proposed. In order to further improve the generation speed and accuracy, an initial trajectory generation method that is close to the guidance requirements is proposed by the landing points of different control laws. In addition, by analyzing the nonlinear illegal degree of grid points, the probability density of grid points and the adjustment strategy of grid points are proposed. Finally, the ablation experiment shows that the initial trajectory generation and distributed grid points method works. With different target points, different no-fly zones, different initial states, and the Monte Carlo experiment, our method can effectively and robustly complete the generation. The lateral and longitudinal generation error is less than 1 km. And compared with the Gaussian pseudo-spectral method, our method obtained comparable accuracy and faster speed. |
| Author | Li, Mingjie Zhou, Chijun Lei, Humin Luo, Changxin Shao, Lei |
| Author_xml | – sequence: 1 givenname: Mingjie surname: Li fullname: Li, Mingjie – sequence: 2 givenname: Chijun surname: Zhou fullname: Zhou, Chijun – sequence: 3 givenname: Lei surname: Shao fullname: Shao, Lei – sequence: 4 givenname: Humin surname: Lei fullname: Lei, Humin – sequence: 5 givenname: Changxin surname: Luo fullname: Luo, Changxin |
| BookMark | eNptkdtq3DAQhk1JoWmaq76AoJfFrQ62ZV1uN8k2EEgJaW_FRAevjC25kjY0fZm-arXZBkKJLkbD8P_fjDRvqyMfvKmq9wR_Ykzgz7AshGFGRN-_qo4p5l3NGsKPnuVvqtOURlyOIKwn-Lj6s0K3EUajcogPaGO8iZBd8Gg1DSG6vJ2RDREBujH1uc97zeS08wP6YbZOTQZ9gWQ0Ko518PfmF7pespvd7wPFeZS3Bl1MbthmdAN-MOgszFDq4DU6cylHd7fLhbCJTqNvwfmc0EqPu5Rn4_O76rWFKZnTf_dJ9f3i_Hb9tb663lyuV1e1Yl2Ta9oqQfqWY8Cqb0SjoYUSLTAooSNMgzJaK8GZocCtsFhbyinWPdW2B3ZSXR64OsAol-hmiA8ygJOPhRAHCTHvHyxpbwhlXUtMacWZgjvdtML2-1bUtqywPhxYSww_dyZlOYZd9GV8STkXAuOmw0VFDioVQ0rRWKlcfvy1HMFNkmC5X6t8ttbi-fif52nSl9R_AQZ4p2Y |
| CitedBy_id | crossref_primary_10_3390_aerospace11040314 |
| Cites_doi | 10.2514/1.49557 10.2514/1.G003537 10.1109/RAST.2011.5966833 10.1109/TAES.2018.2890375 10.1080/00207160.2020.1807521 10.1016/j.cja.2019.12.003 10.2514/1.G001210 10.3390/aerospace9030135 10.1016/j.ast.2021.106946 10.1155/2022/7188718 10.1109/TAES.2016.150741 10.1016/j.ast.2014.08.004 10.1016/j.actaastro.2019.03.027 10.1007/s11071-020-05707-2 10.1155/2017/8521368 10.2514/1.A34102 10.3390/s22187066 10.2514/1.A34640 10.1177/0954410015573973 10.2514/1.52136 10.1016/j.ast.2020.106374 10.1007/s42064-017-0003-8 10.1016/j.ast.2019.03.052 10.1177/0954410020914809 10.1108/AEAT-06-2018-0159 10.1155/2022/7313586 10.2514/1.G002150 10.1109/TCSI.2022.3151464 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app13031988 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_28e123651ec8473cabd459f83adf2f53 10_3390_app13031988 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c364t-25c918570a0c8494da5a94dfa3adfa613daceddc973e2a7f9f0df2720d82df8a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000929435300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:04:15 EDT 2025 Tue Aug 12 18:17:01 EDT 2025 Sat Nov 29 07:13:13 EST 2025 Tue Nov 18 22:36:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-25c918570a0c8494da5a94dfa3adfa613daceddc973e2a7f9f0df2720d82df8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/28e123651ec8473cabd459f83adf2f53 |
| PQID | 2779900460 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_28e123651ec8473cabd459f83adf2f53 proquest_journals_2779900460 crossref_citationtrail_10_3390_app13031988 crossref_primary_10_3390_app13031988 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_4) 2021; 42 Zhou (ref_21) 2020; 41 Li (ref_5) 2022; 2022 Darby (ref_24) 2011; 48 Wang (ref_19) 2020; 57 Sagliano (ref_22) 2021; 117 Liu (ref_9) 2017; 1 Wang (ref_16) 2019; 91 Liu (ref_10) 2016; 39 Liu (ref_15) 2019; 42 Yu (ref_31) 2022; 69 Luo (ref_2) 2020; 100 ref_18 Zang (ref_7) 2019; 89 ref_17 Zhu (ref_8) 2015; 229 Zhou (ref_20) 2020; 234 Wang (ref_12) 2018; 55 Li (ref_25) 2017; 2017 Hong (ref_13) 2019; 55 Zhang (ref_28) 2022; 2022 Zhou (ref_27) 2021; 109 ref_1 Mehrpouya (ref_23) 2021; 98 Zhao (ref_26) 2019; 160 ref_29 Wang (ref_11) 2017; 40 Liu (ref_14) 2016; 52 Yong (ref_6) 2014; 39 Xue (ref_3) 2010; 33 Yu (ref_30) 2020; 33 |
| References_xml | – volume: 33 start-page: 1273 year: 2010 ident: ref_3 article-title: Constrained Predictor–Corrector Entry Guidance publication-title: J. Guid. Control Dyn. doi: 10.2514/1.49557 – volume: 42 start-page: 65 year: 2019 ident: ref_15 article-title: Fuel-optimal rocket landing with aerodynamic controls publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G003537 – ident: ref_1 doi: 10.1109/RAST.2011.5966833 – volume: 55 start-page: 2487 year: 2019 ident: ref_13 article-title: Model predictive convex programming for constrained vehicle guidance publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2018.2890375 – volume: 98 start-page: 1146 year: 2021 ident: ref_23 article-title: A robust pseudospectral method for numerical solution of nonlinear optimal control problems publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2020.1807521 – volume: 33 start-page: 990 year: 2020 ident: ref_30 article-title: Cooperative guidance strategy for multiple hypersonic gliding vehicles system publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2019.12.003 – volume: 39 start-page: 227 year: 2016 ident: ref_10 article-title: Entry trajectory optimization by second-order cone programming publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G001210 – ident: ref_17 doi: 10.3390/aerospace9030135 – volume: 117 start-page: 106946 year: 2021 ident: ref_22 article-title: Optimal drag-energy entry guidance via pseudospectral convex optimization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106946 – volume: 2022 start-page: 7188718 year: 2022 ident: ref_28 article-title: Fast Trajectory Generation Method for Midcourse Guidance Based on Convex Optimization publication-title: Int. J. Aerosp. Eng. doi: 10.1155/2022/7188718 – volume: 52 start-page: 1881 year: 2016 ident: ref_14 article-title: Exact convex relaxation for optimal flight of aerodynamically controlled missiles publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2016.150741 – volume: 39 start-page: 211 year: 2014 ident: ref_6 article-title: An adaptive predictor–corrector reentry guidance based on self-definition way-points publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2014.08.004 – volume: 160 start-page: 401 year: 2019 ident: ref_26 article-title: Mars atmospheric entry trajectory optimization with maximum parachute deployment altitude using adaptive mesh refinement publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2019.03.027 – volume: 100 start-page: 3529 year: 2020 ident: ref_2 article-title: A new adaptive neural control scheme for hypersonic vehicle with actuators multiple constraints publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05707-2 – volume: 2017 start-page: 8521368 year: 2017 ident: ref_25 article-title: Trajectory optimization based on multi-interval mesh refinement method publication-title: Math. Probl. Eng. doi: 10.1155/2017/8521368 – volume: 55 start-page: 993 year: 2018 ident: ref_12 article-title: Autonomous entry guidance for hypersonic vehicles by convex optimization publication-title: J. Spacecr. Rocket. doi: 10.2514/1.A34102 – ident: ref_18 doi: 10.3390/s22187066 – volume: 57 start-page: 1373 year: 2020 ident: ref_19 article-title: Improved sequential convex programming algorithms for entry trajectory optimization publication-title: J. Spacecr. Rocket. doi: 10.2514/1.A34640 – volume: 229 start-page: 2321 year: 2015 ident: ref_8 article-title: Highly constrained optimal gliding guidance publication-title: Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. doi: 10.1177/0954410015573973 – ident: ref_29 – volume: 48 start-page: 433 year: 2011 ident: ref_24 article-title: Direct trajectory optimization using a variable low-order adaptive pseudospectral method publication-title: J. Spacecr. Rocket. doi: 10.2514/1.52136 – volume: 109 start-page: 106374 year: 2021 ident: ref_27 article-title: Sequential convex programming method using adaptive mesh refinement for entry trajectory planning problem publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106374 – volume: 1 start-page: 23 year: 2017 ident: ref_9 article-title: Survey of convex optimization for aerospace applications publication-title: Astrodynamics doi: 10.1007/s42064-017-0003-8 – volume: 42 start-page: 122 year: 2021 ident: ref_4 article-title: A Piecewise Predictor-corrector Re-entry Guidance Algorithm with No-fly Zone Avoidance publication-title: J. Astronaut. – volume: 89 start-page: 150 year: 2019 ident: ref_7 article-title: An on-line guidance algorithm for high L/D hypersonic reentry vehicles publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.03.052 – volume: 234 start-page: 1491 year: 2020 ident: ref_20 article-title: An improved solution method via the pole-transformation process for the maximum-crossrange problem publication-title: Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. doi: 10.1177/0954410020914809 – volume: 91 start-page: 669 year: 2019 ident: ref_16 article-title: Rapid trajectory optimization for hypersonic entry using convex optimization and pseudospectral method publication-title: Aircr. Eng. Aerosp. Technol. doi: 10.1108/AEAT-06-2018-0159 – volume: 2022 start-page: 7313586 year: 2022 ident: ref_5 article-title: An Improved Predictor-Corrector Guidance Algorithm for Reentry Glide Vehicle Based on Intelligent Flight Range Prediction and Adaptive Crossrange Corridor publication-title: Int. J. Aerosp. Eng. doi: 10.1155/2022/7313586 – volume: 40 start-page: 2603 year: 2017 ident: ref_11 article-title: Constrained trajectory optimization for planetary entry via sequential convex programming publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G002150 – volume: 69 start-page: 2567 year: 2022 ident: ref_31 article-title: Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2022.3151464 – volume: 41 start-page: 66 year: 2020 ident: ref_21 article-title: Entrytrajectory planning method based on 3D profile via convex optimization publication-title: Acta Aeronaut. Astronaut. Sin. |
| SSID | ssj0000913810 |
| Score | 2.265654 |
| Snippet | Optimal trajectory generation for the guidance of re-entry glide vehicles is of great significance. To realize a faster generation speed and consistency with... Featured ApplicationThe method proposed can be used for accurate trajectory generation of a re-entry glide vehicle in the flight range domain with distributed... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1988 |
| SubjectTerms | Accuracy Aircraft Algorithms Convex analysis distributed grid points adjustment dynamic model in the fight range domain Methods Optimization sequence convex optimization trajectory generation for re-entry glide vehicle Vehicles |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFLag4wAHYANEYaB32AGQItrEaZwTard2nEpVAdotcvzsLVObjCZD8Gv4q7yXuGUIxIVLDo5jO_Lze8_Pz98nxNEw18qOkDy3cKACqXEU5CNMA3SYMjOONEa2ZBPJfK7OztKFD7jVPq1yqxNbRY2V4Rj52zBJSHHyMd67qy8Bs0bx6aqn0Lgt9hipLOyJvcl0vljuoiyMeqmGg-5iXkT7ez4XZrVNe231mylqEfv_UMitlZk9-N_xPRT3vX8J404g9sUtWx6IezdQBw_Evl_PNbzyoNOvH4kfYyCzddnG8L9DV85zBuPVOXXTXKyB3FvQsLTBlMlI4HRVsN2Dz_aCu4IJ2UME-uKYE9m_wQdSRmt_yxOKEsjThNmKYwGw5BsNcFKtNZXrEuGE4XuZeYtaON0UCIuqKJsaxnh5Xbd58I_Fp9n04_H7wJM3BCYaySYIY5MyztRAD4ySqUQda3o6HWl6kBOB2lhEkyaRDXXiUjdAx4fCqEJ0SkdPRK-sSvtUgDOxJUdNoqSWyCfRSG6jSXKby8TFTvfFm-08ZsYjmzPBxiqjHQ5PenZj0vviaFf5qgP0-Hu1CQvErgqjcLcF1eY884s6C5Vl8Jp4aGlgSWR0jjJOneJfDF0c9cXhVlYyrxrq7JegPPv36-fiLnPbdynih6LXbK7tC3HHfG2KevPSS_pPthUL1g priority: 102 providerName: ProQuest |
| Title | A Trajectory Generation Algorithm for a Re-Entry Gliding Vehicle Based on Convex Optimization in the Flight Range Domain and Distributed Grid Points Adjustment |
| URI | https://www.proquest.com/docview/2779900460 https://doaj.org/article/28e123651ec8473cabd459f83adf2f53 |
| Volume | 13 |
| WOSCitedRecordID | wos000929435300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLamsQMc0DZAFMb0DjsMpIg0cZr42G7t4LASVYDGKXL8bJapTVHTofHX7F_de042FYHEhUukWI4Tvff8fsT29wlx1C91ZgdImVsUZoHUOAjKAaoAHSpmxpHGSE82kU6n2cWFyjeovnhPWAsP3ArufZRZBghJ-taQI42NLlEmymWxRhe5xON8hqnaKKa8D1Z9hq5qD-TFVNfzejC7a6qxs99CkEfq_8MR--gy2RVPu7QQhu3n7IktW--LJxtggftir5uGDRx3WNFvn4nbIVC0ufK_3n9B286ihuH8-5Lq_ssFUFYKGmY2GDOHCJzNKw5X8NVe8qtgRGEMgZ444f3nN_CJfMiiO5wJVQ2UIMJkziU8zPggApwuF5radY1wyqi7TJhFI5ytKoR8WdXrBoZ4dd347evPxZfJ-PPJh6DjXAhMPJDrIEqMYnioUIckbyVRJ5quTrO8NcV-1MYiGpXGNtKpUy4kPZCiMYvQZTp-IbbrZW1fCnAmsZRfSZQ0EqUSGinbM2lpS5m6xOmeeHevhsJ0gOTMizEvqDBhnRUbOuuJo4fOP1ocjr93G7E-H7oweLZvIJMqOpMq_mVSPXFwbw1FN6ObIkpTCty8jPzqf7zjtXjMxPXt_u8Dsb1eXds3Ysf8XFfN6lA8Go2n-ezQGzXd5R_P8293D9X_0Q |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk4UFpABFqYQ5EAycKx17F9QChpkrZqCVFUUG9mvR9tqsQpcQr01_AP-I3M2E4oAnHrgYsP6_Xaaz_PzO7svgew3UhlZJqaIjfPjRwhddNJmzp2tNUxK-MIpUQhNhH2-9HxcTxYgR-LvTC8rHJhEwtDraeK58hfe2FIhpPTeG_PPzusGsXZ1YWERgmLA3P5lYZs-Zv9Dn3f557X6x7t7DmVqoCj_KaYO16gYiZAcqWrIhELLQNJRyt9SQfybloqo7WKQ994MrSxdbXlbKWOPG0j6VO7N2BV-CIQNVhtd_uD4XJWh1k2o4ZbbgT0_djlPDS7CRrbR7-5vkIh4A8HUHi13tr_9j7uwd0qfsZWCfh1WDHZBty5wqq4AeuVvcrxRUWq_fI-fG8hueWzIkdxiWU5YxJb4xPq1vx0ghS-o8ShcbostoK74xH7dfxoTvlW2CZ_r5Gu2OGF-t_wPRnbSbWLFUcZUiSNvTHPdeCQd2xgZzqRVC4zjR2mJ2ZlMWphdzbSOJiOsnmOLX12kRfr_B_Ah2t5bQ-hlk0z8wjQqsBQICq0oJYo5pKawmIVpiYVoQ2srMOrBW4SVTG3s4DIOKERHIMsuQKyOmwvK5-XhCV_r9ZmAC6rMMt4UTCdnSSV0Uq8yDA5T9Aw9GChr2SqRRDbiLvo2cCvw-YCm0ll-vLkFzAf__v0M7i1d_TuMDnc7x88gdseRY_lcvhNqM1nF2YLbqov81E-e1r9ZQifrhvIPwFhpWva |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VFqFyAFpADRSYQ5EAyapjr-P1AaGkSUpVFKIIUG_uej9aV4ldYhfor-F_8OuYsZ1QBOLWAxcfNpuN7bydebsz-4axnXYiheloZG6eKxwudcdJOjpytNURVcbhSvGq2EQ4Gomjo2i8wn4szsJQWuXCJlaGWueK9sh3vTBEw0lhvF3bpEWM-8M3558dqiBFkdZFOY0aIofm8isu34rXB338r5973nDwYe-t01QYcJTf4aXjBSoiMSRXukrwiGsZSLxa6Uu8oKfTUhmtVRT6xpOhjayrLUUutfC0FdLHcW-wtdCPXJxda73BaDxZ7vCQ4qZou_WhQB-7UEyaXAau88VvbrCqFvCHM6g83PDu__xu7rE7Da-Gbj0RNtiKyTbZ7Stqi5tso7FjBbxoxLZf3mffu4Du-qyKXVxC3U5Yhe70BB-rPJ0B0nqQMDHOgIqwwP40JX8Pn8wp_RT0kAdowG_sUQL_N3iPRnjWnG6FNANk2DCc0h4ITOgkB_TzmcR2mWnok2wxVRzDEfbnqYZxnmZlAV19dlFU-f8P2MdreW0P2WqWZ2aLgVWBQYLKNceRkItJjXRZhYlJeGgDK1vs1QJDsWoU3amwyDTGlR0BLr4CuBbbWXY-r4VM_t6tR2BcdiH18aohn5_EjTGLPWFItCdoG7yx0Fcy0TyIrKBH9Gzgt9j2AqdxYxKL-BdIH_3742fsFqI3fncwOnzM1j0klXWW_DZbLecX5gm7qb6UaTF_2kw4YMfXjeOfcMZ0nQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Trajectory+Generation+Algorithm+for+a+Re-Entry+Gliding+Vehicle+Based+on+Convex+Optimization+in+the+Flight+Range+Domain+and+Distributed+Grid+Points+Adjustment&rft.jtitle=Applied+sciences&rft.au=Li%2C+Mingjie&rft.au=Zhou%2C+Chijun&rft.au=Shao%2C+Lei&rft.au=Lei%2C+Humin&rft.date=2023-02-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=3&rft.spage=1988&rft_id=info:doi/10.3390%2Fapp13031988&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13031988 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |