The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations
The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space ⊕j=1mW22a,b⊕⊕j=m+1nW_21a,b is constructe...
Gespeichert in:
| Veröffentlicht in: | Mathematical methods in the applied sciences Jg. 39; H. 15; S. 4549 - 4562 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Freiburg
Blackwell Publishing Ltd
01.10.2016
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0170-4214, 1099-1476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space
⊕j=1mW22a,b⊕⊕j=m+1nW_21a,b is constructed in which the initial conditions of the systems are satisfied. While, two smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems. Copyright © 2016 John Wiley & Sons, Ltd. |
|---|---|
| Bibliographie: | ArticleID:MMA3884 ark:/67375/WNG-BWCNBMDG-7 istex:7DCBCC0DC31183D0FDE9CF721BAFD9BE5F680AAF ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0170-4214 1099-1476 |
| DOI: | 10.1002/mma.3884 |