Using MDS preference plot as visual analytics of data: A machine learning approach

The primary purpose of this paper is to advocate the use of multidimensional scaling (MDS) preference plot to study relationships among variables and individual differences in these variables. MDS preference plot is not a new visual technique; nevertheless, its application to visualize individual di...

Full description

Saved in:
Bibliographic Details
Published in:Methodological innovations Vol. 16; no. 1; pp. 67 - 77
Main Authors: Zhang, Yan, Ding, Cody
Format: Journal Article
Language:English
Published: London, England SAGE Publications 01.03.2023
Sage Publications Ltd
SAGE Publishing
Subjects:
ISSN:2059-7991, 2059-7991
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The primary purpose of this paper is to advocate the use of multidimensional scaling (MDS) preference plot to study relationships among variables and individual differences in these variables. MDS preference plot is not a new visual technique; nevertheless, its application to visualize individual differences in variables for high-dimensional data is rare, particularly in education and social sciences. We illustrated its application using a real example in an educational setting. The results indicate that the MDS preference plot is a viable visualization technique for data mining and analytics. Traditional statistical methods, such as the analysis of variance, can be used to further support the visual analysis results.
AbstractList The primary purpose of this paper is to advocate the use of multidimensional scaling (MDS) preference plot to study relationships among variables and individual differences in these variables. MDS preference plot is not a new visual technique; nevertheless, its application to visualize individual differences in variables for high-dimensional data is rare, particularly in education and social sciences. We illustrated its application using a real example in an educational setting. The results indicate that the MDS preference plot is a viable visualization technique for data mining and analytics. Traditional statistical methods, such as the analysis of variance, can be used to further support the visual analysis results.
Author Ding, Cody
Zhang, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
– sequence: 2
  givenname: Cody
  orcidid: 0000-0002-2894-1545
  surname: Ding
  fullname: Ding, Cody
  email: dingc@umsl.edu
BookMark eNp9kV9rFTEQxYNUsNZ-AN8CPt-aSbLJxrdS_xUqgtrnMJudXHPZbtZkr9Bvb65XURR9msxhfoczmcfsZM4zMfYUxAWAtc-l6Jx1DqQE0Lqz-gE7PWibg3jy2_sRO691J4SA3lpp4JR9uK1p3vJ3Lz_ypVCkQnMgvkx55Vj511T3OHGccbpfU6g8Rz7iii_4Jb_D8DnNxCfCMh88cFlKbuIT9jDiVOn8Rz1jt69ffbp6u7l5_-b66vJmE5TReuOCGoIUwYYuoEKk2GmniWAYQCobNXaO3IhjxN502As1WCOw9doQWFJn7ProO2bc-aWkOyz3PmPy34Vcth5LSz2R77veQIyDUKC0NLJXJC0oGFG6YDA2r2dHr7bClz3V1e_yvrS1q5fWSeVACdOm7HEqlFxr-y4f0opryvNaME0ehD_cw_91j0bCH-TPvP9jLo5MxS39yvNv4BtMDJmm
CitedBy_id crossref_primary_10_1007_s11135_025_02266_9
Cites_doi 10.1016/j.compedu.2020.103855
10.1007/s10763-007-9090-y
10.1007/s40593-016-0110-3
10.1145/1743546.1743567
10.1037/amp0000886
10.1177/016146811812001302
10.1177/00131610021969092
10.1037/a0037802
10.1016/j.compedu.2018.03.018
10.3389/fpsyg.2017.01666
10.1377/hlthaff.2015.0642
10.1177/1745691620917333
10.1002/9780470973196
10.1007/978-3-540-70956-5_1
10.18608/jla.2015.23.3
10.4135/9781446201015
10.1787/9789264281820-en
10.1198/106186008X318440
10.1023/A:1013176309260
10.5465/amj.2018.4005
10.1093/biomet/58.3.453
10.1016/j.caeai.2020.100001
10.1177/1745691616663875
10.1186/s41239-020-0177-7
10.1016/S0272-7757(97)00040-X
10.3389/feduc.2020.00104
10.1016/j.paid.2012.01.018
10.3102/0162373715576077
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AFRWT
AAYXX
CITATION
7U4
8BJ
ABUWG
AFKRA
AZQEC
BENPR
BHHNA
CCPQU
DWI
DWQXO
FQK
JBE
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
WZK
DOA
DOI 10.1177/20597991221144574
DatabaseName Sage Journals Online Open Access
CrossRef
Sociological Abstracts (pre-2017)
International Bibliography of the Social Sciences (IBSS)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Sociological Abstracts
ProQuest One Community College
Sociological Abstracts
ProQuest Central
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Sociological Abstracts (Ovid)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Sociological Abstracts (pre-2017)
International Bibliography of the Social Sciences (IBSS)
ProQuest One Academic UKI Edition
ProQuest Central Korea
Sociological Abstracts
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Education
EISSN 2059-7991
EndPage 77
ExternalDocumentID oai_doaj_org_article_85861ffb0313426283e27131da29c6af
10_1177_20597991221144574
10.1177_20597991221144574
GroupedDBID 0R~
54M
AAJPV
AASGM
ABAWP
ABDBF
ABQXT
ACGFS
ACROE
ACUHS
ADBBV
ADOGD
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AUTPY
BCNDV
BDZRT
BENPR
BMVBW
CCPQU
EBS
EJD
GROUPED_DOAJ
H13
J8X
KQ8
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
ROL
SAUOL
SCDPB
SCNPE
SFC
AAYXX
ACHEB
AFFHD
CITATION
7U4
8BJ
ABUWG
AZQEC
BHHNA
DWI
DWQXO
FQK
JBE
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
WZK
ID FETCH-LOGICAL-c3644-9c3bc20c7c5ca3aaef5494ee1bb1237f4a59e9dadfa865a803b760aadf46e17e3
IEDL.DBID BENPR
ISSN 2059-7991
IngestDate Fri Oct 03 12:51:42 EDT 2025
Thu Nov 06 22:15:27 EST 2025
Sat Nov 29 08:08:44 EST 2025
Tue Nov 18 21:07:03 EST 2025
Tue Jun 17 22:28:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords visual analytics
MDS preference plot
data mining
Machine learning
biplot
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3644-9c3bc20c7c5ca3aaef5494ee1bb1237f4a59e9dadfa865a803b760aadf46e17e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2894-1545
OpenAccessLink https://www.proquest.com/docview/2792391306?pq-origsite=%requestingapplication%
PQID 2792391306
PQPubID 4451082
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_85861ffb0313426283e27131da29c6af
proquest_journals_2792391306
crossref_citationtrail_10_1177_20597991221144574
crossref_primary_10_1177_20597991221144574
sage_journals_10_1177_20597991221144574
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Methodological innovations
PublicationYear 2023
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Anderson, Lin, Treagust 2007; 5
Buja, Swayne, Littman 2008; 17
Roll, Wylie 2016; 26
Chingos, West 2015; 37
Fife, Rodgers 2022; 77
Martinez-Maldonado, Pardo, Mirriahi 2016; 2
Heck 2000; 36
Hwang, Xie, Wah 2020; 1
Butner, Gagnon, Geuss 2015; 20
Ertug, Gruber, Nyberg 2018; 61
Xing, Wadholm, Petakovic 2015; 18
Carney, Levin 2002; 14
Vieira, Parsons, Byrd 2018; 122
Chen, Zou, Cheng 2020; 151
Roux, Gardner 2006; 73
Otten, Cheng, Drewnowski 2015; 34
Abbott, Do, Byrne 2012; 52
Alyahyan, Düstegor 2020; 17
Hsiao, Lan, Kao 2017; 20
Fife 2020; 15
Dee 1998; 17
Pastore, Lionetti, Altoè 2017; 8
Heer, Bostock, Ogievetsky 2010; 53
Gabriel 1971; 58
Musso, Cascallar, Bostani 2020; 5
Tay, Parrigon, Huang 2016; 11
bibr9-20597991221144574
bibr31-20597991221144574
bibr21-20597991221144574
Davis D (bibr11-20597991221144574) 2016
Thomas JJ (bibr36-20597991221144574) 2005
bibr19-20597991221144574
Roux NJ (bibr32-20597991221144574) 2006; 73
bibr3-20597991221144574
bibr16-20597991221144574
Bybee RW (bibr6-20597991221144574) 2018
Hsiao IYT (bibr22-20597991221144574) 2017; 20
bibr13-20597991221144574
bibr23-20597991221144574
bibr39-20597991221144574
bibr26-20597991221144574
R Core Team (bibr30-20597991221144574) 2013
Musso MF (bibr25-20597991221144574) 2009; 1
bibr29-20597991221144574
bibr28-20597991221144574
bibr15-20597991221144574
bibr18-20597991221144574
bibr2-20597991221144574
bibr5-20597991221144574
bibr12-20597991221144574
Xing W (bibr38-20597991221144574) 2015; 18
Carroll JD (bibr8-20597991221144574) 1972
bibr35-20597991221144574
bibr20-20597991221144574
bibr10-20597991221144574
bibr4-20597991221144574
bibr14-20597991221144574
bibr37-20597991221144574
SAS Institute Inc (bibr33-20597991221144574) 2013
bibr1-20597991221144574
bibr17-20597991221144574
bibr24-20597991221144574
bibr27-20597991221144574
bibr7-20597991221144574
bibr34-20597991221144574
References_xml – volume: 5
  year: 2020
  article-title: Identifying reliable predictors of educational outcomes through machine-learning predictive modeling
  publication-title: Frontiers in Education
– volume: 53
  start-page: 59
  year: 2010
  end-page: 67
  article-title: A tour through the visualization zoo
  publication-title: Communications of the ACM
– volume: 20
  start-page: 161
  issue: 2
  year: 2017
  end-page: 175
  article-title: Visualization analytics for second language vocabulary learning in virtual worlds
  publication-title: Educational Technology & Society
– volume: 36
  start-page: 513
  issue: 4
  year: 2000
  end-page: 552
  article-title: Examining the impact of school quality on school outcomes and improvement: A value-added approach
  publication-title: Educational Administration Quarterly
– volume: 122
  start-page: 119
  year: 2018
  end-page: 135
  article-title: Visual learning analytics of educational data: A systematic literature review and research agenda
  publication-title: Computers & Education
– volume: 58
  start-page: 453
  issue: 3
  year: 1971
  end-page: 467
  article-title: The biplot graphic display of matrices with application to principal component analysis
  publication-title: Biometrika
– volume: 77
  start-page: 453
  year: 2022
  end-page: 466
  article-title: Understanding the exploratory/confirmatory data analysis continuum: Moving beyond the “replication crisis”
  publication-title: American Psychologist
– volume: 73
  start-page: 365
  issue: 3
  year: 2006
  end-page: 387
  article-title: Analysing your multivariate data as a pictorial: A case for applying biplot methodology?
  publication-title: International Statistical Review/Revue Internationale de Statistique
– volume: 151
  start-page: 103855
  year: 2020
  article-title: Detecting latent topics and trends in educational technologies over four decades using structural topic modeling: A retrospective of all volumes of computers & education
  publication-title: Computers & Education
– volume: 61
  start-page: 1613
  issue: 5
  year: 2018
  end-page: 1625
  article-title: From the Editors—A brief primer on data visualization opportunities in management research
  publication-title: Academy of Management Journal
– volume: 52
  start-page: 914
  issue: 8
  year: 2012
  end-page: 918
  article-title: Diminished subjective wellbeing in Schizotypy is more than just negative affect
  publication-title: Personality and Individual Differences
– volume: 17
  start-page: 1
  year: 2020
  end-page: 21
  article-title: Predicting academic success in higher education: Literature review and best practices
  publication-title: International Journal of Educational Technology in Higher Education
– volume: 2
  start-page: 9
  issue: 3
  year: 2016
  end-page: 39
  article-title: Latux: An iterative workflow for designing, validating and deploying learning analytics visualisations
  publication-title: Journal of Learning Analytics
– volume: 37
  start-page: 120S
  issue: 1_suppl
  year: 2015
  end-page: 134S
  article-title: The uneven performance of Arizona’s charter schools
  publication-title: Educational Evaluation and Policy Analysis
– volume: 11
  start-page: 692
  issue: 5
  year: 2016
  end-page: 701
  article-title: Graphical descriptives: A way to improve data transparency and methodological rigor in psychology
  publication-title: Perspectives on Psychological Science
– volume: 15
  start-page: 1054
  issue: 4
  year: 2020
  end-page: 1075
  article-title: The eight steps of data analysis: A graphical framework to promote sound statistical analysis
  publication-title: Perspectives on Psychological Science
– volume: 1
  start-page: 100001
  year: 2020
  article-title: Vision, challenges, roles, and research issues of artificial intelligence in education
  publication-title: Computers and Education Artificial Intelligence
– volume: 17
  start-page: 444
  issue: 2
  year: 2008
  end-page: 472
  article-title: Data visualization with multidimensional scaling
  publication-title: Journal of Computational and Graphical Statistics
– volume: 34
  start-page: 1901
  issue: 11
  year: 2015
  end-page: 1907
  article-title: Infographics and public policy: Using data visualization to convey complex information
  publication-title: Health Affairs
– volume: 17
  start-page: 419
  year: 1998
  end-page: 427
  article-title: Competition and the quality of public schools
  publication-title: Economics of Education Review
– volume: 26
  start-page: 582
  year: 2016
  end-page: 599
  article-title: Evolution and revolution in artificial intelligence in education
  publication-title: International Journal of Artificial Intelligence in Education
– volume: 14
  start-page: 5
  year: 2002
  end-page: 26
  article-title: Pictorial illustrations still improve students’ learning from text
  publication-title: Educational Psychology Review
– volume: 18
  start-page: 110
  issue: 2
  year: 2015
  end-page: 128
  article-title: Group learning assessment: Developing a theory-informed analytics
  publication-title: Educational Technology & Society
– volume: 5
  start-page: 591
  year: 2007
  end-page: 614
  article-title: Using large-scale assessment datasets for research in science and mathematics education: Programme for international student assessment (PISA)
  publication-title: International Journal of Science and Mathematics Education
– volume: 20
  start-page: 1
  year: 2015
  end-page: 25
  article-title: Utilizing topology to generate and test theories of change
  publication-title: Psychological Methods
– volume: 8
  start-page: 1666
  year: 2017
  article-title: When one shape does not fit all: A commentary essay on the use of graphs in psychological research
  publication-title: Frontiers in Psychology
– ident: bibr9-20597991221144574
  doi: 10.1016/j.compedu.2020.103855
– volume: 18
  start-page: 110
  issue: 2
  year: 2015
  ident: bibr38-20597991221144574
  publication-title: Educational Technology & Society
– ident: bibr3-20597991221144574
  doi: 10.1007/s10763-007-9090-y
– volume: 20
  start-page: 161
  issue: 2
  year: 2017
  ident: bibr22-20597991221144574
  publication-title: Educational Technology & Society
– ident: bibr31-20597991221144574
  doi: 10.1007/s40593-016-0110-3
– ident: bibr14-20597991221144574
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: bibr30-20597991221144574
– ident: bibr21-20597991221144574
  doi: 10.1145/1743546.1743567
– ident: bibr17-20597991221144574
  doi: 10.1037/amp0000886
– ident: bibr39-20597991221144574
  doi: 10.1177/016146811812001302
– volume-title: STEM Education Now More Than Ever
  year: 2018
  ident: bibr6-20597991221144574
– start-page: 54
  volume-title: Proceedings of the 9th International Conference on Educational Data Mining
  year: 2016
  ident: bibr11-20597991221144574
– ident: bibr20-20597991221144574
  doi: 10.1177/00131610021969092
– ident: bibr5-20597991221144574
  doi: 10.1037/a0037802
– ident: bibr37-20597991221144574
  doi: 10.1016/j.compedu.2018.03.018
– ident: bibr29-20597991221144574
  doi: 10.3389/fpsyg.2017.01666
– volume: 73
  start-page: 365
  issue: 3
  year: 2006
  ident: bibr32-20597991221144574
  publication-title: International Statistical Review/Revue Internationale de Statistique
– ident: bibr28-20597991221144574
  doi: 10.1377/hlthaff.2015.0642
– volume-title: Illuminating the Path: The Research and Development Agenda for Visual Analytics
  year: 2005
  ident: bibr36-20597991221144574
– ident: bibr16-20597991221144574
  doi: 10.1177/1745691620917333
– ident: bibr19-20597991221144574
  doi: 10.1002/9780470973196
– start-page: 105
  volume-title: Multidimensional Scaling: Theory and Applications in the Behavioral Sciences (Volume 1): Theory
  year: 1972
  ident: bibr8-20597991221144574
– ident: bibr15-20597991221144574
  doi: 10.1007/978-3-540-70956-5_1
– ident: bibr24-20597991221144574
  doi: 10.18608/jla.2015.23.3
– ident: bibr34-20597991221144574
  doi: 10.4135/9781446201015
– volume: 1
  start-page: 433
  volume-title: Research in Behavioral Sciences
  year: 2009
  ident: bibr25-20597991221144574
– ident: bibr27-20597991221144574
  doi: 10.1787/9789264281820-en
– ident: bibr4-20597991221144574
  doi: 10.1198/106186008X318440
– ident: bibr7-20597991221144574
  doi: 10.1023/A:1013176309260
– ident: bibr13-20597991221144574
  doi: 10.5465/amj.2018.4005
– volume-title: Sas/Stat
  year: 2013
  ident: bibr33-20597991221144574
– ident: bibr18-20597991221144574
  doi: 10.1093/biomet/58.3.453
– ident: bibr23-20597991221144574
  doi: 10.1016/j.caeai.2020.100001
– ident: bibr35-20597991221144574
  doi: 10.1177/1745691616663875
– ident: bibr2-20597991221144574
  doi: 10.1186/s41239-020-0177-7
– ident: bibr12-20597991221144574
  doi: 10.1016/S0272-7757(97)00040-X
– ident: bibr26-20597991221144574
  doi: 10.3389/feduc.2020.00104
– ident: bibr1-20597991221144574
  doi: 10.1016/j.paid.2012.01.018
– ident: bibr10-20597991221144574
  doi: 10.3102/0162373715576077
SSID ssj0001877261
Score 2.2467113
Snippet The primary purpose of this paper is to advocate the use of multidimensional scaling (MDS) preference plot to study relationships among variables and...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 67
SubjectTerms Cognitive style
Data mining
Education
Individual differences
Information retrieval
Machine learning
Measures
Social sciences
Statistical methods
Variables
Variance analysis
Visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDDA9exPkDq1NyEPwBxTZJk9Tb_IUXh_gDditJmshgbmPd9vebpNncEPXisW1aQvLS933J4_MAODHGUFVKHJsUiZhgrmLJlY4FI9ZeFDOClb7YBOt0eLebPy2V-nI5YTUeuB64S55xmhojHWPQ0dM51sgGVmkpUK6oMO7vm7B8KZjyuyvcqkaahmNMR1hCVkcwK4aQjXgIyRhZcUSe178iMpfyuryrud8Cm0EjwnbdtyZY04Nt0AyrsIJnARV9vgOe_Yk_fLx9gaNFwRA46g8nUFRw1qum9jvCcUccjRkODXQZoVewDT98EqWGoWrEO5zDxXfB2_3d681DHKokxApbMRPnCkuFEsVUpgQWQhsb8hGtUymtV2KGiCzXeSlKIzjNBE-wZDQR9ppQnTKN90BjMBzofQARLyliVKZYEYIME64BYgjJ3Ko6pCOQzIesUAEh7ipZ9Is0UMO_jXIELhavjGp-xm-Nr908LBo69LW_YQ2iCAZR_GUQEWjNZ7EI67EqPCYxt_6aRuDUzezXox97c_AfvTkEG65AfZ211gKNyXiqj8C6mk161fjYG-0nMhPohA
  priority: 102
  providerName: Directory of Open Access Journals
Title Using MDS preference plot as visual analytics of data: A machine learning approach
URI https://journals.sagepub.com/doi/full/10.1177/20597991221144574
https://www.proquest.com/docview/2792391306
https://doaj.org/article/85861ffb0313426283e27131da29c6af
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2059-7991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877261
  issn: 2059-7991
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2059-7991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877261
  issn: 2059-7991
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2059-7991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877261
  issn: 2059-7991
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2059-7991
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877261
  issn: 2059-7991
  databaseCode: PIMPY
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxshEB61SQ-9NI-2ipuHOETqQ1rVCyywvURJais9xLLSVkpPK2AhsuR6Xa-T318GYztR1Fx6ZBcQYgYYhk_fB3DsvRe2NizzOdUZZ8pmRlmXacmDv1jptayj2IQcDNT1dTlMCbc2wSqXe2LcqOvGYo78cyS6K8OOK06mfzJUjcLX1SSh8Rw2kaks-PnmWW8wvFpnWVSIHkWenjORaYmGeEKGoIiGBpwXkj84kCJv_4Ng8x6-Kx45_a3_Hew2vErBJjldeMcOPHOTXdRpTpiOXdhJS7slHxL_9MfXcBVhBOTy63cyXamQkOm4mRPdkrtRexv61EhmghTPpPEEYaZfyCn5HZGZjiQpihuyZCx_Az_7vR_nF1mSXsgsCxFSVlpmLO1aaQurmdbOh3skdy43Jhx10nNdlK6sde21EoVWXWak6OpQ5sLl0rG3sDFpJm4PCFW1oFKYnFnOqZcaK1BJqSlDqEhdB7rL-a9s4iVHeYxxlScq8kcm68CnVZPpgpTjqcpnaNRVReTTjh-a2U2VlmelCiVy7w0yWSJHv2KOhut7XmtaWqF9Bw6Whq7SIm-rtZU78B7dZP3rn6N593RH-_AS9ewXILcD2JjPbt0hvLB381E7O0refRQTB6E0_HY5_PUXKxr_VA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3vT9QwGH6DB4l8UQENpyj9IAFNFq8_1nYmxqBIuMBdLooJfppt1xISvJ23A-M_5d9ou-vuIES-8cGP27pmXZ-9fdq-ex6Al845bgpNE4eJShiVJtHS2EQJ5vFihFOiqM0mRL8vT06ywQL8af6FCWmVTUysA3VRmrBG_qYWust8xOXvRz-T4BoVdlcbC40pLA7t719-yla96-75_t0iZP_T8ceDJLoKJIb6wT_JDNWGdIwwqVFUKev8FIlZi7X2UVw4ptLMZoUqnJI8VbJDteAd5Y8Zt1hY6uu9B4ssgL0Fi4Nub_BtvqojPVvlOG6fBmUn4vmL8CSM-JkWY6lg1wbA2ifgGrm9kk9WD3H7D_-3l_MIHkQyjXan6F-BBTtcDT7UMWdlFVZi6KrQTtTXfrUGn-s0CdTb-4JGM5cVNDovJ0hV6PKsuvB1qiDWEiSsUelQSKN9i3bRjzrz1KJotXGKGkX2x_D1Ttr5BFrDcmjXARFZcCK4xtR4TDihQgEiCNGZp8LEtqHT9Hduou56sP84z3GUWr8BkTa8nt0ymoqO3Fb4QwDRrGDQC69PlOPTPIafXKaSY-d0UOoMHgSSWiIwxYUimeHKtWGjAVYeg1iVz1HVhu0Ay_mlfz7N09sr2oT7B8e9o_yo2z98BsvEM8ZpQt8GtCbjC_sclszl5Kwav4hfFoLvd43Xvx_AXKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+MDS+preference+plot+as+visual+analytics+of+data%3A+A+machine+learning+approach&rft.jtitle=Methodological+innovations&rft.au=Zhang%2C+Yan&rft.au=Ding%2C+Cody&rft.date=2023-03-01&rft.pub=SAGE+Publications&rft.issn=2059-7991&rft.eissn=2059-7991&rft.volume=16&rft.issue=1&rft.spage=67&rft.epage=77&rft_id=info:doi/10.1177%2F20597991221144574&rft.externalDocID=10.1177_20597991221144574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-7991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-7991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-7991&client=summon