A non-conforming least-squares finite element method for incompressible fluid flow problems

SUMMARYIn this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids Jg. 72; H. 3; S. 375 - 402
Hauptverfasser: Bochev, Pavel, Lai, James, Olson, Luke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bognor Regis Blackwell Publishing Ltd 30.05.2013
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0271-2091, 1097-0363
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract SUMMARYIn this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA. We formulate and study numerically a new locally conservative least‐squares FEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and pressure. The method achieves nearly perfect conservation of mass on a series of challenging test problems. Numerical results show excellent agreement with benchmark lid‐driven cavity results. We also propose a simple diagonal pre‐conditioner for the dV–VP formulation, which significantly reduces the condition number of the least‐squares FEM problem.
AbstractList SUMMARYIn this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA. We formulate and study numerically a new locally conservative least‐squares FEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and pressure. The method achieves nearly perfect conservation of mass on a series of challenging test problems. Numerical results show excellent agreement with benchmark lid‐driven cavity results. We also propose a simple diagonal pre‐conditioner for the dV–VP formulation, which significantly reduces the condition number of the least‐squares FEM problem.
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C 0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.
SUMMARY In this paper, we develop least-squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity-vorticity-pressure Stokes system, which uses a piecewise divergence-free basis for the velocity and standard C super(0) elements for the vorticity and the pressure. The new method, which we term dV-VP improves upon our previous discontinuous stream-function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second-order terms from the least-squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one-half of the dimension of a stream-function element of equal accuracy. In two dimensions, the discontinuous stream-function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV-VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA. We formulate and study numerically a new locally conservative least-squares FEM for the velocity-vorticity-pressure Stokes system, which uses a piecewise divergence-free basis for the velocity and standard C super(0) elements for the vorticity and pressure. The method achieves nearly perfect conservation of mass on a series of challenging test problems. Numerical results show excellent agreement with benchmark lid-driven cavity results. We also propose a simple diagonal pre-conditioner for the dV-VP formulation, which significantly reduces the condition number of the least-squares FEM problem.
SUMMARY In this paper, we develop least-squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity-vorticity-pressure Stokes system, which uses a piecewise divergence-free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV-VP improves upon our previous discontinuous stream-function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second-order terms from the least-squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one-half of the dimension of a stream-function element of equal accuracy. In two dimensions, the discontinuous stream-function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV-VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA. [PUBLICATION ABSTRACT]
Author Lai, James
Olson, Luke
Bochev, Pavel
Author_xml – sequence: 1
  givenname: Pavel
  surname: Bochev
  fullname: Bochev, Pavel
  email: Correspondence to: Pavel Bochev, Sandia National Laboratories, Mail Stop 1320, Albuquerque, NM 87185-1320, USA., pbboche@sandia.gov
  organization: Numerical Analysis and Applications Department, Sandia National Laboratories, NM, 87185-1320, Mail Stop 1320, Albuquerque, USA
– sequence: 2
  givenname: James
  surname: Lai
  fullname: Lai, James
  organization: Department of Computer Science, University of Illinois at Urbana-Champaign, IL, 61801, Urbana, USA
– sequence: 3
  givenname: Luke
  surname: Olson
  fullname: Olson, Luke
  organization: Department of Computer Science, University of Illinois at Urbana-Champaign, IL, 61801, Urbana, USA
BookMark eNp10MFu1DAQBmALFYltQeIRLHHhkmVsJ3ZyrAotFaty2dIDB8tJJuDi2FvbUenb19VWRSB6GsnzeWb0H5IDHzwS8pbBmgHwD5Mb10LV7QuyYtCpCoQUB2QFXLGKQ8dekcOUrgGg461Yke_HtAyohuCnEGfrf1CHJuUq3SwmYqKT9TYjRYcz-kxnzD_DSIul1g9h3hWTbO-QTm6xpeHCLd3FUF7m9Jq8nIxL-OaxHpHL00_bk8_V5uvZ-cnxphqErNuqn8a-AdaYqasNByN7WSvGsRsQGywVWTsqgFa1DSBjYuhG2QsGfcOhNUYckff7uWXxzYIp69mmAZ0zHsOSNKtFp7hqGlHou3_odViiL9dpJriSLRNMFrXeqyGGlCJOerDZZBt8jsY6zUA_ZK1L1voh6z8XPH3YRTubePc_Wu3prXV496zTp5uPf3ubMv5-8ib-0lIJ1eirizP9RW6_qYZv9ZW4B9mqnpk
CODEN IJNFDW
CitedBy_id crossref_primary_10_1080_00207160_2018_1445230
crossref_primary_10_1007_s40314_022_01863_w
crossref_primary_10_1016_j_cam_2017_04_011
crossref_primary_10_1016_j_cma_2022_115246
crossref_primary_10_1093_imanum_draa094
crossref_primary_10_1016_j_cam_2019_112696
crossref_primary_10_1016_j_cma_2018_01_043
crossref_primary_10_1137_19M1239593
crossref_primary_10_1007_s10915_025_02882_5
crossref_primary_10_1007_s00211_015_0749_y
crossref_primary_10_1002_num_22028
crossref_primary_10_1137_130943091
crossref_primary_10_1016_j_cma_2020_112902
crossref_primary_10_1093_imanum_drae105
crossref_primary_10_1080_00207160_2024_2402336
crossref_primary_10_1016_j_camwa_2016_01_033
Cites_doi 10.1016/j.jcp.2004.08.013
10.1137/S0097539794273368
10.1007/BFb0064470
10.1137/0727085
10.1090/S0025-5718-1994-1257573-4
10.1016/j.jcp.2007.05.005
10.1137/S0036142994276001
10.1145/1089014.1089021
10.1016/j.jcp.2010.04.021
10.1016/0021-9991(82)90058-4
10.1007/s10915-005-9030-3
10.1002/fld.2536
10.1016/j.camwa.2005.10.016
10.1137/1.9780898719208
10.1002/fld.1566
10.1007/978-1-4757-4355-5
10.1080/10618560108970023
10.1002/(SICI)1098-2426(199903)15:2<237::AID-NUM7>3.0.CO;2-R
10.1016/0377-0427(96)00022-2
10.1137/080721303
10.1016/0045-7825(90)90003-5
10.1016/j.jcp.2003.09.007
10.1016/j.compfluid.2005.07.012
10.1016/S0021-9991(03)00296-1
ContentType Journal Article
Copyright Published 2012. This article is a US Government work and is in the public domain in the USA.
Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Published 2012. This article is a US Government work and is in the public domain in the USA.
– notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.3748
DatabaseName Istex
CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Aerospace Database
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 402
ExternalDocumentID 2946099331
10_1002_fld_3748
FLD3748
ark_67375_WNG_K6TV752T_W
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c3648-bfdb5015af94a20a6b64712e9cee5e2e9e18d70087850e113c9d6b310b5208aa3
IEDL.DBID DRFUL
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318003600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Sun Nov 09 12:28:43 EST 2025
Fri Jul 25 10:13:41 EDT 2025
Sat Nov 29 03:27:48 EST 2025
Tue Nov 18 20:52:48 EST 2025
Sun Sep 21 06:26:14 EDT 2025
Tue Nov 11 03:32:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3648-bfdb5015af94a20a6b64712e9cee5e2e9e18d70087850e113c9d6b310b5208aa3
Notes ark:/67375/WNG-K6TV752T-W
istex:0A1DC01600C51DF763DF8C20F6573FBF9A74EB08
ArticleID:FLD3748
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
PQID 1327681316
PQPubID 996375
PageCount 28
ParticipantIDs proquest_miscellaneous_1439727553
proquest_journals_1327681316
crossref_citationtrail_10_1002_fld_3748
crossref_primary_10_1002_fld_3748
wiley_primary_10_1002_fld_3748_FLD3748
istex_primary_ark_67375_WNG_K6TV752T_W
PublicationCentury 2000
PublicationDate 30 May 2013
PublicationDateYYYYMMDD 2013-05-30
PublicationDate_xml – month: 05
  year: 2013
  text: 30 May 2013
  day: 30
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Ern A, Guermond J-L. Theory and Practice of Finite Elements, no. 159 in Applied Mathematical Sciences. Springer Verlag: New York, 2004.
Chang CL, Nelson JJ. Least-squares finite element method for the Stokes problem with zero residual of mass conservation. SIAM Journal on Numerical Analysis 1997; 34(2):480-489.
Karakashian O, Katsaounis T. Numerical simulation of incompressible fluid flow using locally solenoidal elements. Computers & Mathematics with Applications 2006; 51(9-10):1551-1570.
Bochev P, Lai J, Olson L. A locally conservative, discontinuous least-squares finite element method for the Stokes equations. International Journal for Numerical Methods in Fluids 2012; 68(6):782-804.
Heys JJ, Lee E, Manteuffel TA, McCormick SF. An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation. Journal of Computational Physics 2007; 226(1):994-1006.
Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS. An overview of the Trilinos project. ACM Transactions on Mathematical Software 2005; 31(3):397-423.
Crouzeix M, Raviart P. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO-Mathematical Modelling and Numerical Analysis 1973; 3:33-76.
Proot MM, Gerritsma MI. Mass- and momentum conservation of the least-squares spectral element method for the Stokes problem. Journal of Scientific Computing 2006 June; 27:389-401.
Ciarlet P. The Finite Element Method for Elliptic Problems, SIAM Classics in Applied Mathematics. SIAM: Philadelphia, 2002.
Kanschat G, Riviere B. A strongly conservative finite element method for the coupling of Stokes and Darcy flow. Journal of Computational Physics 2010; 229(17):5933-5943.
Bochev P. Analysis of least-squares finite element methods for the Navier-Stokes equations. SIAM Journal on Numerical Analysis 1997; 34(5):1817-1844.
Bochev P, Choi J. A comparative study of least-squares, SUPG and Galerkin methods for convection problems. International Journal of Fluid Dynamics 2001; 15(2):127-146.
Bochev P, Ridzal D, Peterson K. Intrepid: Interoperable Tools For Compatible Discretizations. Sandia National Laboratories: Albuquerque, NM, 2010. (Available from: http://trilinos.sandia.gov/packages/intrepid/).
Gunzburger MD. Finite Element Methods for Viscous Incompressible Flows. Academic Press: Boston, 1989.
Kanschat G. Divergence-free discontinuous Galerkin schemes for the Stokes equations and the mac scheme. International Journal for Numerical Methods in Fluids 2008; 56(7):941-950.
Cockburn B, Li F, Shu C-W. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. Journal of Computational Physics 2004; 194(2):588-610.
Bochev P. Negative norm least-squares methods for the velocity-vorticity-pressure Navier-Stokes equations. Numerical Methods for Partial Differential Equations 1999; 15:237-256.
Bochev P, Gunzburger M. Analysis of least-squares finite element methods for the Stokes equations. Mathematics of Computation 1994; 63:479-506.
Jiang B-N, Chang C. Least-squares finite elements for the Stokes problem. Computer Methods in Applied Mechanics and Engineering 1990; 78:297-311.
Bazilevs Y, Hughes T. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers & Fluids 2007; 36:12-26. Challenges and Advances in Flow Simulation and Modeling.
Baker GA, Jureidini WN, Karakashian OA. Piecewise solenoidal vector fields and the Stokes problem. SIAM Journal on Numerical Analysis 1990; 27(6):1466-1485.
Pontaza JP, Reddy JN. Spectral/hp least-squares finite element formulation for the Navier-Stokes equations. Journal of Computational Physics 2003; 190(2):523-549.
Bramble JH, Pasciak JE. Least-squares methods for Stokes equations based on a discrete minus one inner product. Journal of Computational and Applied Mathematics 1996; 74(1-2):155-173.
Bolton P, Thatcher RW. On mass conservation in least-squares methods. Journal of Computational Physics 2005; 203(1):287-304.
Bochev P, Gunzburger M. Least-Squares Finite Element Methods, Applied Mathematical Sciences, Vol. 166. Springer Verlag: Berlin, Heidelberg, New York, 2009.
Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48(3):387-411.
Heys JJ, Lee E, Manteuffel TA, McCormick SF, Ruge JW. Enhanced mass conservation in least-squares methods for Navier-Stokes equations. SIAM Journal of Scientific Computing 2009; 31(3):2303-2321.
1990; 78
2007; 226
2006; 51
2010; 229
2010
1996; 74
2008; 56
2006
2003; 190
2004
2002
1991
1994; 63
2007; 36
1977
1982; 48
2009; 31
1990; 27
2006; 27
2005; 203
2004; 194
1999; 15
1997; 34
2009; 166
2005; 31
2001; 15
2012; 68
2009; 5910
1989
1973; 3
e_1_2_9_30_1
e_1_2_9_31_1
Bochev P (e_1_2_9_6_1) 2009
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
Bochev P (e_1_2_9_7_1) 2009
Bochev P (e_1_2_9_9_1) 2010
Bochev P (e_1_2_9_18_1) 1994; 63
Gunzburger MD (e_1_2_9_12_1) 1989
Crouzeix M (e_1_2_9_17_1) 1973; 3
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Bochev P, Choi J. A comparative study of least-squares, SUPG and Galerkin methods for convection problems. International Journal of Fluid Dynamics 2001; 15(2):127-146.
– reference: Baker GA, Jureidini WN, Karakashian OA. Piecewise solenoidal vector fields and the Stokes problem. SIAM Journal on Numerical Analysis 1990; 27(6):1466-1485.
– reference: Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48(3):387-411.
– reference: Crouzeix M, Raviart P. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO-Mathematical Modelling and Numerical Analysis 1973; 3:33-76.
– reference: Ciarlet P. The Finite Element Method for Elliptic Problems, SIAM Classics in Applied Mathematics. SIAM: Philadelphia, 2002.
– reference: Gunzburger MD. Finite Element Methods for Viscous Incompressible Flows. Academic Press: Boston, 1989.
– reference: Pontaza JP, Reddy JN. Spectral/hp least-squares finite element formulation for the Navier-Stokes equations. Journal of Computational Physics 2003; 190(2):523-549.
– reference: Karakashian O, Katsaounis T. Numerical simulation of incompressible fluid flow using locally solenoidal elements. Computers & Mathematics with Applications 2006; 51(9-10):1551-1570.
– reference: Bolton P, Thatcher RW. On mass conservation in least-squares methods. Journal of Computational Physics 2005; 203(1):287-304.
– reference: Bramble JH, Pasciak JE. Least-squares methods for Stokes equations based on a discrete minus one inner product. Journal of Computational and Applied Mathematics 1996; 74(1-2):155-173.
– reference: Bazilevs Y, Hughes T. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers & Fluids 2007; 36:12-26. Challenges and Advances in Flow Simulation and Modeling.
– reference: Bochev P, Ridzal D, Peterson K. Intrepid: Interoperable Tools For Compatible Discretizations. Sandia National Laboratories: Albuquerque, NM, 2010. (Available from: http://trilinos.sandia.gov/packages/intrepid/).
– reference: Kanschat G, Riviere B. A strongly conservative finite element method for the coupling of Stokes and Darcy flow. Journal of Computational Physics 2010; 229(17):5933-5943.
– reference: Heys JJ, Lee E, Manteuffel TA, McCormick SF. An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation. Journal of Computational Physics 2007; 226(1):994-1006.
– reference: Jiang B-N, Chang C. Least-squares finite elements for the Stokes problem. Computer Methods in Applied Mechanics and Engineering 1990; 78:297-311.
– reference: Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS. An overview of the Trilinos project. ACM Transactions on Mathematical Software 2005; 31(3):397-423.
– reference: Bochev P, Gunzburger M. Analysis of least-squares finite element methods for the Stokes equations. Mathematics of Computation 1994; 63:479-506.
– reference: Bochev P. Negative norm least-squares methods for the velocity-vorticity-pressure Navier-Stokes equations. Numerical Methods for Partial Differential Equations 1999; 15:237-256.
– reference: Bochev P, Lai J, Olson L. A locally conservative, discontinuous least-squares finite element method for the Stokes equations. International Journal for Numerical Methods in Fluids 2012; 68(6):782-804.
– reference: Heys JJ, Lee E, Manteuffel TA, McCormick SF, Ruge JW. Enhanced mass conservation in least-squares methods for Navier-Stokes equations. SIAM Journal of Scientific Computing 2009; 31(3):2303-2321.
– reference: Bochev P. Analysis of least-squares finite element methods for the Navier-Stokes equations. SIAM Journal on Numerical Analysis 1997; 34(5):1817-1844.
– reference: Chang CL, Nelson JJ. Least-squares finite element method for the Stokes problem with zero residual of mass conservation. SIAM Journal on Numerical Analysis 1997; 34(2):480-489.
– reference: Kanschat G. Divergence-free discontinuous Galerkin schemes for the Stokes equations and the mac scheme. International Journal for Numerical Methods in Fluids 2008; 56(7):941-950.
– reference: Bochev P, Gunzburger M. Least-Squares Finite Element Methods, Applied Mathematical Sciences, Vol. 166. Springer Verlag: Berlin, Heidelberg, New York, 2009.
– reference: Cockburn B, Li F, Shu C-W. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. Journal of Computational Physics 2004; 194(2):588-610.
– reference: Ern A, Guermond J-L. Theory and Practice of Finite Elements, no. 159 in Applied Mathematical Sciences. Springer Verlag: New York, 2004.
– reference: Proot MM, Gerritsma MI. Mass- and momentum conservation of the least-squares spectral element method for the Stokes problem. Journal of Scientific Computing 2006 June; 27:389-401.
– volume: 27
  start-page: 1466
  issue: 6
  year: 1990
  end-page: 1485
  article-title: Piecewise solenoidal vector fields and the Stokes problem
  publication-title: SIAM Journal on Numerical Analysis
– volume: 36
  start-page: 12
  year: 2007
  end-page: 26
  article-title: Weak imposition of Dirichlet boundary conditions in fluid mechanics
  publication-title: Computers & Fluids
– volume: 5910
  start-page: 637
  year: 2009
  end-page: 644
– year: 1989
– volume: 63
  start-page: 479
  year: 1994
  end-page: 506
  article-title: Analysis of least‐squares finite element methods for the Stokes equations
  publication-title: Mathematics of Computation
– volume: 194
  start-page: 588
  issue: 2
  year: 2004
  end-page: 610
  article-title: Locally divergence‐free discontinuous Galerkin methods for the Maxwell equations
  publication-title: Journal of Computational Physics
– volume: 15
  start-page: 237
  year: 1999
  end-page: 256
  article-title: Negative norm least‐squares methods for the velocity–vorticity–pressure Navier–Stokes equations
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 51
  start-page: 1551
  issue: 9‐10
  year: 2006
  end-page: 1570
  article-title: Numerical simulation of incompressible fluid flow using locally solenoidal elements
  publication-title: Computers & Mathematics with Applications
– volume: 27
  start-page: 389
  year: 2006
  end-page: 401
  article-title: Mass‐ and momentum conservation of the least‐squares spectral element method for the Stokes problem
  publication-title: Journal of Scientific Computing
– volume: 56
  start-page: 941
  issue: 7
  year: 2008
  end-page: 950
  article-title: Divergence‐free discontinuous Galerkin schemes for the Stokes equations and the mac scheme
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 48
  start-page: 387
  issue: 3
  year: 1982
  end-page: 411
  article-title: High‐Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
  publication-title: Journal of Computational Physics
– volume: 68
  start-page: 782
  issue: 6
  year: 2012
  end-page: 804
  article-title: A locally conservative, discontinuous least‐squares finite element method for the Stokes equations
  publication-title: International Journal for Numerical Methods in Fluids
– year: 2010
– volume: 3
  start-page: 33
  year: 1973
  end-page: 76
  article-title: Conforming and nonconforming finite element methods for solving the stationary Stokes equations
  publication-title: RAIRO‐Mathematical Modelling and Numerical Analysis
– volume: 229
  start-page: 5933
  issue: 17
  year: 2010
  end-page: 5943
  article-title: A strongly conservative finite element method for the coupling of Stokes and Darcy flow
  publication-title: Journal of Computational Physics
– volume: 74
  start-page: 155
  issue: 1‐2
  year: 1996
  end-page: 173
  article-title: Least‐squares methods for Stokes equations based on a discrete minus one inner product
  publication-title: Journal of Computational and Applied Mathematics
– volume: 34
  start-page: 480
  issue: 2
  year: 1997
  end-page: 489
  article-title: Least‐squares finite element method for the Stokes problem with zero residual of mass conservation
  publication-title: SIAM Journal on Numerical Analysis
– year: 2002
– volume: 31
  start-page: 2303
  issue: 3
  year: 2009
  end-page: 2321
  article-title: Enhanced mass conservation in least‐squares methods for Navier–Stokes equations
  publication-title: SIAM Journal of Scientific Computing
– volume: 203
  start-page: 287
  issue: 1
  year: 2005
  end-page: 304
  article-title: On mass conservation in least‐squares methods
  publication-title: Journal of Computational Physics
– year: 2006
– year: 2004
– volume: 78
  start-page: 297
  year: 1990
  end-page: 311
  article-title: Least‐squares finite elements for the Stokes problem
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 166
  year: 2009
– start-page: 293
  year: 1977
  end-page: 315
– volume: 15
  start-page: 127
  issue: 2
  year: 2001
  end-page: 146
  article-title: A comparative study of least‐squares, SUPG and Galerkin methods for convection problems
  publication-title: International Journal of Fluid Dynamics
– volume: 226
  start-page: 994
  issue: 1
  year: 2007
  end-page: 1006
  article-title: An alternative least‐squares formulation of the Navier–Stokes equations with improved mass conservation
  publication-title: Journal of Computational Physics
– year: 1991
– volume: 31
  start-page: 397
  issue: 3
  year: 2005
  end-page: 423
  article-title: An overview of the Trilinos project
  publication-title: ACM Transactions on Mathematical Software
– volume: 190
  start-page: 523
  issue: 2
  year: 2003
  end-page: 549
  article-title: Spectral/hp least‐squares finite element formulation for the Navier–Stokes equations
  publication-title: Journal of Computational Physics
– volume: 34
  start-page: 1817
  issue: 5
  year: 1997
  end-page: 1844
  article-title: Analysis of least‐squares finite element methods for the Navier–Stokes equations
  publication-title: SIAM Journal on Numerical Analysis
– ident: e_1_2_9_19_1
  doi: 10.1016/j.jcp.2004.08.013
– volume-title: Intrepid: Interoperable Tools For Compatible Discretizations
  year: 2010
  ident: e_1_2_9_9_1
– ident: e_1_2_9_20_1
  doi: 10.1137/S0097539794273368
– ident: e_1_2_9_27_1
  doi: 10.1007/BFb0064470
– ident: e_1_2_9_11_1
  doi: 10.1137/0727085
– volume: 63
  start-page: 479
  year: 1994
  ident: e_1_2_9_18_1
  article-title: Analysis of least‐squares finite element methods for the Stokes equations
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1994-1257573-4
– ident: e_1_2_9_3_1
  doi: 10.1137/S0097539794273368
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jcp.2007.05.005
– ident: e_1_2_9_30_1
  doi: 10.1137/S0036142994276001
– ident: e_1_2_9_8_1
  doi: 10.1145/1089014.1089021
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jcp.2010.04.021
– ident: e_1_2_9_33_1
  doi: 10.1016/0021-9991(82)90058-4
– ident: e_1_2_9_4_1
  doi: 10.1007/s10915-005-9030-3
– ident: e_1_2_9_2_1
  doi: 10.1002/fld.2536
– ident: e_1_2_9_16_1
  doi: 10.1016/j.camwa.2005.10.016
– ident: e_1_2_9_13_1
  doi: 10.1137/1.9780898719208
– volume: 3
  start-page: 33
  year: 1973
  ident: e_1_2_9_17_1
  article-title: Conforming and nonconforming finite element methods for solving the stationary Stokes equations
  publication-title: RAIRO‐Mathematical Modelling and Numerical Analysis
– start-page: 637
  volume-title: Proceedings of lssc 2009
  year: 2009
  ident: e_1_2_9_7_1
– ident: e_1_2_9_24_1
– ident: e_1_2_9_29_1
  doi: 10.1002/fld.1566
– ident: e_1_2_9_10_1
– ident: e_1_2_9_14_1
  doi: 10.1007/978-1-4757-4355-5
– ident: e_1_2_9_31_1
  doi: 10.1080/10618560108970023
– ident: e_1_2_9_25_1
  doi: 10.1002/(SICI)1098-2426(199903)15:2<237::AID-NUM7>3.0.CO;2-R
– volume-title: Least‐Squares Finite Element Methods
  year: 2009
  ident: e_1_2_9_6_1
– ident: e_1_2_9_26_1
  doi: 10.1016/0377-0427(96)00022-2
– ident: e_1_2_9_22_1
  doi: 10.1137/080721303
– ident: e_1_2_9_23_1
  doi: 10.1016/0045-7825(90)90003-5
– volume-title: Finite Element Methods for Viscous Incompressible Flows
  year: 1989
  ident: e_1_2_9_12_1
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jcp.2003.09.007
– ident: e_1_2_9_32_1
  doi: 10.1016/j.compfluid.2005.07.012
– ident: e_1_2_9_5_1
  doi: 10.1016/S0021-9991(03)00296-1
SSID ssj0009283
Score 2.1622736
Snippet SUMMARYIn this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we...
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we...
SUMMARY In this paper, we develop least-squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically,...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 375
SubjectTerms Boundary conditions
Computational fluid dynamics
Conservation
discontinuous elements
Finite element analysis
Finite element method
Fluid flow
Least squares method
least-squares finite element methods
mass conservation
Mathematical analysis
Mathematical models
piecewise divergence-free velocity
pressure
Stokes and Navier-Stokes equations
Stokes law (fluid mechanics)
stream function
Studies
vorticity
Title A non-conforming least-squares finite element method for incompressible fluid flow problems
URI https://api.istex.fr/ark:/67375/WNG-K6TV752T-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.3748
https://www.proquest.com/docview/1327681316
https://www.proquest.com/docview/1439727553
Volume 72
WOSCitedRecordID wos000318003600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VXQ5woKWAuqVURqrKKTTxTxIfK8pSiWpVVVvam2UnjrQi3YVNl3LkEXhGnoSZxLttJZCQOFlyJvLI4_F8TsbfAOx5K6UWNol4XthIVmUW6dLnkatcgXty7HJftsUmstEov7zUpyGrku7CdPwQqw9u5Bntfk0Obl1zcEsaWtXlW-JOeQB9jstW9aB_dDY8P7ml3OUdCSfPUBMMi0vq2ZgfLN-9F4z6NK_f7yHNu3i1DTjD9f9RdQOeBJjJDrt18RTW_HQT1gPkZMGhm014fIeP8BmYQzadTX_9-ImHZAKz2MlqKu6DXc3XBV1VYtWEUCrzXdo56ypQM5RmxPNw1eXVutqzql5M8EE9u2Ghak3zHM6H78fvjqNQgSEqRCrJYqVTCBhspaXlsU1disGMe41mVB5bn-RlRrR2uYp9kohCl6lDxOgUj3NrxQvood5-CxgvlZOIlarUKgRBhXZCpi4WWmbSa6EH8GZpClMEenKqklGbjliZG5xFQ7M4gNcryS8dJccfZPZba64E7PwzpbBlylyMPpiP6fhTpvjYXAxgZ2luE7y3MXhCx1NYIpIUx1o9Rr-jnyl26mcLlCEkxzOlBI7VGv-vypjhyRG12_8q-BIe8bbqhopEvAO96_nCv4KHxbfrSTPfDev8N4BsBAY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLhJwaKGAurQFIyE4hSb-SWJxqmiXoi4rhLa0N8tOHGnVdLdsusCRR-AZeRJm8rNtJZCQOFmyJ7LlmfF8duxvAF54K6UWNgp4mtlAFnkS6NyngStchmty6FKf18kmktEoPT3VH1fgTfcWpuGHWB64kWfU6zU5OB1I716xhhZl_prIU25BT6IVoXn39j8NjodXnLu8YeHkCQ4F42LHPRvy3e7bG9GoRxP7_QbUvA5Y64gzWP-vsd6HtRZosr3GMh7Aip9uwHoLOlnr0tUG3LvGSPgQzB6bzqa_fvzEbTLBWaxkJaX3warqy4IeK7FiQjiV-ebiOWtyUDOUZsT0cN7crHWlZ0W5mGBDOfvG2rw11SM4HhyM3x4GbQ6GIBOxJJ3lTiFksIWWloc2djGGM-41KlJ5LH2U5gkR26Uq9FEkMp3HDjGjUzxMrRWPYRXH7TeB8Vw5iWipiK1CGJRpJ2TsQqFlIr0Wug-vOl2YrCUopzwZpWmolbnBWTQ0i314vpS8aEg5_iDzslbnUsDOz-gSW6LMyeidOYrHnxPFx-akD9udvk3rv5XBPTruwyIRxdjXshk9j36n2KmfLVCGsBxPlBLYV639vw7GDIb7VD75V8FncOdw_GFohu9HR1twl9c5OFQgwm1YvZwv_A7czr5eTqr509bofwMEOwf2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VXYTgQKGAWChgJASn0MQfSSxOFUsAdbWq0Jb2ZtmJI60Iu2XTBY78BH4jv4SZfGxbCSQkTpaciWx5PJ7nxH4P4Jm3Umpho4CnuQ1kWSSBLnwauNLluCaHLvVFIzaRTKfpyYk-3IJX_V2Ylh9i88GNIqNZrynA_WlR7p2zhpZV8ZLIU67AUJKGzACG4w_Z0eScc5e3LJw8wa5gXuy5Z0O-1797KRsNaWC_X4KaFwFrk3Gy7f_q6y242QFNtt_OjNuw5Rc7sN2BTtaFdL0DNy4wEt4Bs88Wy8WvHz9xm0xwFitZRfI-WFV_WdNlJVbOCacy3x48Z60GNUNrRkwPn9uTta7yrKzWc3xQLb-xTremvgtH2ZvZ63dBp8EQ5CKW5LPCKYQMttTS8tDGLsZ0xr1GRyqPpY_SIiFiu1SFPopErovYIWZ0ioepteIeDLDf_j4wXignES2VsVUIg3LthIxdKLRMpNdCj-BF7wuTdwTlpJNRmZZamRscRUOjOIKnG8vTlpTjDzbPG3duDOzqEx1iS5Q5nr41B_HsY6L4zByPYLf3t-nitza4R8d9WCSiGNvaPMbIo98pduGXa7QhLMcTpQS21Xj_r50x2WRM5YN_NXwC1w7HmZm8nx48hOu8keBQgQh3YXC2WvtHcDX_ejavV4-7Of8bhXMHcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-conforming+least-squares+finite+element+method+for+incompressible+fluid+flow+problems&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Bochev%2C+Pavel&rft.au=Lai%2C+James&rft.au=Olson%2C+Luke&rft.date=2013-05-30&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=72&rft.issue=3&rft.spage=375&rft.epage=402&rft_id=info:doi/10.1002%2Ffld.3748&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon