High-dimensional model representation for structural reliability analysis
This paper presents a new computational tool for predicting failure probability of structural/mechanical systems subject to random loads, material properties, and geometry. The method involves high‐dimensional model representation (HDMR) that facilitates lower‐dimensional approximation of the origin...
Saved in:
| Published in: | Communications in numerical methods in engineering Vol. 25; no. 4; pp. 301 - 337 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Ltd
01.04.2009
Wiley |
| Subjects: | |
| ISSN: | 1069-8299, 1099-0887 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents a new computational tool for predicting failure probability of structural/mechanical systems subject to random loads, material properties, and geometry. The method involves high‐dimensional model representation (HDMR) that facilitates lower‐dimensional approximation of the original high‐dimensional implicit limit state/performance function, response surface generation of HDMR component functions, and Monte Carlo simulation. HDMR is a general set of quantitative model assessment and analysis tools for capturing the high‐dimensional relationships between sets of input and output model variables. It is a very efficient formulation of the system response, if higher‐order variable correlations are weak, allowing the physical model to be captured by the first few lower‐order terms. Once the approximate form of the original implicit limit state/performance function is defined, the failure probability can be obtained by statistical simulation. Results of nine numerical examples involving mathematical functions and structural mechanics problems indicate that the proposed method provides accurate and computationally efficient estimates of the probability of failure. Copyright © 2008 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | This paper presents a new computational tool for predicting failure probability of structural/mechanical systems subject to random loads, material properties, and geometry. The method involves high‐dimensional model representation (HDMR) that facilitates lower‐dimensional approximation of the original high‐dimensional implicit limit state/performance function, response surface generation of HDMR component functions, and Monte Carlo simulation. HDMR is a general set of quantitative model assessment and analysis tools for capturing the high‐dimensional relationships between sets of input and output model variables. It is a very efficient formulation of the system response, if higher‐order variable correlations are weak, allowing the physical model to be captured by the first few lower‐order terms. Once the approximate form of the original implicit limit state/performance function is defined, the failure probability can be obtained by statistical simulation. Results of nine numerical examples involving mathematical functions and structural mechanics problems indicate that the proposed method provides accurate and computationally efficient estimates of the probability of failure. Copyright © 2008 John Wiley & Sons, Ltd. This paper presents a new computational tool for predicting failure probability of structural/mechanical systems subject to random loads, material properties, and geometry. The method involves high-dimensional model representation (HDMR) that facilitates lower-dimensional approximation of the original high-dimensional implicit limit state/performance function, response surface generation of HDMR component functions, and Monte Carlo simulation. HDMR is a general set of quantitative model assessment and analysis tools for capturing the high-dimensional relationships between sets of input and output model variables. It is a very efficient formulation of the system response, if higher-order variable correlations are weak, allowing the physical model to be captured by the first few lower-order terms. Once the approximate form of the original implicit limit state/performance function is defined, the failure probability can be obtained by statistical simulation. Results of nine numerical examples involving mathematical functions and structural mechanics problems indicate that the proposed method provides accurate and computationally efficient estimates of the probability of failure. |
| Author | Prasad, A. Meher Chowdhury, Rajib Rao, B. N. |
| Author_xml | – sequence: 1 givenname: Rajib surname: Chowdhury fullname: Chowdhury, Rajib organization: Structural Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600 036, India – sequence: 2 givenname: B. N. surname: Rao fullname: Rao, B. N. email: bnrao@iitm.ac.in organization: Structural Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600 036, India – sequence: 3 givenname: A. Meher surname: Prasad fullname: Prasad, A. Meher organization: Structural Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600 036, India |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21304481$$DView record in Pascal Francis |
| BookMark | eNp10F1LwzAUBuAgE9ym4E_ojeJNZ9L0I7mU4T5kTi8GA29Cmp1oNG1n0qL793ZUBopeJZzzvOfiHaBeWZWA0DnBI4JxdK3KYkQIYUeoTzDnIWYs6-3_KQ9ZxPkJGnj_ijHmmOE-ms_M80u4MQWU3lSltEFRbcAGDrYOPJS1rNtxoCsX-No1qm6c3G-tkbmxpt4Fsg3tvPGn6FhL6-Hs-x2i1eR2NZ6Fi4fpfHyzCBVNYxYSgIRhCpBzmkQ6AgkRi2WecEYSvckSHqeAVaYJzTUAY6mkvB0ozRRTmA7RZXd266r3BnwtCuMVWCtLqBovKM1IlsVpCy--ofRKWu1kqYwXW2cK6XYiIhTHMSOtu-qccpX3DvSBECz2lYq2UrGvtKWjX1SZrqDaSWP_CoRd4MNY2P17WIyX9z-98TV8Hrx0byLNaJaI9XIqJtHT3foxwSKmX8VRmYg |
| CitedBy_id | crossref_primary_10_1016_j_cma_2017_03_028 crossref_primary_10_1016_j_amc_2015_02_007 crossref_primary_10_1016_j_compstruct_2020_112915 crossref_primary_10_1016_j_ijpvp_2010_03_020 crossref_primary_10_1016_j_ijmecsci_2011_01_009 crossref_primary_10_1177_1369433220931217 crossref_primary_10_3390_en13143520 crossref_primary_10_4028_www_scientific_net_AMM_724_3 crossref_primary_10_1016_j_nucengdes_2021_111609 crossref_primary_10_1016_j_engstruct_2018_10_083 crossref_primary_10_4028_www_scientific_net_AMM_353_356_3155 crossref_primary_10_1007_s43452_023_00786_5 crossref_primary_10_1016_j_istruc_2023_07_055 crossref_primary_10_1016_j_ast_2011_02_004 crossref_primary_10_1016_j_tws_2023_111478 crossref_primary_10_1177_00219983241230382 crossref_primary_10_1080_15376494_2024_2372852 crossref_primary_10_1007_s11831_017_9240_5 crossref_primary_10_1109_ACCESS_2025_3602203 crossref_primary_10_1109_TIP_2017_2687128 crossref_primary_10_1007_s10910_012_0026_6 crossref_primary_10_1016_j_probengmech_2015_10_005 crossref_primary_10_1080_01495739_2024_2319682 crossref_primary_10_1002_eqe_3597 crossref_primary_10_1007_s00158_015_1322_0 crossref_primary_10_1016_j_tust_2016_02_007 crossref_primary_10_1109_TCBB_2023_3292245 crossref_primary_10_1016_j_apm_2010_04_004 crossref_primary_10_1016_j_jcp_2016_05_039 crossref_primary_10_1016_j_apm_2015_03_008 crossref_primary_10_1016_j_compgeo_2018_02_011 crossref_primary_10_1108_EC_12_2019_0552 crossref_primary_10_1016_j_strusafe_2017_07_007 crossref_primary_10_1080_0305215X_2013_823195 crossref_primary_10_1016_j_cma_2017_01_007 crossref_primary_10_1002_nag_3087 crossref_primary_10_1177_00219983231191585 crossref_primary_10_1177_00219983231175468 crossref_primary_10_1016_j_cma_2019_112718 crossref_primary_10_1016_j_finel_2011_09_012 crossref_primary_10_1108_02644400810909580 crossref_primary_10_1007_s12046_009_0058_1 crossref_primary_10_1016_j_cie_2014_07_028 crossref_primary_10_1016_j_compstruct_2016_01_039 crossref_primary_10_1007_s11771_017_3666_7 crossref_primary_10_1016_j_anucene_2015_02_024 crossref_primary_10_1007_s00158_020_02724_y crossref_primary_10_1080_15732479_2016_1151446 crossref_primary_10_1016_j_ress_2024_110020 crossref_primary_10_1007_s00158_020_02665_6 crossref_primary_10_1016_j_ress_2014_01_003 crossref_primary_10_1016_j_advengsoft_2012_07_007 crossref_primary_10_1016_j_strusafe_2017_03_005 crossref_primary_10_1002_cnm_1412 crossref_primary_10_1016_j_euromechsol_2023_105188 crossref_primary_10_1016_j_jcp_2016_04_042 crossref_primary_10_1016_j_cpc_2016_08_003 crossref_primary_10_1016_j_compstruct_2021_114486 crossref_primary_10_1007_s00158_015_1251_y crossref_primary_10_1080_15376494_2022_2110338 crossref_primary_10_1007_s00158_013_0969_7 crossref_primary_10_1016_j_ress_2016_10_013 crossref_primary_10_1016_j_ress_2023_109541 crossref_primary_10_1016_j_ymssp_2023_110582 crossref_primary_10_1016_j_probengmech_2022_103359 crossref_primary_10_1016_j_jcp_2017_09_024 crossref_primary_10_1002_cnm_1381 crossref_primary_10_1016_j_probengmech_2015_06_001 crossref_primary_10_1061__ASCE_BE_1943_5592_0001917 crossref_primary_10_1108_02644401011073683 crossref_primary_10_1108_EC_09_2018_0428 crossref_primary_10_1016_j_strusafe_2018_06_004 crossref_primary_10_1002_eqe_2214 crossref_primary_10_1007_s00158_019_02294_8 crossref_primary_10_1007_s00707_024_04019_5 crossref_primary_10_1007_s10409_022_09018_x crossref_primary_10_1080_15397734_2023_2298738 crossref_primary_10_1007_s11831_017_9211_x crossref_primary_10_1007_s11831_020_09438_w crossref_primary_10_1016_j_compgeo_2010_07_007 crossref_primary_10_1007_s00158_023_03727_1 crossref_primary_10_1016_j_jcp_2010_01_033 crossref_primary_10_1016_j_strusafe_2015_10_002 crossref_primary_10_1080_15376494_2023_2275376 crossref_primary_10_1016_j_mechmachtheory_2011_05_008 crossref_primary_10_1016_j_probengmech_2019_103001 crossref_primary_10_1007_s00158_012_0834_0 crossref_primary_10_1016_j_jsv_2010_10_010 crossref_primary_10_1016_j_compstruc_2024_107318 crossref_primary_10_1080_17499518_2021_1884884 crossref_primary_10_1016_j_ymssp_2012_05_002 crossref_primary_10_4028_www_scientific_net_AMM_351_352_1648 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2024054685 crossref_primary_10_1002_nme_2440 |
| Cites_doi | 10.1016/S0951-8320(02)00229-6 10.1023/A:1010979129659 10.1061/(ASCE)0733-9399(1984)110:3(357) 10.1061/(ASCE)0733-9399(1988)114:8(1285) 10.1061/(ASCE)0733-9399(1991)117:8(1806) 10.1016/0167-4730(89)90003-9 10.1007/s004660000189 10.1016/j.strusafe.2006.10.003 10.1016/S0167-4730(97)00026-X 10.1016/S0045-7949(02)00069-X 10.1016/j.probengmech.2004.05.004 10.1029/1999JD900830 10.1016/0167-4730(90)90012-E 10.1016/S0167-4730(02)00009-7 10.1021/jp010450t 10.1023/A:1013172329778 10.1016/S0167-4730(02)00013-9 10.1002/cnm.1053 10.1023/A:1019188517934 10.1016/j.ijheatmasstransfer.2003.12.013 10.1007/BF00045337 10.1016/S0266-8920(01)00019-4 10.1016/S0167-4730(02)00045-0 10.1016/S0010-4655(98)00152-0 10.1016/0167-4730(91)90041-7 10.1016/S0009-2509(02)00417-7 10.1002/9780470316511 10.1016/S0167-4730(96)00037-9 10.1016/0167-4730(88)90028-8 |
| ContentType | Journal Article |
| Copyright | Copyright © 2008 John Wiley & Sons, Ltd. 2009 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2008 John Wiley & Sons, Ltd. – notice: 2009 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/cnm.1118 |
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics |
| EISSN | 1099-0887 |
| EndPage | 337 |
| ExternalDocumentID | 21304481 10_1002_cnm_1118 CNM1118 ark_67375_WNG_F2ZJWP50_4 |
| Genre | article |
| GrantInformation_xml | – fundername: Board of Research in Nuclear Sciences, India funderid: 2004/36/39‐BRNS/2332 |
| GroupedDBID | -~X .GA .Y3 10A 1L6 1OB 1OC 1ZS 31~ 4.4 51W 51X 52N 52O 52P 52S 52T 52W 52X 5GY 5VS 66C 6J9 7PT 8-1 8-4 8-5 930 A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADMGS ADNMO ADOZA AEFGJ AEIGN AEIMD AEUYR AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AIQQE AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN BDRZF BRXPI BSCLL BY8 CO8 CS3 D-F DCZOG DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G-S GBZZK GNP GODZA HBH HF~ HGLYW HHY HVGLF I-F JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M6O MEWTI MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM OIG P4D PALCI QB0 QRW RIWAO RJQFR ROL RYL SAMSI SUPJJ TN5 TUS UB1 VH1 WIB WIH WIK WQJ WXSBR XG1 XPP XV2 ZY4 ~02 AAYXX CITATION O8X IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3648-1ee5803eeb9352f2eae284ab59815fd75946e0c7f13bfee886a39e0ccf8c8c03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000265311100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1069-8299 |
| IngestDate | Fri Jul 11 16:59:25 EDT 2025 Mon Jul 21 09:14:34 EDT 2025 Sat Nov 29 06:28:03 EST 2025 Tue Nov 18 21:02:50 EST 2025 Sun Sep 21 06:20:36 EDT 2025 Sun Sep 21 06:17:52 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 4 |
| Keywords | Monte Carlo method Statistical analysis Probabilistic approach Rupture moving least squares Structural reliability Modeling high-dimensional model representation System with n degrees of freedom Least squares method Mechanical system Random load Response surface Implicit function theorem failure probability Non linear effect Random medium Quantitative analysis Structural analysis Input output model |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3648-1ee5803eeb9352f2eae284ab59815fd75946e0c7f13bfee886a39e0ccf8c8c03 |
| Notes | istex:380E41709102E2FEC6F4B5419CCEB79B57A8F507 ark:/67375/WNG-F2ZJWP50-4 ArticleID:CNM1118 Board of Research in Nuclear Sciences, India - No. 2004/36/39-BRNS/2332 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 33717746 |
| PQPubID | 23500 |
| PageCount | 37 |
| ParticipantIDs | proquest_miscellaneous_33717746 pascalfrancis_primary_21304481 crossref_primary_10_1002_cnm_1118 crossref_citationtrail_10_1002_cnm_1118 wiley_primary_10_1002_cnm_1118_CNM1118 istex_primary_ark_67375_WNG_F2ZJWP50_4 |
| PublicationCentury | 2000 |
| PublicationDate | April 2009 |
| PublicationDateYYYYMMDD | 2009-04-01 |
| PublicationDate_xml | – month: 04 year: 2009 text: April 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | Communications in numerical methods in engineering |
| PublicationTitleAlternate | Commun. Numer. Meth. Engng |
| PublicationYear | 2009 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Der Kiureghian A, Dakessian T. Multiple design points in first and second-order reliability. Structural Safety 1998; 20(1):37-49. Wang SW, Levy II H, Li G, Rabitz H. Fully equivalent operational models for atmospheric chemical kinetics within global chemistry-transport models. Journal of Geophysical Research 1999; 104(D23):30417-30426. Guan XL, Melchers RE. Effect of response surface parameter variation on structural reliability estimates. Structural Safety 2001; 23(4):429-444. Singh IV. A numerical solution of composite heat transfer problems using meshless method. International Journal of Heat and Mass Transfer 2004; 47:2123-2138. Zhou J, Nowak AS. Integration formulas to evaluate functions of random variables. Structural Safety 1988; 5(4):267-284. Liu PL, Der Kiureghian A. Finite element reliability of geometrically nonlinear uncertain structures. Journal of Engineering Mechanics (ASCE) 1991; 117(8):1806-1825. Au SK, Beck JL. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics 2001; 16(4):263-277. Penmetsa RC, Grandhi RV. Efficient estimation of structural reliability for problems with uncertain intervals. Computers and Structures 2002; 80:1103-1112. Alis OF, Rabitz H. Efficient implementation of high dimensional model representations. Journal of Mathematical Chemistry 2001; 29(2):127-142. Melchers RE. Importance sampling in structural systems. Structural Safety 1989; 6(1):3-10. Sobol IM. Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and Computational Experiment 1993; 1:407-414. Sobol IM. Theorems and examples on high dimensional model representations. Reliability Engineering and System Safety 2003; 79(2):187-193. Rackwitz R. Reliability analysis-a review and some perspectives. Structural Safety 2001; 23(4):365-395. Wen YK. Method for random vibration of hysteretic systems. Journal of Engineering Mechanics (ASCE) 1976; 102(EM2):249-263. Breitung K, Faravelli L. Log-likelihood maximization and response surface in reliability assessment. Nonlinear Dynamics 1994; 5(3):273-285. Ditlevsen O. Uncertainty Modeling. McGraw-Hill: New York, NY, 1981. Gayton N, Bourinet JM, Lemaire M. CQ2RS: a new statistical approach to the response surface method for reliability analysis. Structural Safety 2003; 25(1):99-121. Rabitz H, Alis OF. General foundations of high dimensional model representations. Journal of Mathematical Chemistry 1999; 25(2-3):197-233. Bjerager P. Probability integration by directional simulation. Journal of Engineering Mechanics (ASCE) 1988; 114(8):285-1302. Li G, Rosenthal C, Rabitz H. High dimensional model representations. Journal of Physical Chemistry A 2001; 105:7765-7777. Lancaster P, Salkauskas K. Curve and Surface Fitting: An Introduction. Academic Press: London, 1986. Madsen HO, Krenk S, Lind NC. Methods of Structural Safety. Prentice-Hall: Englewood Cliffs, NJ, 1986. Schuëller GI, Pradlwarter HW, Koutsourelakis PS. A critical appraisal of reliability estimation procedures for high dimensions. Probabilistic Engineering Mechanics 2004; 19(4):463-474. Ditlevsen O, Madsen HO. Structural Reliability Methods. Wiley: Chichester, 1996. Bucher CG, Bourgund U. A fast and efficient response surface approach for structural reliability problem. Structural Safety 1990; 7(1):57-66. Rabitz H, Alis OF, Shorter J, Shim K. Efficient input-output model representations. Computer Physics Communications 1999; 117(1-2):11-20. Rubinstein RY. Simulation and the Monte Carlo Method. Wiley: New York, 1981. Breitung K. Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics (ASCE) 1984; 110(3):357-366. Li G, Wang SW, Rabitz H, Wang S, Jaffé P. Global uncertainty assessments by high dimensional model representations (HDMR). Chemical Engineering Science 2002; 57(21):4445-4460. Gavin HP, Yau SC. High-order limit state functions in the response surface method for structural reliability analysis. Structural Safety 2007. DOI: 10.1016/j.strusafe.2006.10.003. Rao BN, Rahman S. An efficient meshless method for fracture analysis of cracks. Computational Mechanics 2000; 26:398-408. Kim SH, Na SW. Response surface method using vector projected sampling points. Structural Safety 1997; 19(1):3-19. Liu PL, Der Kiureghian A. Optimization algorithms for structural reliability analysis. Structural Safety 1991; 9(3):161-177. Li G, Wang SW, Rabitz H. High dimensional model representations generated from low dimensional data samples-I. mp-Cut-HDMR. Journal of Mathematical Chemistry 2001; 30(1):1-30. Chowdhury R, Rao BN, Prasad AM. High dimensional model representation for piece wise continuous function approximation. Communications in Numerical Methods in Engineering 2007. DOI: 10.1002/cnm.1053. 1976; 102 2000; 26 2004; 47 1989; 6 2002; 57 1999; 25 2003; 79 1996 2007 2005 2002; 80 2001; 23 1991; 117 1999; 104 1993; 1 1998; 20 1991; 9 2001; 105 1984; 110 2001 2004; 19 1988; 5 1988; 114 1997; 19 1986 2003; 25 2001; 16 1981 1999; 117 1994; 5 1990; 7 2001; 30 Sobol IM (e_1_2_1_22_2) 1993; 1 Ditlevsen O (e_1_2_1_30_2) 1981 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 Lancaster P (e_1_2_1_23_2) 1986 Wen YK (e_1_2_1_34_2) 1976; 102 Madsen HO (e_1_2_1_2_2) 1986 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_32_2 ADINA R&D, Inc (e_1_2_1_33_2) 2005 Ditlevsen O (e_1_2_1_4_2) 1996 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
| References_xml | – reference: Rabitz H, Alis OF, Shorter J, Shim K. Efficient input-output model representations. Computer Physics Communications 1999; 117(1-2):11-20. – reference: Au SK, Beck JL. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics 2001; 16(4):263-277. – reference: Alis OF, Rabitz H. Efficient implementation of high dimensional model representations. Journal of Mathematical Chemistry 2001; 29(2):127-142. – reference: Ditlevsen O, Madsen HO. Structural Reliability Methods. Wiley: Chichester, 1996. – reference: Penmetsa RC, Grandhi RV. Efficient estimation of structural reliability for problems with uncertain intervals. Computers and Structures 2002; 80:1103-1112. – reference: Lancaster P, Salkauskas K. Curve and Surface Fitting: An Introduction. Academic Press: London, 1986. – reference: Guan XL, Melchers RE. Effect of response surface parameter variation on structural reliability estimates. Structural Safety 2001; 23(4):429-444. – reference: Sobol IM. Theorems and examples on high dimensional model representations. Reliability Engineering and System Safety 2003; 79(2):187-193. – reference: Rao BN, Rahman S. An efficient meshless method for fracture analysis of cracks. Computational Mechanics 2000; 26:398-408. – reference: Der Kiureghian A, Dakessian T. Multiple design points in first and second-order reliability. Structural Safety 1998; 20(1):37-49. – reference: Ditlevsen O. Uncertainty Modeling. McGraw-Hill: New York, NY, 1981. – reference: Bjerager P. Probability integration by directional simulation. Journal of Engineering Mechanics (ASCE) 1988; 114(8):285-1302. – reference: Schuëller GI, Pradlwarter HW, Koutsourelakis PS. A critical appraisal of reliability estimation procedures for high dimensions. Probabilistic Engineering Mechanics 2004; 19(4):463-474. – reference: Singh IV. A numerical solution of composite heat transfer problems using meshless method. International Journal of Heat and Mass Transfer 2004; 47:2123-2138. – reference: Liu PL, Der Kiureghian A. Finite element reliability of geometrically nonlinear uncertain structures. Journal of Engineering Mechanics (ASCE) 1991; 117(8):1806-1825. – reference: Bucher CG, Bourgund U. A fast and efficient response surface approach for structural reliability problem. Structural Safety 1990; 7(1):57-66. – reference: Madsen HO, Krenk S, Lind NC. Methods of Structural Safety. Prentice-Hall: Englewood Cliffs, NJ, 1986. – reference: Zhou J, Nowak AS. Integration formulas to evaluate functions of random variables. Structural Safety 1988; 5(4):267-284. – reference: Li G, Wang SW, Rabitz H. High dimensional model representations generated from low dimensional data samples-I. mp-Cut-HDMR. Journal of Mathematical Chemistry 2001; 30(1):1-30. – reference: Wang SW, Levy II H, Li G, Rabitz H. Fully equivalent operational models for atmospheric chemical kinetics within global chemistry-transport models. Journal of Geophysical Research 1999; 104(D23):30417-30426. – reference: Chowdhury R, Rao BN, Prasad AM. High dimensional model representation for piece wise continuous function approximation. Communications in Numerical Methods in Engineering 2007. DOI: 10.1002/cnm.1053. – reference: Melchers RE. Importance sampling in structural systems. Structural Safety 1989; 6(1):3-10. – reference: Breitung K. Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics (ASCE) 1984; 110(3):357-366. – reference: Liu PL, Der Kiureghian A. Optimization algorithms for structural reliability analysis. Structural Safety 1991; 9(3):161-177. – reference: Breitung K, Faravelli L. Log-likelihood maximization and response surface in reliability assessment. Nonlinear Dynamics 1994; 5(3):273-285. – reference: Li G, Wang SW, Rabitz H, Wang S, Jaffé P. Global uncertainty assessments by high dimensional model representations (HDMR). Chemical Engineering Science 2002; 57(21):4445-4460. – reference: Rackwitz R. Reliability analysis-a review and some perspectives. Structural Safety 2001; 23(4):365-395. – reference: Rubinstein RY. Simulation and the Monte Carlo Method. Wiley: New York, 1981. – reference: Li G, Rosenthal C, Rabitz H. High dimensional model representations. Journal of Physical Chemistry A 2001; 105:7765-7777. – reference: Sobol IM. Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and Computational Experiment 1993; 1:407-414. – reference: Gavin HP, Yau SC. High-order limit state functions in the response surface method for structural reliability analysis. Structural Safety 2007. DOI: 10.1016/j.strusafe.2006.10.003. – reference: Kim SH, Na SW. Response surface method using vector projected sampling points. Structural Safety 1997; 19(1):3-19. – reference: Wen YK. Method for random vibration of hysteretic systems. Journal of Engineering Mechanics (ASCE) 1976; 102(EM2):249-263. – reference: Rabitz H, Alis OF. General foundations of high dimensional model representations. Journal of Mathematical Chemistry 1999; 25(2-3):197-233. – reference: Gayton N, Bourinet JM, Lemaire M. CQ2RS: a new statistical approach to the response surface method for reliability analysis. Structural Safety 2003; 25(1):99-121. – volume: 16 start-page: 263 issue: 4 year: 2001 end-page: 277 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probabilistic Engineering Mechanics – volume: 5 start-page: 273 issue: 3 year: 1994 end-page: 285 article-title: Log‐likelihood maximization and response surface in reliability assessment publication-title: Nonlinear Dynamics – year: 1981 – volume: 6 start-page: 3 issue: 1 year: 1989 end-page: 10 article-title: Importance sampling in structural systems publication-title: Structural Safety – year: 2005 – volume: 30 start-page: 1 issue: 1 year: 2001 end-page: 30 article-title: High dimensional model representations generated from low dimensional data samples—I. mp‐Cut‐HDMR publication-title: Journal of Mathematical Chemistry – volume: 114 start-page: 285 issue: 8 year: 1988 end-page: 1302 article-title: Probability integration by directional simulation publication-title: Journal of Engineering Mechanics – year: 1996 – volume: 26 start-page: 398 year: 2000 end-page: 408 article-title: An efficient meshless method for fracture analysis of cracks publication-title: Computational Mechanics – volume: 57 start-page: 4445 issue: 21 year: 2002 end-page: 4460 article-title: Global uncertainty assessments by high dimensional model representations (HDMR) publication-title: Chemical Engineering Science – volume: 23 start-page: 365 issue: 4 year: 2001 end-page: 395 article-title: Reliability analysis—a review and some perspectives publication-title: Structural Safety – volume: 25 start-page: 99 issue: 1 year: 2003 end-page: 121 article-title: CQ2RS: a new statistical approach to the response surface method for reliability analysis publication-title: Structural Safety – volume: 5 start-page: 267 issue: 4 year: 1988 end-page: 284 article-title: Integration formulas to evaluate functions of random variables publication-title: Structural Safety – volume: 80 start-page: 1103 year: 2002 end-page: 1112 article-title: Efficient estimation of structural reliability for problems with uncertain intervals publication-title: Computers and Structures – volume: 19 start-page: 3 issue: 1 year: 1997 end-page: 19 article-title: Response surface method using vector projected sampling points publication-title: Structural Safety – volume: 25 start-page: 197 issue: 2–3 year: 1999 end-page: 233 article-title: General foundations of high dimensional model representations publication-title: Journal of Mathematical Chemistry – volume: 117 start-page: 1806 issue: 8 year: 1991 end-page: 1825 article-title: Finite element reliability of geometrically nonlinear uncertain structures publication-title: Journal of Engineering Mechanics – volume: 1 start-page: 407 year: 1993 end-page: 414 article-title: Sensitivity estimates for nonlinear mathematical models publication-title: Mathematical Modeling and Computational Experiment – year: 1986 – volume: 7 start-page: 57 issue: 1 year: 1990 end-page: 66 article-title: A fast and efficient response surface approach for structural reliability problem publication-title: Structural Safety – volume: 79 start-page: 187 issue: 2 year: 2003 end-page: 193 article-title: Theorems and examples on high dimensional model representations publication-title: Reliability Engineering and System Safety – volume: 102 start-page: 249 issue: EM2 year: 1976 end-page: 263 article-title: Method for random vibration of hysteretic systems publication-title: Journal of Engineering Mechanics – volume: 23 start-page: 429 issue: 4 year: 2001 end-page: 444 article-title: Effect of response surface parameter variation on structural reliability estimates publication-title: Structural Safety – volume: 19 start-page: 463 issue: 4 year: 2004 end-page: 474 article-title: A critical appraisal of reliability estimation procedures for high dimensions publication-title: Probabilistic Engineering Mechanics – year: 2007 article-title: High dimensional model representation for piece wise continuous function approximation publication-title: Communications in Numerical Methods in Engineering – volume: 105 start-page: 7765 year: 2001 end-page: 7777 article-title: High dimensional model representations publication-title: Journal of Physical Chemistry A – year: 2007 article-title: High‐order limit state functions in the response surface method for structural reliability analysis publication-title: Structural Safety – start-page: 127 issue: 2 year: 2001 end-page: 142 article-title: Efficient implementation of high dimensional model representations publication-title: Journal of Mathematical Chemistry – volume: 104 start-page: 30417 issue: D23 year: 1999 end-page: 30426 article-title: Fully equivalent operational models for atmospheric chemical kinetics within global chemistry‐transport models publication-title: Journal of Geophysical Research – volume: 47 start-page: 2123 year: 2004 end-page: 2138 article-title: A numerical solution of composite heat transfer problems using meshless method publication-title: International Journal of Heat and Mass Transfer – volume: 117 start-page: 11 issue: 1–2 year: 1999 end-page: 20 article-title: Efficient input–output model representations publication-title: Computer Physics Communications – volume: 110 start-page: 357 issue: 3 year: 1984 end-page: 366 article-title: Asymptotic approximations for multinormal integrals publication-title: Journal of Engineering Mechanics – volume: 20 start-page: 37 issue: 1 year: 1998 end-page: 49 article-title: Multiple design points in first and second‐order reliability publication-title: Structural Safety – volume: 9 start-page: 161 issue: 3 year: 1991 end-page: 177 article-title: Optimization algorithms for structural reliability analysis publication-title: Structural Safety – ident: e_1_2_1_20_2 doi: 10.1016/S0951-8320(02)00229-6 – ident: e_1_2_1_15_2 doi: 10.1023/A:1010979129659 – volume: 102 start-page: 249 issue: 2 year: 1976 ident: e_1_2_1_34_2 article-title: Method for random vibration of hysteretic systems publication-title: Journal of Engineering Mechanics – ident: e_1_2_1_3_2 doi: 10.1061/(ASCE)0733-9399(1984)110:3(357) – ident: e_1_2_1_7_2 doi: 10.1061/(ASCE)0733-9399(1988)114:8(1285) – volume: 1 start-page: 407 year: 1993 ident: e_1_2_1_22_2 article-title: Sensitivity estimates for nonlinear mathematical models publication-title: Mathematical Modeling and Computational Experiment – ident: e_1_2_1_6_2 doi: 10.1061/(ASCE)0733-9399(1991)117:8(1806) – ident: e_1_2_1_10_2 doi: 10.1016/0167-4730(89)90003-9 – ident: e_1_2_1_25_2 doi: 10.1007/s004660000189 – ident: e_1_2_1_28_2 doi: 10.1016/j.strusafe.2006.10.003 – volume-title: Uncertainty Modeling year: 1981 ident: e_1_2_1_30_2 – ident: e_1_2_1_8_2 doi: 10.1016/S0167-4730(97)00026-X – ident: e_1_2_1_32_2 doi: 10.1016/S0045-7949(02)00069-X – volume-title: Curve and Surface Fitting: An Introduction year: 1986 ident: e_1_2_1_23_2 – ident: e_1_2_1_12_2 doi: 10.1016/j.probengmech.2004.05.004 – volume-title: Report ARD 05‐6 year: 2005 ident: e_1_2_1_33_2 – ident: e_1_2_1_18_2 doi: 10.1029/1999JD900830 – ident: e_1_2_1_36_2 doi: 10.1016/0167-4730(90)90012-E – volume-title: Structural Reliability Methods year: 1996 ident: e_1_2_1_4_2 – ident: e_1_2_1_5_2 doi: 10.1016/S0167-4730(02)00009-7 – ident: e_1_2_1_16_2 doi: 10.1021/jp010450t – ident: e_1_2_1_17_2 doi: 10.1023/A:1013172329778 – ident: e_1_2_1_37_2 doi: 10.1016/S0167-4730(02)00013-9 – ident: e_1_2_1_21_2 doi: 10.1002/cnm.1053 – ident: e_1_2_1_14_2 doi: 10.1023/A:1019188517934 – ident: e_1_2_1_24_2 doi: 10.1016/j.ijheatmasstransfer.2003.12.013 – ident: e_1_2_1_29_2 doi: 10.1007/BF00045337 – ident: e_1_2_1_11_2 doi: 10.1016/S0266-8920(01)00019-4 – ident: e_1_2_1_27_2 doi: 10.1016/S0167-4730(02)00045-0 – ident: e_1_2_1_13_2 doi: 10.1016/S0010-4655(98)00152-0 – ident: e_1_2_1_35_2 doi: 10.1016/0167-4730(91)90041-7 – ident: e_1_2_1_19_2 doi: 10.1016/S0009-2509(02)00417-7 – ident: e_1_2_1_9_2 doi: 10.1002/9780470316511 – ident: e_1_2_1_26_2 doi: 10.1016/S0167-4730(96)00037-9 – volume-title: Methods of Structural Safety year: 1986 ident: e_1_2_1_2_2 – ident: e_1_2_1_31_2 doi: 10.1016/0167-4730(88)90028-8 |
| SSID | ssj0009080 |
| Score | 1.7241591 |
| Snippet | This paper presents a new computational tool for predicting failure probability of structural/mechanical systems subject to random loads, material properties,... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 301 |
| SubjectTerms | Computational techniques Exact sciences and technology failure probability Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) high-dimensional model representation Mathematical methods in physics moving least squares Physics response surface Solid mechanics Structural and continuum mechanics structural reliability |
| Title | High-dimensional model representation for structural reliability analysis |
| URI | https://api.istex.fr/ark:/67375/WNG-F2ZJWP50-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1118 https://www.proquest.com/docview/33717746 |
| Volume | 25 |
| WOSCitedRecordID | wos000265311100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-0887 dateEnd: 20091231 omitProxy: false ssIdentifier: ssj0009080 issn: 1069-8299 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1RS-QwEIAHb9cHfbj1PMU9T60gd0_FtGna5FH2XMXTRcRD8SUk2RRErYc95e7Nn-Bv9Jc4adrqgoJwT6VtQkNmJjNpkm8ANpzX0zj4hkoQHiZMZ6HKqAqjnKJ_HStFTAVx3c9GI356Kg7rXZXuLIznQ7Q_3JxlVOO1M3Cly81naKgprpy98w_QjVFtWQe6P46Gv_afkbuEexZBKkKOo26DniXxZlN3whl1Xb_-dZsjVYn9k_vEFhOR58v4tXJAw97_NH0OPtZhZ7Dl9eQTTNliHnp1CBrUBl7Ow-wLPiHeHbRQ1_Iz_HR7Qh7vH8YuIYCHeQRVIp2gImM2p5iKAOPgwHNpHdMD316eexr4v0DVDJQFOB5uHw92wzoXQ2homuBE01rGCbVWCwzZ8tgqi45NaSZ4xPJxxkSSWmKyPKI6t5bzVFGBD0zODTeELkKnuC7sEgQUNUBrm2ZpThOTcqGFYExpxXH04cz04XsjE2lqTrlLl3EpPWE5lth9buLC-7Delvzt2RyvlPlWibUtoG4u3F62jMmT0Y4cxmd7J4eMyKQPqxNybyvE6OVxDhv1Ya1RBIkm6NZVVGGvb0tJKc6JsyTFb1VSf7MxcjA6cNcv7y24DDPN6hWJvkIHRWdXYNrc_Tkvb1ZrhX8COJ0GnQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1fS9xAEMAH6wnVh1pti9c_GqHYp3CbbDbZpU_F9mr1Lkg5Ufqy7O5tQNScXLS0b_0I_Yz9JJ3NJtGDFgp9Ckk2ZNmZ2Zn99xuA187raex8QyUIDxOms1BlVIVRQdG_TpUipoa4jrI852dn4ngJ3rZnYTwfoptwc5ZR99fOwN2E9OCOGmrKK2fw_AH0EtQiVO_e-8_Dk9Edc5dwDyNIRcix223ZsyQetN8ueKOea9hvbnekqrCBCp_ZYiH0vB_A1h5ouP5fdX8Mj5rAM3jnNWUDlmy5CetNEBo0Jl5twto9QiHejTusa_UEjtyukF8_fk5dSgCP8wjqVDpBzcZszzGVAUbCgSfTOqoHvr089zzw74FqKChPYTL8MNk_CJtsDKGhaYJDTWsZJ9RaLTBoK2KrLLo2pZngESumGRNJaonJiojqwlrOU0UFPjAFN9wQ-gyWy1lptyCgqANa2zRLC5qYlAstBGNKK479D2emD29aoUjTkMpdwoxL6RnLscTmc0MX3ofdruS1p3P8ocxeLdeugJpfuN1sGZOn-Uc5jL8cnh4zIpM-bC8IvvsgRj-Po9ioDzutJkg0Qreyoko7u60kpTgqzpIU_1WL_a-Vkfv52F2f_2vBHXh4MBmP5OhTfvQCVtu1LBK9hGUUo30FK-brzXk13260_zffwgqN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1fa9UwFMAP814R9-B0Tnb9s1UQfSpLm6ZN2JNs1j-7KxeZbPgSktwEhrMbq4q-7SPsM-6TeNK03S4oCD6VtgkNOTk55zTJ7wC88FZP4-QbK0F4nDFdxKqgKk4cRfs6V4qYFuI6LaqKHx2J2RJs92dhAh9i-OHmNaOdr72C27O527qmhpr6q1d4fgvGmc8hM4Lx7sfy0_SauUt4gBHkIuY47fbsWZJu9XUXrNHYd-xPvztSNdhBLmS2WHA9bzqwrQUqV_6r7ffhXud4Rq_DSHkAS7ZehZXOCY06FW9WYfkGoRDv9gesa_MQ9vyukKuLy7lPCRBwHlGbSidq2Zj9OaY6Qk84CmRaT_XAtyfHgQf-K1IdBWUNDso3Bzvv4i4bQ2xonmGoaS3jhFqrBTptLrXKomlTmgmeMDcvmMhyS0zhEqqdtZznigp8YBw33BD6CEb1aW3XIaI4BrS2eZE7mpmcCy0EY0orjvMPZ2YCr3qhSNORyn3CjBMZGMupxO7zoQufwPOh5Fmgc_yhzMtWrkMBdf7F72YrmDys3soy_fzhcMaIzCawsSD4oUKKdh6j2GQCm_1IkKiEfmVF1fb0eyMpxai4yHL8Viv2vzZG7lT7_vr4Xwtuwp3Zbimn76u9J3C3X8oiyVMYoRTtM7htfnw7bs43usH_G15DCgg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90dimensional+model+representation+for+structural+reliability+analysis&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=Chowdhury%2C+Rajib&rft.au=Rao%2C+B.+N.&rft.au=Prasad%2C+A.+Meher&rft.date=2009-04-01&rft.issn=1069-8299&rft.eissn=1099-0887&rft.volume=25&rft.issue=4&rft.spage=301&rft.epage=337&rft_id=info:doi/10.1002%2Fcnm.1118&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cnm_1118 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon |