The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations

The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space ⊕j=1mW22a,b⊕⊕j=m+1nW_21a,b is constructe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences Jg. 39; H. 15; S. 4549 - 4562
1. Verfasser: Arqub, Omar Abu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Freiburg Blackwell Publishing Ltd 01.10.2016
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0170-4214, 1099-1476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space ⊕j=1mW22a,b⊕⊕j=m+1nW_21a,b is constructed in which the initial conditions of the systems are satisfied. While, two smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems. Copyright © 2016 John Wiley & Sons, Ltd.
Bibliographie:ArticleID:MMA3884
ark:/67375/WNG-BWCNBMDG-7
istex:7DCBCC0DC31183D0FDE9CF721BAFD9BE5F680AAF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.3884