The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations

The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space ⊕j=1mW22a,b⊕⊕j=m+1nW_21a,b is constructe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical methods in the applied sciences Ročník 39; číslo 15; s. 4549 - 4562
Hlavný autor: Arqub, Omar Abu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Freiburg Blackwell Publishing Ltd 01.10.2016
Wiley Subscription Services, Inc
Predmet:
ISSN:0170-4214, 1099-1476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space ⊕j=1mW22a,b⊕⊕j=m+1nW_21a,b is constructed in which the initial conditions of the systems are satisfied. While, two smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems. Copyright © 2016 John Wiley & Sons, Ltd.
Bibliografia:ArticleID:MMA3884
ark:/67375/WNG-BWCNBMDG-7
istex:7DCBCC0DC31183D0FDE9CF721BAFD9BE5F680AAF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.3884