A non-conforming least-squares finite element method for incompressible fluid flow problems
SUMMARYIn this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis f...
Gespeichert in:
| Veröffentlicht in: | International journal for numerical methods in fluids Jg. 72; H. 3; S. 375 - 402 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bognor Regis
Blackwell Publishing Ltd
30.05.2013
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0271-2091, 1097-0363 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | SUMMARYIn this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.
We formulate and study numerically a new locally conservative least‐squares FEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and pressure. The method achieves nearly perfect conservation of mass on a series of challenging test problems. Numerical results show excellent agreement with benchmark lid‐driven cavity results. We also propose a simple diagonal pre‐conditioner for the dV–VP formulation, which significantly reduces the condition number of the least‐squares FEM problem. |
|---|---|
| AbstractList | SUMMARYIn this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.
We formulate and study numerically a new locally conservative least‐squares FEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and pressure. The method achieves nearly perfect conservation of mass on a series of challenging test problems. Numerical results show excellent agreement with benchmark lid‐driven cavity results. We also propose a simple diagonal pre‐conditioner for the dV–VP formulation, which significantly reduces the condition number of the least‐squares FEM problem. In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C 0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA. SUMMARY In this paper, we develop least-squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity-vorticity-pressure Stokes system, which uses a piecewise divergence-free basis for the velocity and standard C super(0) elements for the vorticity and the pressure. The new method, which we term dV-VP improves upon our previous discontinuous stream-function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second-order terms from the least-squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one-half of the dimension of a stream-function element of equal accuracy. In two dimensions, the discontinuous stream-function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV-VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA. We formulate and study numerically a new locally conservative least-squares FEM for the velocity-vorticity-pressure Stokes system, which uses a piecewise divergence-free basis for the velocity and standard C super(0) elements for the vorticity and pressure. The method achieves nearly perfect conservation of mass on a series of challenging test problems. Numerical results show excellent agreement with benchmark lid-driven cavity results. We also propose a simple diagonal pre-conditioner for the dV-VP formulation, which significantly reduces the condition number of the least-squares FEM problem. SUMMARY In this paper, we develop least-squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity-vorticity-pressure Stokes system, which uses a piecewise divergence-free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV-VP improves upon our previous discontinuous stream-function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second-order terms from the least-squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one-half of the dimension of a stream-function element of equal accuracy. In two dimensions, the discontinuous stream-function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV-VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA. [PUBLICATION ABSTRACT] |
| Author | Lai, James Olson, Luke Bochev, Pavel |
| Author_xml | – sequence: 1 givenname: Pavel surname: Bochev fullname: Bochev, Pavel email: Correspondence to: Pavel Bochev, Sandia National Laboratories, Mail Stop 1320, Albuquerque, NM 87185-1320, USA., pbboche@sandia.gov organization: Numerical Analysis and Applications Department, Sandia National Laboratories, NM, 87185-1320, Mail Stop 1320, Albuquerque, USA – sequence: 2 givenname: James surname: Lai fullname: Lai, James organization: Department of Computer Science, University of Illinois at Urbana-Champaign, IL, 61801, Urbana, USA – sequence: 3 givenname: Luke surname: Olson fullname: Olson, Luke organization: Department of Computer Science, University of Illinois at Urbana-Champaign, IL, 61801, Urbana, USA |
| BookMark | eNp10MFu1DAQBmALFYltQeIRLHHhkmVsJ3ZyrAotFaty2dIDB8tJJuDi2FvbUenb19VWRSB6GsnzeWb0H5IDHzwS8pbBmgHwD5Mb10LV7QuyYtCpCoQUB2QFXLGKQ8dekcOUrgGg461Yke_HtAyohuCnEGfrf1CHJuUq3SwmYqKT9TYjRYcz-kxnzD_DSIul1g9h3hWTbO-QTm6xpeHCLd3FUF7m9Jq8nIxL-OaxHpHL00_bk8_V5uvZ-cnxphqErNuqn8a-AdaYqasNByN7WSvGsRsQGywVWTsqgFa1DSBjYuhG2QsGfcOhNUYckff7uWXxzYIp69mmAZ0zHsOSNKtFp7hqGlHou3_odViiL9dpJriSLRNMFrXeqyGGlCJOerDZZBt8jsY6zUA_ZK1L1voh6z8XPH3YRTubePc_Wu3prXV496zTp5uPf3ubMv5-8ib-0lIJ1eirizP9RW6_qYZv9ZW4B9mqnpk |
| CODEN | IJNFDW |
| CitedBy_id | crossref_primary_10_1080_00207160_2018_1445230 crossref_primary_10_1007_s40314_022_01863_w crossref_primary_10_1016_j_cam_2017_04_011 crossref_primary_10_1016_j_cma_2022_115246 crossref_primary_10_1093_imanum_draa094 crossref_primary_10_1016_j_cam_2019_112696 crossref_primary_10_1016_j_cma_2018_01_043 crossref_primary_10_1137_19M1239593 crossref_primary_10_1007_s10915_025_02882_5 crossref_primary_10_1007_s00211_015_0749_y crossref_primary_10_1002_num_22028 crossref_primary_10_1137_130943091 crossref_primary_10_1016_j_cma_2020_112902 crossref_primary_10_1093_imanum_drae105 crossref_primary_10_1080_00207160_2024_2402336 crossref_primary_10_1016_j_camwa_2016_01_033 |
| Cites_doi | 10.1016/j.jcp.2004.08.013 10.1137/S0097539794273368 10.1007/BFb0064470 10.1137/0727085 10.1090/S0025-5718-1994-1257573-4 10.1016/j.jcp.2007.05.005 10.1137/S0036142994276001 10.1145/1089014.1089021 10.1016/j.jcp.2010.04.021 10.1016/0021-9991(82)90058-4 10.1007/s10915-005-9030-3 10.1002/fld.2536 10.1016/j.camwa.2005.10.016 10.1137/1.9780898719208 10.1002/fld.1566 10.1007/978-1-4757-4355-5 10.1080/10618560108970023 10.1002/(SICI)1098-2426(199903)15:2<237::AID-NUM7>3.0.CO;2-R 10.1016/0377-0427(96)00022-2 10.1137/080721303 10.1016/0045-7825(90)90003-5 10.1016/j.jcp.2003.09.007 10.1016/j.compfluid.2005.07.012 10.1016/S0021-9991(03)00296-1 |
| ContentType | Journal Article |
| Copyright | Published 2012. This article is a US Government work and is in the public domain in the USA. Copyright © 2013 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Published 2012. This article is a US Government work and is in the public domain in the USA. – notice: Copyright © 2013 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1002/fld.3748 |
| DatabaseName | Istex CrossRef Aqualine Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | CrossRef Aerospace Database Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1097-0363 |
| EndPage | 402 |
| ExternalDocumentID | 2946099331 10_1002_fld_3748 FLD3748 ark_67375_WNG_K6TV752T_W |
| Genre | article |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GBZZK GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT ALUQN AAYXX CITATION O8X 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c3648-bfdb5015af94a20a6b64712e9cee5e2e9e18d70087850e113c9d6b310b5208aa3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318003600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0271-2091 |
| IngestDate | Sun Nov 09 12:28:43 EST 2025 Fri Jul 25 10:13:41 EDT 2025 Sat Nov 29 03:27:48 EST 2025 Tue Nov 18 20:52:48 EST 2025 Sun Sep 21 06:26:14 EDT 2025 Tue Nov 11 03:32:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3648-bfdb5015af94a20a6b64712e9cee5e2e9e18d70087850e113c9d6b310b5208aa3 |
| Notes | ark:/67375/WNG-K6TV752T-W istex:0A1DC01600C51DF763DF8C20F6573FBF9A74EB08 ArticleID:FLD3748 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
| PQID | 1327681316 |
| PQPubID | 996375 |
| PageCount | 28 |
| ParticipantIDs | proquest_miscellaneous_1439727553 proquest_journals_1327681316 crossref_citationtrail_10_1002_fld_3748 crossref_primary_10_1002_fld_3748 wiley_primary_10_1002_fld_3748_FLD3748 istex_primary_ark_67375_WNG_K6TV752T_W |
| PublicationCentury | 2000 |
| PublicationDate | 30 May 2013 |
| PublicationDateYYYYMMDD | 2013-05-30 |
| PublicationDate_xml | – month: 05 year: 2013 text: 30 May 2013 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical methods in fluids |
| PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Ern A, Guermond J-L. Theory and Practice of Finite Elements, no. 159 in Applied Mathematical Sciences. Springer Verlag: New York, 2004. Chang CL, Nelson JJ. Least-squares finite element method for the Stokes problem with zero residual of mass conservation. SIAM Journal on Numerical Analysis 1997; 34(2):480-489. Karakashian O, Katsaounis T. Numerical simulation of incompressible fluid flow using locally solenoidal elements. Computers & Mathematics with Applications 2006; 51(9-10):1551-1570. Bochev P, Lai J, Olson L. A locally conservative, discontinuous least-squares finite element method for the Stokes equations. International Journal for Numerical Methods in Fluids 2012; 68(6):782-804. Heys JJ, Lee E, Manteuffel TA, McCormick SF. An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation. Journal of Computational Physics 2007; 226(1):994-1006. Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS. An overview of the Trilinos project. ACM Transactions on Mathematical Software 2005; 31(3):397-423. Crouzeix M, Raviart P. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO-Mathematical Modelling and Numerical Analysis 1973; 3:33-76. Proot MM, Gerritsma MI. Mass- and momentum conservation of the least-squares spectral element method for the Stokes problem. Journal of Scientific Computing 2006 June; 27:389-401. Ciarlet P. The Finite Element Method for Elliptic Problems, SIAM Classics in Applied Mathematics. SIAM: Philadelphia, 2002. Kanschat G, Riviere B. A strongly conservative finite element method for the coupling of Stokes and Darcy flow. Journal of Computational Physics 2010; 229(17):5933-5943. Bochev P. Analysis of least-squares finite element methods for the Navier-Stokes equations. SIAM Journal on Numerical Analysis 1997; 34(5):1817-1844. Bochev P, Choi J. A comparative study of least-squares, SUPG and Galerkin methods for convection problems. International Journal of Fluid Dynamics 2001; 15(2):127-146. Bochev P, Ridzal D, Peterson K. Intrepid: Interoperable Tools For Compatible Discretizations. Sandia National Laboratories: Albuquerque, NM, 2010. (Available from: http://trilinos.sandia.gov/packages/intrepid/). Gunzburger MD. Finite Element Methods for Viscous Incompressible Flows. Academic Press: Boston, 1989. Kanschat G. Divergence-free discontinuous Galerkin schemes for the Stokes equations and the mac scheme. International Journal for Numerical Methods in Fluids 2008; 56(7):941-950. Cockburn B, Li F, Shu C-W. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. Journal of Computational Physics 2004; 194(2):588-610. Bochev P. Negative norm least-squares methods for the velocity-vorticity-pressure Navier-Stokes equations. Numerical Methods for Partial Differential Equations 1999; 15:237-256. Bochev P, Gunzburger M. Analysis of least-squares finite element methods for the Stokes equations. Mathematics of Computation 1994; 63:479-506. Jiang B-N, Chang C. Least-squares finite elements for the Stokes problem. Computer Methods in Applied Mechanics and Engineering 1990; 78:297-311. Bazilevs Y, Hughes T. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers & Fluids 2007; 36:12-26. Challenges and Advances in Flow Simulation and Modeling. Baker GA, Jureidini WN, Karakashian OA. Piecewise solenoidal vector fields and the Stokes problem. SIAM Journal on Numerical Analysis 1990; 27(6):1466-1485. Pontaza JP, Reddy JN. Spectral/hp least-squares finite element formulation for the Navier-Stokes equations. Journal of Computational Physics 2003; 190(2):523-549. Bramble JH, Pasciak JE. Least-squares methods for Stokes equations based on a discrete minus one inner product. Journal of Computational and Applied Mathematics 1996; 74(1-2):155-173. Bolton P, Thatcher RW. On mass conservation in least-squares methods. Journal of Computational Physics 2005; 203(1):287-304. Bochev P, Gunzburger M. Least-Squares Finite Element Methods, Applied Mathematical Sciences, Vol. 166. Springer Verlag: Berlin, Heidelberg, New York, 2009. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48(3):387-411. Heys JJ, Lee E, Manteuffel TA, McCormick SF, Ruge JW. Enhanced mass conservation in least-squares methods for Navier-Stokes equations. SIAM Journal of Scientific Computing 2009; 31(3):2303-2321. 1990; 78 2007; 226 2006; 51 2010; 229 2010 1996; 74 2008; 56 2006 2003; 190 2004 2002 1991 1994; 63 2007; 36 1977 1982; 48 2009; 31 1990; 27 2006; 27 2005; 203 2004; 194 1999; 15 1997; 34 2009; 166 2005; 31 2001; 15 2012; 68 2009; 5910 1989 1973; 3 e_1_2_9_30_1 e_1_2_9_31_1 Bochev P (e_1_2_9_6_1) 2009 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_33_1 Bochev P (e_1_2_9_7_1) 2009 Bochev P (e_1_2_9_9_1) 2010 Bochev P (e_1_2_9_18_1) 1994; 63 Gunzburger MD (e_1_2_9_12_1) 1989 Crouzeix M (e_1_2_9_17_1) 1973; 3 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – reference: Bochev P, Choi J. A comparative study of least-squares, SUPG and Galerkin methods for convection problems. International Journal of Fluid Dynamics 2001; 15(2):127-146. – reference: Baker GA, Jureidini WN, Karakashian OA. Piecewise solenoidal vector fields and the Stokes problem. SIAM Journal on Numerical Analysis 1990; 27(6):1466-1485. – reference: Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48(3):387-411. – reference: Crouzeix M, Raviart P. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO-Mathematical Modelling and Numerical Analysis 1973; 3:33-76. – reference: Ciarlet P. The Finite Element Method for Elliptic Problems, SIAM Classics in Applied Mathematics. SIAM: Philadelphia, 2002. – reference: Gunzburger MD. Finite Element Methods for Viscous Incompressible Flows. Academic Press: Boston, 1989. – reference: Pontaza JP, Reddy JN. Spectral/hp least-squares finite element formulation for the Navier-Stokes equations. Journal of Computational Physics 2003; 190(2):523-549. – reference: Karakashian O, Katsaounis T. Numerical simulation of incompressible fluid flow using locally solenoidal elements. Computers & Mathematics with Applications 2006; 51(9-10):1551-1570. – reference: Bolton P, Thatcher RW. On mass conservation in least-squares methods. Journal of Computational Physics 2005; 203(1):287-304. – reference: Bramble JH, Pasciak JE. Least-squares methods for Stokes equations based on a discrete minus one inner product. Journal of Computational and Applied Mathematics 1996; 74(1-2):155-173. – reference: Bazilevs Y, Hughes T. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers & Fluids 2007; 36:12-26. Challenges and Advances in Flow Simulation and Modeling. – reference: Bochev P, Ridzal D, Peterson K. Intrepid: Interoperable Tools For Compatible Discretizations. Sandia National Laboratories: Albuquerque, NM, 2010. (Available from: http://trilinos.sandia.gov/packages/intrepid/). – reference: Kanschat G, Riviere B. A strongly conservative finite element method for the coupling of Stokes and Darcy flow. Journal of Computational Physics 2010; 229(17):5933-5943. – reference: Heys JJ, Lee E, Manteuffel TA, McCormick SF. An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation. Journal of Computational Physics 2007; 226(1):994-1006. – reference: Jiang B-N, Chang C. Least-squares finite elements for the Stokes problem. Computer Methods in Applied Mechanics and Engineering 1990; 78:297-311. – reference: Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS. An overview of the Trilinos project. ACM Transactions on Mathematical Software 2005; 31(3):397-423. – reference: Bochev P, Gunzburger M. Analysis of least-squares finite element methods for the Stokes equations. Mathematics of Computation 1994; 63:479-506. – reference: Bochev P. Negative norm least-squares methods for the velocity-vorticity-pressure Navier-Stokes equations. Numerical Methods for Partial Differential Equations 1999; 15:237-256. – reference: Bochev P, Lai J, Olson L. A locally conservative, discontinuous least-squares finite element method for the Stokes equations. International Journal for Numerical Methods in Fluids 2012; 68(6):782-804. – reference: Heys JJ, Lee E, Manteuffel TA, McCormick SF, Ruge JW. Enhanced mass conservation in least-squares methods for Navier-Stokes equations. SIAM Journal of Scientific Computing 2009; 31(3):2303-2321. – reference: Bochev P. Analysis of least-squares finite element methods for the Navier-Stokes equations. SIAM Journal on Numerical Analysis 1997; 34(5):1817-1844. – reference: Chang CL, Nelson JJ. Least-squares finite element method for the Stokes problem with zero residual of mass conservation. SIAM Journal on Numerical Analysis 1997; 34(2):480-489. – reference: Kanschat G. Divergence-free discontinuous Galerkin schemes for the Stokes equations and the mac scheme. International Journal for Numerical Methods in Fluids 2008; 56(7):941-950. – reference: Bochev P, Gunzburger M. Least-Squares Finite Element Methods, Applied Mathematical Sciences, Vol. 166. Springer Verlag: Berlin, Heidelberg, New York, 2009. – reference: Cockburn B, Li F, Shu C-W. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. Journal of Computational Physics 2004; 194(2):588-610. – reference: Ern A, Guermond J-L. Theory and Practice of Finite Elements, no. 159 in Applied Mathematical Sciences. Springer Verlag: New York, 2004. – reference: Proot MM, Gerritsma MI. Mass- and momentum conservation of the least-squares spectral element method for the Stokes problem. Journal of Scientific Computing 2006 June; 27:389-401. – volume: 27 start-page: 1466 issue: 6 year: 1990 end-page: 1485 article-title: Piecewise solenoidal vector fields and the Stokes problem publication-title: SIAM Journal on Numerical Analysis – volume: 36 start-page: 12 year: 2007 end-page: 26 article-title: Weak imposition of Dirichlet boundary conditions in fluid mechanics publication-title: Computers & Fluids – volume: 5910 start-page: 637 year: 2009 end-page: 644 – year: 1989 – volume: 63 start-page: 479 year: 1994 end-page: 506 article-title: Analysis of least‐squares finite element methods for the Stokes equations publication-title: Mathematics of Computation – volume: 194 start-page: 588 issue: 2 year: 2004 end-page: 610 article-title: Locally divergence‐free discontinuous Galerkin methods for the Maxwell equations publication-title: Journal of Computational Physics – volume: 15 start-page: 237 year: 1999 end-page: 256 article-title: Negative norm least‐squares methods for the velocity–vorticity–pressure Navier–Stokes equations publication-title: Numerical Methods for Partial Differential Equations – volume: 51 start-page: 1551 issue: 9‐10 year: 2006 end-page: 1570 article-title: Numerical simulation of incompressible fluid flow using locally solenoidal elements publication-title: Computers & Mathematics with Applications – volume: 27 start-page: 389 year: 2006 end-page: 401 article-title: Mass‐ and momentum conservation of the least‐squares spectral element method for the Stokes problem publication-title: Journal of Scientific Computing – volume: 56 start-page: 941 issue: 7 year: 2008 end-page: 950 article-title: Divergence‐free discontinuous Galerkin schemes for the Stokes equations and the mac scheme publication-title: International Journal for Numerical Methods in Fluids – volume: 48 start-page: 387 issue: 3 year: 1982 end-page: 411 article-title: High‐Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method publication-title: Journal of Computational Physics – volume: 68 start-page: 782 issue: 6 year: 2012 end-page: 804 article-title: A locally conservative, discontinuous least‐squares finite element method for the Stokes equations publication-title: International Journal for Numerical Methods in Fluids – year: 2010 – volume: 3 start-page: 33 year: 1973 end-page: 76 article-title: Conforming and nonconforming finite element methods for solving the stationary Stokes equations publication-title: RAIRO‐Mathematical Modelling and Numerical Analysis – volume: 229 start-page: 5933 issue: 17 year: 2010 end-page: 5943 article-title: A strongly conservative finite element method for the coupling of Stokes and Darcy flow publication-title: Journal of Computational Physics – volume: 74 start-page: 155 issue: 1‐2 year: 1996 end-page: 173 article-title: Least‐squares methods for Stokes equations based on a discrete minus one inner product publication-title: Journal of Computational and Applied Mathematics – volume: 34 start-page: 480 issue: 2 year: 1997 end-page: 489 article-title: Least‐squares finite element method for the Stokes problem with zero residual of mass conservation publication-title: SIAM Journal on Numerical Analysis – year: 2002 – volume: 31 start-page: 2303 issue: 3 year: 2009 end-page: 2321 article-title: Enhanced mass conservation in least‐squares methods for Navier–Stokes equations publication-title: SIAM Journal of Scientific Computing – volume: 203 start-page: 287 issue: 1 year: 2005 end-page: 304 article-title: On mass conservation in least‐squares methods publication-title: Journal of Computational Physics – year: 2006 – year: 2004 – volume: 78 start-page: 297 year: 1990 end-page: 311 article-title: Least‐squares finite elements for the Stokes problem publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 166 year: 2009 – start-page: 293 year: 1977 end-page: 315 – volume: 15 start-page: 127 issue: 2 year: 2001 end-page: 146 article-title: A comparative study of least‐squares, SUPG and Galerkin methods for convection problems publication-title: International Journal of Fluid Dynamics – volume: 226 start-page: 994 issue: 1 year: 2007 end-page: 1006 article-title: An alternative least‐squares formulation of the Navier–Stokes equations with improved mass conservation publication-title: Journal of Computational Physics – year: 1991 – volume: 31 start-page: 397 issue: 3 year: 2005 end-page: 423 article-title: An overview of the Trilinos project publication-title: ACM Transactions on Mathematical Software – volume: 190 start-page: 523 issue: 2 year: 2003 end-page: 549 article-title: Spectral/hp least‐squares finite element formulation for the Navier–Stokes equations publication-title: Journal of Computational Physics – volume: 34 start-page: 1817 issue: 5 year: 1997 end-page: 1844 article-title: Analysis of least‐squares finite element methods for the Navier–Stokes equations publication-title: SIAM Journal on Numerical Analysis – ident: e_1_2_9_19_1 doi: 10.1016/j.jcp.2004.08.013 – volume-title: Intrepid: Interoperable Tools For Compatible Discretizations year: 2010 ident: e_1_2_9_9_1 – ident: e_1_2_9_20_1 doi: 10.1137/S0097539794273368 – ident: e_1_2_9_27_1 doi: 10.1007/BFb0064470 – ident: e_1_2_9_11_1 doi: 10.1137/0727085 – volume: 63 start-page: 479 year: 1994 ident: e_1_2_9_18_1 article-title: Analysis of least‐squares finite element methods for the Stokes equations publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1994-1257573-4 – ident: e_1_2_9_3_1 doi: 10.1137/S0097539794273368 – ident: e_1_2_9_21_1 doi: 10.1016/j.jcp.2007.05.005 – ident: e_1_2_9_30_1 doi: 10.1137/S0036142994276001 – ident: e_1_2_9_8_1 doi: 10.1145/1089014.1089021 – ident: e_1_2_9_28_1 doi: 10.1016/j.jcp.2010.04.021 – ident: e_1_2_9_33_1 doi: 10.1016/0021-9991(82)90058-4 – ident: e_1_2_9_4_1 doi: 10.1007/s10915-005-9030-3 – ident: e_1_2_9_2_1 doi: 10.1002/fld.2536 – ident: e_1_2_9_16_1 doi: 10.1016/j.camwa.2005.10.016 – ident: e_1_2_9_13_1 doi: 10.1137/1.9780898719208 – volume: 3 start-page: 33 year: 1973 ident: e_1_2_9_17_1 article-title: Conforming and nonconforming finite element methods for solving the stationary Stokes equations publication-title: RAIRO‐Mathematical Modelling and Numerical Analysis – start-page: 637 volume-title: Proceedings of lssc 2009 year: 2009 ident: e_1_2_9_7_1 – ident: e_1_2_9_24_1 – ident: e_1_2_9_29_1 doi: 10.1002/fld.1566 – ident: e_1_2_9_10_1 – ident: e_1_2_9_14_1 doi: 10.1007/978-1-4757-4355-5 – ident: e_1_2_9_31_1 doi: 10.1080/10618560108970023 – ident: e_1_2_9_25_1 doi: 10.1002/(SICI)1098-2426(199903)15:2<237::AID-NUM7>3.0.CO;2-R – volume-title: Least‐Squares Finite Element Methods year: 2009 ident: e_1_2_9_6_1 – ident: e_1_2_9_26_1 doi: 10.1016/0377-0427(96)00022-2 – ident: e_1_2_9_22_1 doi: 10.1137/080721303 – ident: e_1_2_9_23_1 doi: 10.1016/0045-7825(90)90003-5 – volume-title: Finite Element Methods for Viscous Incompressible Flows year: 1989 ident: e_1_2_9_12_1 – ident: e_1_2_9_15_1 doi: 10.1016/j.jcp.2003.09.007 – ident: e_1_2_9_32_1 doi: 10.1016/j.compfluid.2005.07.012 – ident: e_1_2_9_5_1 doi: 10.1016/S0021-9991(03)00296-1 |
| SSID | ssj0009283 |
| Score | 2.1622736 |
| Snippet | SUMMARYIn this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we... In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we... SUMMARY In this paper, we develop least-squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically,... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 375 |
| SubjectTerms | Boundary conditions Computational fluid dynamics Conservation discontinuous elements Finite element analysis Finite element method Fluid flow Least squares method least-squares finite element methods mass conservation Mathematical analysis Mathematical models piecewise divergence-free velocity pressure Stokes and Navier-Stokes equations Stokes law (fluid mechanics) stream function Studies vorticity |
| Title | A non-conforming least-squares finite element method for incompressible fluid flow problems |
| URI | https://api.istex.fr/ark:/67375/WNG-K6TV752T-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.3748 https://www.proquest.com/docview/1327681316 https://www.proquest.com/docview/1439727553 |
| Volume | 72 |
| WOSCitedRecordID | wos000318003600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0363 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009283 issn: 0271-2091 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VXQ5woKWAuqVURqrKKTTxTxIfK8pSiWpVVVvam2UnjrQi3YVNl3LkEXhGnoSZxLttJZCQOFlyJvLI4_F8TsbfAOx5K6UWNol4XthIVmUW6dLnkatcgXty7HJftsUmstEov7zUpyGrku7CdPwQqw9u5Bntfk0Obl1zcEsaWtXlW-JOeQB9jstW9aB_dDY8P7ml3OUdCSfPUBMMi0vq2ZgfLN-9F4z6NK_f7yHNu3i1DTjD9f9RdQOeBJjJDrt18RTW_HQT1gPkZMGhm014fIeP8BmYQzadTX_9-ImHZAKz2MlqKu6DXc3XBV1VYtWEUCrzXdo56ypQM5RmxPNw1eXVutqzql5M8EE9u2Ghak3zHM6H78fvjqNQgSEqRCrJYqVTCBhspaXlsU1disGMe41mVB5bn-RlRrR2uYp9kohCl6lDxOgUj3NrxQvood5-CxgvlZOIlarUKgRBhXZCpi4WWmbSa6EH8GZpClMEenKqklGbjliZG5xFQ7M4gNcryS8dJccfZPZba64E7PwzpbBlylyMPpiP6fhTpvjYXAxgZ2luE7y3MXhCx1NYIpIUx1o9Rr-jnyl26mcLlCEkxzOlBI7VGv-vypjhyRG12_8q-BIe8bbqhopEvAO96_nCv4KHxbfrSTPfDev8N4BsBAY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLhJwaKGAurQFIyE4hSb-SWJxqmiXoi4rhLa0N8tOHGnVdLdsusCRR-AZeRJm8rNtJZCQOFmyJ7LlmfF8duxvAF54K6UWNgp4mtlAFnkS6NyngStchmty6FKf18kmktEoPT3VH1fgTfcWpuGHWB64kWfU6zU5OB1I716xhhZl_prIU25BT6IVoXn39j8NjodXnLu8YeHkCQ4F42LHPRvy3e7bG9GoRxP7_QbUvA5Y64gzWP-vsd6HtRZosr3GMh7Aip9uwHoLOlnr0tUG3LvGSPgQzB6bzqa_fvzEbTLBWaxkJaX3warqy4IeK7FiQjiV-ebiOWtyUDOUZsT0cN7crHWlZ0W5mGBDOfvG2rw11SM4HhyM3x4GbQ6GIBOxJJ3lTiFksIWWloc2djGGM-41KlJ5LH2U5gkR26Uq9FEkMp3HDjGjUzxMrRWPYRXH7TeB8Vw5iWipiK1CGJRpJ2TsQqFlIr0Wug-vOl2YrCUopzwZpWmolbnBWTQ0i314vpS8aEg5_iDzslbnUsDOz-gSW6LMyeidOYrHnxPFx-akD9udvk3rv5XBPTruwyIRxdjXshk9j36n2KmfLVCGsBxPlBLYV639vw7GDIb7VD75V8FncOdw_GFohu9HR1twl9c5OFQgwm1YvZwv_A7czr5eTqr509bofwMEOwf2 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VXYTgQKGAWChgJASn0MQfSSxOFUsAdbWq0Jb2ZtmJI60Iu2XTBY78BH4jv4SZfGxbCSQkTpaciWx5PJ7nxH4P4Jm3Umpho4CnuQ1kWSSBLnwauNLluCaHLvVFIzaRTKfpyYk-3IJX_V2Ylh9i88GNIqNZrynA_WlR7p2zhpZV8ZLIU67AUJKGzACG4w_Z0eScc5e3LJw8wa5gXuy5Z0O-1797KRsNaWC_X4KaFwFrk3Gy7f_q6y242QFNtt_OjNuw5Rc7sN2BTtaFdL0DNy4wEt4Bs88Wy8WvHz9xm0xwFitZRfI-WFV_WdNlJVbOCacy3x48Z60GNUNrRkwPn9uTta7yrKzWc3xQLb-xTremvgtH2ZvZ63dBp8EQ5CKW5LPCKYQMttTS8tDGLsZ0xr1GRyqPpY_SIiFiu1SFPopErovYIWZ0ioepteIeDLDf_j4wXignES2VsVUIg3LthIxdKLRMpNdCj-BF7wuTdwTlpJNRmZZamRscRUOjOIKnG8vTlpTjDzbPG3duDOzqEx1iS5Q5nr41B_HsY6L4zByPYLf3t-nitza4R8d9WCSiGNvaPMbIo98pduGXa7QhLMcTpQS21Xj_r50x2WRM5YN_NXwC1w7HmZm8nx48hOu8keBQgQh3YXC2WvtHcDX_ejavV4-7Of8bhXMHcQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-conforming+least-squares+finite+element+method+for+incompressible+fluid+flow+problems&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Bochev%2C+Pavel&rft.au=Lai%2C+James&rft.au=Olson%2C+Luke&rft.date=2013-05-30&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=72&rft.issue=3&rft.spage=375&rft.epage=402&rft_id=info:doi/10.1002%2Ffld.3748&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |