The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations

The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space ⊕j=1mW22a,b⊕⊕j=m+1nW_21a,b is constructe...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences Vol. 39; no. 15; pp. 4549 - 4562
Main Author: Arqub, Omar Abu
Format: Journal Article
Language:English
Published: Freiburg Blackwell Publishing Ltd 01.10.2016
Wiley Subscription Services, Inc
Subjects:
ISSN:0170-4214, 1099-1476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space ⊕j=1mW22a,b⊕⊕j=m+1nW_21a,b is constructed in which the initial conditions of the systems are satisfied. While, two smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space ⊕j=1mW22a,b⊕⊕j=m+1nW_21a,b is constructed in which the initial conditions of the systems are satisfied. While, two smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems. Copyright © 2016 John Wiley & Sons, Ltd.
The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space [Formulaomitted] is constructed in which the initial conditions of the systems are satisfied. While, two smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems.
The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space is constructed in which the initial conditions of the systems are satisfied. While, two smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems. Copyright © 2016 John Wiley & Sons, Ltd.
The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of differential algebraic systems for ordinary differential equations. The reproducing kernel Hilbert space j =1 m W 2 2 a ,b j =m +1 n W _ 2 1 a ,b is constructed in which the initial conditions of the systems are satisfied. While, two smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems. Copyright © 2016 John Wiley & Sons, Ltd.
Author Arqub, Omar Abu
Author_xml – sequence: 1
  givenname: Omar Abu
  surname: Arqub
  fullname: Arqub, Omar Abu
  email: Correspondence to: Omar Abu Arqub, Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan,, o.abuarqub@bau.edu.jo
  organization: Department of Mathematics, Faculty of Science, Al-Balqa Applied University, 19117, Al-Salt, Jordan
BookMark eNp1kE1P7CAUhonRxPEj8Sc0cXM3HTmUKXSpc6-jiaMbjUvCtAcHbUGhzXX-vYwajUZXEHjOm_M-O2TTeYeEHAAdA6XsqOv0uJCSb5AR0KrKgYtyk4woCJpzBnyb7MR4TymVAGxE_PUSs4CPwTdDbd1d9oDBYZvp9s4H2y-7zPiQLbVr2vVvY43BgK63-pXBRdC2zuIq9tjFzJvMh8Y6HVZfUXwadG-9i3tky-g24v77uUtuTv9dT8_yi6vZ-fT4Iq-LkvPcFKVhBvjEwGJSg2xMRQtItyq9ikYUk3KhZUWRIQVtRCklCsao5rxC4LTYJX_eclOzpwFjrzoba2xb7dAPUYFMEUxwqBJ6-A2990NwabtEQSkpExX_DKyDjzGgUY_BdqmoAqrW5lUyr9bmEzr-hta2f63fJ1vtTwP528B_2-Lq12A1nx9_5W3S_vzB6_CgSlGIibq9nKmT2-nlyfzvTIniBeQApik
CODEN MMSCDB
CitedBy_id crossref_primary_10_1007_s12190_018_1176_x
crossref_primary_10_1007_s40435_018_0438_7
crossref_primary_10_1016_j_chaos_2018_10_013
crossref_primary_10_1007_s00500_019_04222_w
crossref_primary_10_1007_s12190_023_01886_4
crossref_primary_10_1007_s40314_021_01605_4
crossref_primary_10_1016_j_camwa_2016_11_032
crossref_primary_10_1016_j_neucom_2017_10_003
crossref_primary_10_1007_s00521_016_2484_4
crossref_primary_10_1007_s40096_019_0282_8
crossref_primary_10_1155_2024_8499850
crossref_primary_10_1002_mma_5102
crossref_primary_10_1016_j_neucom_2020_02_022
crossref_primary_10_1002_jnm_2573
crossref_primary_10_1007_s12190_017_1137_9
crossref_primary_10_1016_j_enganabound_2025_106119
crossref_primary_10_3846_mma_2018_032
crossref_primary_10_1007_s11071_018_4450_4
crossref_primary_10_1080_00207160_2018_1455091
crossref_primary_10_1007_s00500_018_3596_9
crossref_primary_10_1007_s13198_024_02484_8
crossref_primary_10_3390_fractalfract3020033
crossref_primary_10_1016_j_chaos_2021_111127
crossref_primary_10_1007_s10973_024_13336_9
crossref_primary_10_1007_s11071_018_4459_8
crossref_primary_10_1016_j_chaos_2018_10_007
crossref_primary_10_1088_1402_4896_abb420
crossref_primary_10_1088_1402_4896_ac0867
crossref_primary_10_1002_mma_5530
crossref_primary_10_1007_s10092_018_0274_3
crossref_primary_10_1016_j_chaos_2019_05_025
crossref_primary_10_1007_s11071_017_3450_0
crossref_primary_10_1177_14727978251361398
crossref_primary_10_1155_2017_6148393
crossref_primary_10_1109_ACCESS_2023_3249099
crossref_primary_10_1002_mma_4848
crossref_primary_10_1016_j_physa_2019_01_083
crossref_primary_10_1002_num_22236
crossref_primary_10_1016_j_physa_2019_123257
crossref_primary_10_1016_j_apnum_2019_05_010
crossref_primary_10_1007_s11071_018_4486_5
crossref_primary_10_1016_j_comcom_2023_06_029
crossref_primary_10_1088_1402_4896_ab96e0
crossref_primary_10_1007_s00500_016_2262_3
crossref_primary_10_1007_s00521_017_2893_z
crossref_primary_10_1007_s40314_018_0704_5
crossref_primary_10_1016_j_enganabound_2023_05_010
crossref_primary_10_1140_epjp_s13360_019_00007_0
crossref_primary_10_1007_s00521_017_3019_3
crossref_primary_10_12677_AAM_2018_77090
crossref_primary_10_1002_num_22209
crossref_primary_10_1016_j_geomphys_2022_104512
crossref_primary_10_1002_mma_7228
crossref_primary_10_1002_mma_7305
crossref_primary_10_1007_s40819_022_01256_x
crossref_primary_10_1007_s12190_016_1061_4
crossref_primary_10_1007_s40314_019_0838_0
crossref_primary_10_1007_s40819_022_01334_0
crossref_primary_10_1016_j_chaos_2019_07_023
crossref_primary_10_1016_j_chaos_2021_110891
crossref_primary_10_1007_s12190_017_1142_z
crossref_primary_10_1108_HFF_07_2016_0278
crossref_primary_10_1016_j_amc_2018_09_066
crossref_primary_10_1002_mma_10481
crossref_primary_10_1007_s00521_017_3184_4
crossref_primary_10_1016_j_amc_2018_09_020
crossref_primary_10_3389_fphy_2022_1072746
crossref_primary_10_1007_s00521_017_2845_7
crossref_primary_10_1016_j_cam_2019_04_017
crossref_primary_10_1108_HFF_10_2017_0394
crossref_primary_10_1007_s00500_020_04687_0
crossref_primary_10_1007_s13198_024_02285_z
crossref_primary_10_1002_mma_5114
crossref_primary_10_3390_math8060923
crossref_primary_10_1007_s41980_019_00303_6
crossref_primary_10_1016_j_sciaf_2024_e02073
Cites_doi 10.1007/978-3-642-27555-5
10.1007/s00500‐015‐1707‐4
10.1155/2012/839836
10.1016/j.amc.2014.04.057
10.1016/j.cam.2013.04.040
10.1137/1.9781611971392
10.1016/S0096-3003(02)00080-2
10.4171/017
10.1016/j.chaos.2009.03.057
10.1016/j.amc.2013.03.123
10.1016/j.amc.2013.03.006
10.1016/j.jfranklin.2004.07.004
10.1007/s00521‐015‐2110‐x
10.1002/num.21809
10.1016/j.amc.2014.06.063
10.1016/j.jcp.2006.06.040
10.1016/S0096-3003(03)00719-7
10.1016/S0377-0427(97)00178-7
10.1007/978-1-4419-9096-9
10.1137/0728059
10.1016/j.aml.2005.10.010
10.1016/j.aml.2011.10.025
10.1016/S0096-3003(03)00604-0
10.1155/2015/205207
10.1016/j.aml.2013.05.006
10.1155/2015/518406
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.3884
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 4562
ExternalDocumentID 4171210081
10_1002_mma_3884
MMA3884
ark_67375_WNG_BWCNBMDG_7
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWS
WRC
AAYXX
CITATION
O8X
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c3644-f36f2f145f1b5c18df90315c192f17d7356ba890e2e01af7688e7220a449e1403
IEDL.DBID DRFUL
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385718900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Fri Jul 11 12:21:29 EDT 2025
Fri Jul 25 12:14:42 EDT 2025
Tue Nov 18 22:44:32 EST 2025
Sat Nov 29 01:33:54 EST 2025
Wed Jan 22 16:32:34 EST 2025
Tue Nov 11 03:32:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3644-f36f2f145f1b5c18df90315c192f17d7356ba890e2e01af7688e7220a449e1403
Notes ArticleID:MMA3884
ark:/67375/WNG-BWCNBMDG-7
istex:7DCBCC0DC31183D0FDE9CF721BAFD9BE5F680AAF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1816802794
PQPubID 1016386
PageCount 14
ParticipantIDs proquest_miscellaneous_1835627419
proquest_journals_1816802794
crossref_primary_10_1002_mma_3884
crossref_citationtrail_10_1002_mma_3884
wiley_primary_10_1002_mma_3884_MMA3884
istex_primary_ark_67375_WNG_BWCNBMDG_7
PublicationCentury 2000
PublicationDate 2016-10
October 2016
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10
PublicationDecade 2010
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationTitleAlternate Math. Meth. Appl. Sci
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Berlinet A, Agnan CT. Reproducing Kernel Hilbert Space in Probability and Statistics. Kluwer Academic Publishers: Boston, Mass, USA, 2004.
Gear C. Simultaneous numerical solution of differential-algebraic equations, circuit theory. IEEE Transact 1971; 18:89-95.
Abu Arqub O. An iterative method for solving fourth-order boundary value problems of mixed type integro-differential equations. Journal of Computational Analysis and Applications 2015; 18:857-874.
Celik E. On the numerical solution of chemical differential-algebraic equations by Pade series. Applied Mathematics and Computation 2004; 153:13-17.
Celik E, Bayram M. Numerical solution of differential-algebraic equation systems and applications. Applied Mathematics and Computation 2004; 154:405-413.
Abu Arqub O, Al-Smadi M, Shawagfeh N. Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Applied Mathematics and Computation 2013; 219:8938-8948.
Geng F, Cui M. A reproducing kernel method for solving nonlocal fractional boundary value problems. Applied Mathematics Letters 2012; 25:818-823.
Jiang W, Chen Z. Solving a system of linear Volterra integral equations using the new reproducing kernel method. Applied Mathematics and Computation 2013; 219:10225-10230.
Geng F, Qian SP. Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Applied Mathematics Letters 2013; 26:998-1004.
Celik E, Bayram M. Arbitrary order numerical method for solving differential-algebraic equation by Padé series. Applied Mathematics and Computation 2003; 137:57-65.
Ascher UM, Petzold LR. Projected implicit Runge-Kutta methods for differential-algebraic equations. SIAM Journal on Numerical Analysis 1991; 28:1097-1120.
Yang LH, Lin Y. Reproducing kernel methods for solving linear initial-boundary-value problems. Electronic Journal of Differential Equations 2008; 2008:1-11.
Abu Arqub O. Reproducing kernel algorithm for the analytical-numerical solutions of nonlinear systems of singular periodic boundary value problems. Mathematical Problems in Engineering 2015; 2015:13. Article ID 518406. doi:10.1155/2015/518406.
Brenan KE, Campbell SL, Petzold LR. Numerical Solution of Initial-value Problems in Differential-algebraic Equations (Classics in Applied Mathematics). SIAM: USA, 1996.
Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems (Series in Computational Mathematics). Springer: Germany, 2004.
Huang J, Jia J, Minion M. Arbitrary order Krylov deferred correction methods for differential algebraic equations. Journal of Computational Physics 2007; 221:739-760.
Momani S, Abu Arqub O, Hayat T, Al-Sulami H. A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type. Applied Mathematics and Computation 2014; 240:229-239.
Geng F, Qian SP, Li S. A numerical method for singularly perturbed turning point problems with an interior layer. Journal of Computational and Applied Mathematics 2014; 255:97-105.
Cui M, Lin Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science: New York, NY, USA, 2009.
Lin Y, Cui M, Yang L. Representation of the exact solution for a kind of nonlinear partial differential equations. Applied Mathematics Letters 2006; 19:808-813.
Abu Arqub O, Al-Smadi M. Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Applied Mathematics and Computation 2014; 243:911-922.
Daniel A. Reproducing Kernel Spaces and Applications. Springer: Basel, Switzerland, 2003.
Jiang W, Chen Z. A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numerical Methods for Partial Differential Equations 2014; 30:289-300.
Celik E, Bayram M. The numerical solution of physical problems modeled as a systems of differential-algebraic equations (DAEs). Journal of the Franklin Institute 2005; 342:1-6.
Amodio P, Mazzia. F. Numerical solution of differential algebraic equations and computation of consistent initial/boundary conditions. Journal of Computational and Applied Mathematics 1997; 87:135-146.
Abu Arqub O, Al-Smadi M, Momani S. Application of reproducing kernel method for solving nonlinear Fredholm-Volterra integro-diferential equations. Abstract and Applied Analysis 2012; 2012:16. Article ID 839836. doi:10.1155/2012/839836.
Weinert HL. Reproducing Kernel Hilbert Spaces. Applications in Statistical Signal Processing: Hutchinson Ross, 1982.
Lamour R, März R, Tischendorf C. Differential-algebraic Equations: A Projector Based Analysis (Differential-algebraic Equations Forum). Springer: Germany, 2013.
Abu Arqub O, Al-Smadi M, Momani S, Hayat T. Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Computing 2015; 2015:1-20, doi:10.1007/s00500-015-1707-4.
Moaddy K, AL-Smadi M, Hashim I. A novel representation of the exact solution for differential algebraic equations system using residual power-series method. Discrete Dynamics in Nature and Society 2015; 2015:12, doi:10.1155/2015/205207.Article ID 205207.
Kunkel P, Mehrmann V. Differential-algebraic Equations: Analysis and Numerical Solution (EMS Textbooks in Mathematics). European Mathematical Society: Switzerland, 2006.
Ascher UM, Petzold LR. Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations. SIAM: USA, 1998.
Awawdeh F, Jaradat HM, Alsayyed O. Solving system of DAEs by homotopy analysis method. Chaos, Solitons and Fractals 2009; 42:1422-1427.
Abu Arqub O. Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Computing & Applications 2015, doi:10.1007/s00521-015-2110-x.
2013; 26
2012; 2012
2009; 42
2015; 18
1997; 87
2007; 221
1998
2009
1996
2006
2006; 19
2004
2003
2003; 137
2008; 2008
2014; 255
2004; 154
2004; 153
1991; 28
2013; 219
2005; 342
1971; 18
2015; 2015
1982
2015
2013
2014; 30
2012; 25
2014; 243
2014; 240
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
Yang LH (e_1_2_8_36_1) 2008; 2008
e_1_2_8_5_1
e_1_2_8_7_1
Weinert HL (e_1_2_8_21_1) 1982
e_1_2_8_6_1
Hairer E (e_1_2_8_4_1) 2004
e_1_2_8_9_1
e_1_2_8_8_1
Abu Arqub O (e_1_2_8_28_1) 2015; 18
e_1_2_8_22_1
e_1_2_8_23_1
Gear C (e_1_2_8_16_1) 1971; 18
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
Cui M (e_1_2_8_18_1) 2009
Daniel A (e_1_2_8_20_1) 2003
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
Brenan KE (e_1_2_8_3_1) 1996
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: Yang LH, Lin Y. Reproducing kernel methods for solving linear initial-boundary-value problems. Electronic Journal of Differential Equations 2008; 2008:1-11.
– reference: Celik E, Bayram M. The numerical solution of physical problems modeled as a systems of differential-algebraic equations (DAEs). Journal of the Franklin Institute 2005; 342:1-6.
– reference: Cui M, Lin Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science: New York, NY, USA, 2009.
– reference: Geng F, Cui M. A reproducing kernel method for solving nonlocal fractional boundary value problems. Applied Mathematics Letters 2012; 25:818-823.
– reference: Moaddy K, AL-Smadi M, Hashim I. A novel representation of the exact solution for differential algebraic equations system using residual power-series method. Discrete Dynamics in Nature and Society 2015; 2015:12, doi:10.1155/2015/205207.Article ID 205207.
– reference: Celik E. On the numerical solution of chemical differential-algebraic equations by Pade series. Applied Mathematics and Computation 2004; 153:13-17.
– reference: Jiang W, Chen Z. A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numerical Methods for Partial Differential Equations 2014; 30:289-300.
– reference: Berlinet A, Agnan CT. Reproducing Kernel Hilbert Space in Probability and Statistics. Kluwer Academic Publishers: Boston, Mass, USA, 2004.
– reference: Abu Arqub O. An iterative method for solving fourth-order boundary value problems of mixed type integro-differential equations. Journal of Computational Analysis and Applications 2015; 18:857-874.
– reference: Daniel A. Reproducing Kernel Spaces and Applications. Springer: Basel, Switzerland, 2003.
– reference: Abu Arqub O. Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Computing & Applications 2015, doi:10.1007/s00521-015-2110-x.
– reference: Ascher UM, Petzold LR. Projected implicit Runge-Kutta methods for differential-algebraic equations. SIAM Journal on Numerical Analysis 1991; 28:1097-1120.
– reference: Abu Arqub O, Al-Smadi M, Shawagfeh N. Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Applied Mathematics and Computation 2013; 219:8938-8948.
– reference: Ascher UM, Petzold LR. Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations. SIAM: USA, 1998.
– reference: Abu Arqub O, Al-Smadi M, Momani S, Hayat T. Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Computing 2015; 2015:1-20, doi:10.1007/s00500-015-1707-4.
– reference: Jiang W, Chen Z. Solving a system of linear Volterra integral equations using the new reproducing kernel method. Applied Mathematics and Computation 2013; 219:10225-10230.
– reference: Kunkel P, Mehrmann V. Differential-algebraic Equations: Analysis and Numerical Solution (EMS Textbooks in Mathematics). European Mathematical Society: Switzerland, 2006.
– reference: Abu Arqub O, Al-Smadi M. Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Applied Mathematics and Computation 2014; 243:911-922.
– reference: Celik E, Bayram M. Arbitrary order numerical method for solving differential-algebraic equation by Padé series. Applied Mathematics and Computation 2003; 137:57-65.
– reference: Weinert HL. Reproducing Kernel Hilbert Spaces. Applications in Statistical Signal Processing: Hutchinson Ross, 1982.
– reference: Awawdeh F, Jaradat HM, Alsayyed O. Solving system of DAEs by homotopy analysis method. Chaos, Solitons and Fractals 2009; 42:1422-1427.
– reference: Momani S, Abu Arqub O, Hayat T, Al-Sulami H. A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type. Applied Mathematics and Computation 2014; 240:229-239.
– reference: Abu Arqub O. Reproducing kernel algorithm for the analytical-numerical solutions of nonlinear systems of singular periodic boundary value problems. Mathematical Problems in Engineering 2015; 2015:13. Article ID 518406. doi:10.1155/2015/518406.
– reference: Gear C. Simultaneous numerical solution of differential-algebraic equations, circuit theory. IEEE Transact 1971; 18:89-95.
– reference: Amodio P, Mazzia. F. Numerical solution of differential algebraic equations and computation of consistent initial/boundary conditions. Journal of Computational and Applied Mathematics 1997; 87:135-146.
– reference: Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems (Series in Computational Mathematics). Springer: Germany, 2004.
– reference: Brenan KE, Campbell SL, Petzold LR. Numerical Solution of Initial-value Problems in Differential-algebraic Equations (Classics in Applied Mathematics). SIAM: USA, 1996.
– reference: Lamour R, März R, Tischendorf C. Differential-algebraic Equations: A Projector Based Analysis (Differential-algebraic Equations Forum). Springer: Germany, 2013.
– reference: Huang J, Jia J, Minion M. Arbitrary order Krylov deferred correction methods for differential algebraic equations. Journal of Computational Physics 2007; 221:739-760.
– reference: Geng F, Qian SP. Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Applied Mathematics Letters 2013; 26:998-1004.
– reference: Lin Y, Cui M, Yang L. Representation of the exact solution for a kind of nonlinear partial differential equations. Applied Mathematics Letters 2006; 19:808-813.
– reference: Geng F, Qian SP, Li S. A numerical method for singularly perturbed turning point problems with an interior layer. Journal of Computational and Applied Mathematics 2014; 255:97-105.
– reference: Abu Arqub O, Al-Smadi M, Momani S. Application of reproducing kernel method for solving nonlinear Fredholm-Volterra integro-diferential equations. Abstract and Applied Analysis 2012; 2012:16. Article ID 839836. doi:10.1155/2012/839836.
– reference: Celik E, Bayram M. Numerical solution of differential-algebraic equation systems and applications. Applied Mathematics and Computation 2004; 154:405-413.
– year: 2009
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 11
  article-title: Reproducing kernel methods for solving linear initial‐boundary‐value problems
  publication-title: Electronic Journal of Differential Equations
– volume: 221
  start-page: 739
  year: 2007
  end-page: 760
  article-title: Arbitrary order Krylov deferred correction methods for differential algebraic equations
  publication-title: Journal of Computational Physics
– volume: 25
  start-page: 818
  year: 2012
  end-page: 823
  article-title: A reproducing kernel method for solving nonlocal fractional boundary value problems
  publication-title: Applied Mathematics Letters
– volume: 342
  start-page: 1
  year: 2005
  end-page: 6
  article-title: The numerical solution of physical problems modeled as a systems of differential‐algebraic equations (DAEs)
  publication-title: Journal of the Franklin Institute
– volume: 255
  start-page: 97
  year: 2014
  end-page: 105
  article-title: A numerical method for singularly perturbed turning point problems with an interior layer
  publication-title: Journal of Computational and Applied Mathematics
– year: 2015
  article-title: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations
  publication-title: Neural Computing & Applications
– year: 2003
– volume: 19
  start-page: 808
  year: 2006
  end-page: 813
  article-title: Representation of the exact solution for a kind of nonlinear partial differential equations
  publication-title: Applied Mathematics Letters
– year: 1996
– volume: 219
  start-page: 10225
  year: 2013
  end-page: 10230
  article-title: Solving a system of linear Volterra integral equations using the new reproducing kernel method
  publication-title: Applied Mathematics and Computation
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 20
  article-title: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method
  publication-title: Soft Computing
– volume: 240
  start-page: 229
  year: 2014
  end-page: 239
  article-title: A computational method for solving periodic boundary value problems for integro‐differential equations of Fredholm–Voltera type
  publication-title: Applied Mathematics and Computation
– volume: 154
  start-page: 405
  year: 2004
  end-page: 413
  article-title: Numerical solution of differential‐algebraic equation systems and applications
  publication-title: Applied Mathematics and Computation
– volume: 87
  start-page: 135
  year: 1997
  end-page: 146
  article-title: Numerical solution of differential algebraic equations and computation of consistent initial/boundary conditions
  publication-title: Journal of Computational and Applied Mathematics
– year: 1998
– volume: 2012
  start-page: 16
  year: 2012
  article-title: Application of reproducing kernel method for solving nonlinear Fredholm–Volterra integro‐diferential equations
  publication-title: Abstract and Applied Analysis
– volume: 219
  start-page: 8938
  year: 2013
  end-page: 8948
  article-title: Solving Fredholm integro‐differential equations using reproducing kernel Hilbert space method
  publication-title: Applied Mathematics and Computation
– year: 1982
– volume: 30
  start-page: 289
  year: 2014
  end-page: 300
  article-title: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 26
  start-page: 998
  year: 2013
  end-page: 1004
  article-title: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers
  publication-title: Applied Mathematics Letters
– volume: 243
  start-page: 911
  year: 2014
  end-page: 922
  article-title: Numerical algorithm for solving two‐point, second‐order periodic boundary value problems for mixed integro‐differential equations
  publication-title: Applied Mathematics and Computation
– volume: 2015
  start-page: 12
  year: 2015
  article-title: A novel representation of the exact solution for differential algebraic equations system using residual power‐series method
  publication-title: Discrete Dynamics in Nature and Society
– year: 2006
– year: 2004
– volume: 42
  start-page: 1422
  year: 2009
  end-page: 1427
  article-title: Solving system of DAEs by homotopy analysis method
  publication-title: Chaos, Solitons and Fractals
– volume: 153
  start-page: 13
  year: 2004
  end-page: 17
  article-title: On the numerical solution of chemical differential‐algebraic equations by Pade series
  publication-title: Applied Mathematics and Computation
– volume: 18
  start-page: 89
  year: 1971
  end-page: 95
  article-title: Simultaneous numerical solution of differential‐algebraic equations, circuit theory
  publication-title: IEEE Transact
– volume: 137
  start-page: 57
  year: 2003
  end-page: 65
  article-title: Arbitrary order numerical method for solving differential‐algebraic equation by Padé series
  publication-title: Applied Mathematics and Computation
– volume: 18
  start-page: 857
  year: 2015
  end-page: 874
  article-title: An iterative method for solving fourth‐order boundary value problems of mixed type integro‐differential equations
  publication-title: Journal of Computational Analysis and Applications
– volume: 2015
  start-page: 13
  year: 2015
  article-title: Reproducing kernel algorithm for the analytical‐numerical solutions of nonlinear systems of singular periodic boundary value problems
  publication-title: Mathematical Problems in Engineering
– volume: 28
  start-page: 1097
  year: 1991
  end-page: 1120
  article-title: Projected implicit Runge–Kutta methods for differential‐algebraic equations
  publication-title: SIAM Journal on Numerical Analysis
– year: 2013
– volume-title: Numerical Solution of Initial‐value Problems in Differential‐algebraic Equations (Classics in Applied Mathematics)
  year: 1996
  ident: e_1_2_8_3_1
– ident: e_1_2_8_6_1
  doi: 10.1007/978-3-642-27555-5
– ident: e_1_2_8_27_1
  doi: 10.1007/s00500‐015‐1707‐4
– ident: e_1_2_8_23_1
  doi: 10.1155/2012/839836
– ident: e_1_2_8_26_1
  doi: 10.1016/j.amc.2014.04.057
– volume-title: Reproducing Kernel Spaces and Applications
  year: 2003
  ident: e_1_2_8_20_1
– ident: e_1_2_8_14_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cam.2013.04.040
– ident: e_1_2_8_2_1
  doi: 10.1137/1.9781611971392
– ident: e_1_2_8_15_1
  doi: 10.1016/S0096-3003(02)00080-2
– ident: e_1_2_8_5_1
  doi: 10.4171/017
– ident: e_1_2_8_10_1
  doi: 10.1016/j.chaos.2009.03.057
– volume: 18
  start-page: 89
  year: 1971
  ident: e_1_2_8_16_1
  article-title: Simultaneous numerical solution of differential‐algebraic equations, circuit theory
  publication-title: IEEE Transact
– ident: e_1_2_8_35_1
  doi: 10.1016/j.amc.2013.03.123
– ident: e_1_2_8_24_1
  doi: 10.1016/j.amc.2013.03.006
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jfranklin.2004.07.004
– volume-title: Nonlinear Numerical Analysis in the Reproducing Kernel Space
  year: 2009
  ident: e_1_2_8_18_1
– ident: e_1_2_8_30_1
  doi: 10.1007/s00521‐015‐2110‐x
– volume: 2008
  start-page: 1
  year: 2008
  ident: e_1_2_8_36_1
  article-title: Reproducing kernel methods for solving linear initial‐boundary‐value problems
  publication-title: Electronic Journal of Differential Equations
– volume: 18
  start-page: 857
  year: 2015
  ident: e_1_2_8_28_1
  article-title: An iterative method for solving fourth‐order boundary value problems of mixed type integro‐differential equations
  publication-title: Journal of Computational Analysis and Applications
– ident: e_1_2_8_32_1
  doi: 10.1002/num.21809
– ident: e_1_2_8_25_1
  doi: 10.1016/j.amc.2014.06.063
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jcp.2006.06.040
– ident: e_1_2_8_8_1
  doi: 10.1016/S0096-3003(03)00719-7
– ident: e_1_2_8_7_1
  doi: 10.1016/S0377-0427(97)00178-7
– ident: e_1_2_8_19_1
  doi: 10.1007/978-1-4419-9096-9
– ident: e_1_2_8_17_1
  doi: 10.1137/0728059
– ident: e_1_2_8_22_1
  doi: 10.1016/j.aml.2005.10.010
– ident: e_1_2_8_34_1
  doi: 10.1016/j.aml.2011.10.025
– ident: e_1_2_8_12_1
  doi: 10.1016/S0096-3003(03)00604-0
– ident: e_1_2_8_13_1
  doi: 10.1155/2015/205207
– ident: e_1_2_8_31_1
  doi: 10.1016/j.aml.2013.05.006
– volume-title: Reproducing Kernel Hilbert Spaces
  year: 1982
  ident: e_1_2_8_21_1
– ident: e_1_2_8_29_1
  doi: 10.1155/2015/518406
– volume-title: Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems (Series in Computational Mathematics)
  year: 2004
  ident: e_1_2_8_4_1
SSID ssj0008112
Score 2.4317012
Snippet The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions of...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4549
SubjectTerms Algebra
Algorithms
Computation
differential algebraic systems
Differential equations
Gram-Schmidt process
Hilbert space
initial value problems
Kernels
Mathematical models
reproducing kernel algorithm
Reproduction
Title The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations
URI https://api.istex.fr/ark:/67375/WNG-BWCNBMDG-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.3884
https://www.proquest.com/docview/1816802794
https://www.proquest.com/docview/1835627419
Volume 39
WOSCitedRecordID wos000385718900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHZZcDHOgDEEsfMhLicQiNnZdz7GvLgV0hRNXeLCex21W7G0i2iJ_fGedBVyoSEqccPJEde8aeie1vAN5iVBXhUqq9xPq-RymuvEzzwItDqX0dSW2sdckmkulUXlykX9tTlXQXpuFD9D_cyDLcfE0GrrN6_w80dD7XnwIpw0cwFKi20QCGx9_GZ1_6eVhyt9dJgBgvFDzs0LO-2O_eXVmMhtSvv1c8zfv-qltwxuv_09QNeNa6meyg0YtNWDOLLXg66Rmt9RZstmZdsw8te_rjcyhRbRiBLokDi6sauzYV1s70zWVZzZZXc4ZOLnNoBirt0qvgNOFkaBd6lrMGD12z0jKMbd2N31VR87MhjNcv4Gx88v3os9fmZPDyAF0nzwaxFZaHkeVZlHNZ2JTyROToKFqeFEkQxZmWqW-E8bm2GMxIkwjh6zBMDbEBX8JgUS7MK2AFLzIpM0HA9zAyXGcyLjC6RJcSZ4ZYjuB9Nzgqb4HllDfjRjWoZaGwXxX16wje9JI_GkjHAzLv3Pj2Arq6pkNtSaTOp6fq8Pxoejg5PlXJCHY6BVCtPdeKU3oSjOBTqqsvRkuk7RW9MOUtyeDHEw0oxbqcOvy1MWoyOaDn638V3IYn6KnFzSnCHRgsq1uzC4_zX8tZXe21mn8HwYcGqg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHpYsEHIAWEAsFjISAHkLjxEkcceqDbRGbCKFW7c1yErtdtbuBZIv4-czkBSuBhMQpB0_kxJ6xZ_z4BuAVRlUBTqXaiazrOpTiysk0951QSO3qQGpjbZNsIkpTeXYWf16D9_1dmJYPMSy4kWU04zUZOC1I7_yihs7n-p0vpbgBI4FahOo9OvgyOZkOA7HkzWYnEWIc4XHRs2ddb6d_d2U2GlHD_lhxNX93WJsZZ3Lvv771PtztHE2222rGBqyZxSbcSQZKa70JG51h1-xtR5_efgAlKg4j1CWRYHFeY5emwuqZvjovq9nyYs7QzWUNnIFK-wQrOFA0MrQPPctZC4iuWWkZRrfNnd9VUfOtZYzXD-Fk8uF4_8jpsjI4uY_Ok2P90HqWi8DyLMi5LGxMmSJydBUtj4rID8JMy9g1nnG5thjOSBN5nquFiA3RAR_B-qJcmMfACl5kUmYeId9FYLjOZFhgfIlOJY4NoRzDm753VN4hyylzxpVqYcuewnZV1K5jeDlIfm0xHX-Qed108CCgq0s61hYF6jQ9VHun--lecnCoojFs9RqgOouuFacEJRjDx1TXUIy2SBssemHKa5LBnyceUIx1Nfrw149RSbJLzyf_KvgCbh0dJ1M1_Zh-egq30W8L2zOFW7C-rK7NM7iZf1_O6up5ZwY_AXQpCpo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3db9MwEMBPo0UIHgYbIAoDjISAPYTF-XS0p22lA7FGE2La3iwnsaHa2oykQ_vzd-d8QCWQkHjKgy-yY9_Zd7H9O4DXGFWFuJQqJzau61CKKydT3HeiQChXhUJpY2yyiThNxdlZcrwGu91dmIYP0f9wI8uw8zUZuL4szM4vauh8rt77QgS3YBhQDpkBDMdfJidH_UQsuN3sJEKME3g86NizrrfTvbuyGg2pY69XXM3fHVa74kzu_1dbH8B662iyvUYzNmBNLzbh3rSntNabsNEads3etfTp7YdQouIwQl0SCRbXNXauK6yeqYtvZTVbfp8zdHOZhTNQaZdgBScKK0P70LOcNYDompWGYXRr7_yuiuofDWO8fgQnkw9fDz46bVYGJ_fReXKMHxnP8CA0PAtzLgqTUKaIHF1Fw-Mi9sMoUyJxtaddrgyGM0LHnueqIEg00QEfw2BRLvQTYAUvMiEyj5DvQai5ykRUYHyJTiXODZEYwdtudGTeIsspc8aFbGDLnsR-ldSvI3jVS142mI4_yLyxA9wLqOqcjrXFoTxND-X-6UG6Px0fyngEW50GyNaia8kpQQnG8AnV1RejLdIGi1ro8opk8OOJB5RgXVYf_toYOZ3u0fPpvwq-hDvH44k8-pR-fgZ30W2LmiOFWzBYVlf6OdzOfy5ndfWitYIb79gKFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+reproducing+kernel+algorithm+for+handling+differential+algebraic+systems+of+ordinary+differential+equations&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Arqub%2C+Omar+Abu&rft.date=2016-10-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=39&rft.issue=15&rft.spage=4549&rft.epage=4562&rft_id=info:doi/10.1002%2Fmma.3884&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_3884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon