Assessment of explicit and semi-explicit classes of model-based algorithms for direct integration in structural dynamics

Summary The ‘model‐based’ algorithms available in the literature are primarily developed for the direct integration of the equations of motion for hybrid simulation in earthquake engineering, an experimental method where the system response is simulated by dividing it into a physical and an analytic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering Jg. 107; H. 1; S. 49 - 73
Hauptverfasser: Kolay, Chinmoy, Ricles, James M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bognor Regis Blackwell Publishing Ltd 06.07.2016
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0029-5981, 1097-0207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary The ‘model‐based’ algorithms available in the literature are primarily developed for the direct integration of the equations of motion for hybrid simulation in earthquake engineering, an experimental method where the system response is simulated by dividing it into a physical and an analytical domain. The term ‘model‐based’ indicates that the algorithmic parameters are functions of the complete model of the system to enable unconditional stability to be achieved within the framework of an explicit formulation. These two features make the model‐based algorithms also potential candidates for computations in structural dynamics. Based on the algorithmic difference equations, these algorithms can be classified as either explicit or semi‐explicit, where the former refers to the algorithms with explicit difference equations for both displacement and velocity, while the latter for displacement only. The algorithms pertaining to each class are reviewed, and a new family of second‐order unconditionally stable parametrically dissipative semi‐explicit algorithms is presented. Numerical characteristics of these two classes of algorithms are assessed under linear and nonlinear structural behavior. Representative numerical examples are presented to complement the analytical findings. The analysis and numerical examples demonstrate the advantages and limitations of these two classes of model‐based algorithms for applications in structural dynamics. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList Summary The 'model-based' algorithms available in the literature are primarily developed for the direct integration of the equations of motion for hybrid simulation in earthquake engineering, an experimental method where the system response is simulated by dividing it into a physical and an analytical domain. The term 'model-based' indicates that the algorithmic parameters are functions of the complete model of the system to enable unconditional stability to be achieved within the framework of an explicit formulation. These two features make the model-based algorithms also potential candidates for computations in structural dynamics. Based on the algorithmic difference equations, these algorithms can be classified as either explicit or semi-explicit, where the former refers to the algorithms with explicit difference equations for both displacement and velocity, while the latter for displacement only. The algorithms pertaining to each class are reviewed, and a new family of second-order unconditionally stable parametrically dissipative semi-explicit algorithms is presented. Numerical characteristics of these two classes of algorithms are assessed under linear and nonlinear structural behavior. Representative numerical examples are presented to complement the analytical findings. The analysis and numerical examples demonstrate the advantages and limitations of these two classes of model-based algorithms for applications in structural dynamics. Copyright © 2015 John Wiley & Sons, Ltd.
The ‘model‐based’ algorithms available in the literature are primarily developed for the direct integration of the equations of motion for hybrid simulation in earthquake engineering, an experimental method where the system response is simulated by dividing it into a physical and an analytical domain. The term ‘model‐based’ indicates that the algorithmic parameters are functions of the complete model of the system to enable unconditional stability to be achieved within the framework of an explicit formulation. These two features make the model‐based algorithms also potential candidates for computations in structural dynamics. Based on the algorithmic difference equations, these algorithms can be classified as either explicit or semi‐explicit , where the former refers to the algorithms with explicit difference equations for both displacement and velocity, while the latter for displacement only. The algorithms pertaining to each class are reviewed, and a new family of second‐order unconditionally stable parametrically dissipative semi‐explicit algorithms is presented. Numerical characteristics of these two classes of algorithms are assessed under linear and nonlinear structural behavior. Representative numerical examples are presented to complement the analytical findings. The analysis and numerical examples demonstrate the advantages and limitations of these two classes of model‐based algorithms for applications in structural dynamics. Copyright © 2015 John Wiley & Sons, Ltd.
Summary The ‘model‐based’ algorithms available in the literature are primarily developed for the direct integration of the equations of motion for hybrid simulation in earthquake engineering, an experimental method where the system response is simulated by dividing it into a physical and an analytical domain. The term ‘model‐based’ indicates that the algorithmic parameters are functions of the complete model of the system to enable unconditional stability to be achieved within the framework of an explicit formulation. These two features make the model‐based algorithms also potential candidates for computations in structural dynamics. Based on the algorithmic difference equations, these algorithms can be classified as either explicit or semi‐explicit, where the former refers to the algorithms with explicit difference equations for both displacement and velocity, while the latter for displacement only. The algorithms pertaining to each class are reviewed, and a new family of second‐order unconditionally stable parametrically dissipative semi‐explicit algorithms is presented. Numerical characteristics of these two classes of algorithms are assessed under linear and nonlinear structural behavior. Representative numerical examples are presented to complement the analytical findings. The analysis and numerical examples demonstrate the advantages and limitations of these two classes of model‐based algorithms for applications in structural dynamics. Copyright © 2015 John Wiley & Sons, Ltd.
The 'model-based' algorithms available in the literature are primarily developed for the direct integration of the equations of motion for hybrid simulation in earthquake engineering, an experimental method where the system response is simulated by dividing it into a physical and an analytical domain. The term 'model-based' indicates that the algorithmic parameters are functions of the complete model of the system to enable unconditional stability to be achieved within the framework of an explicit formulation. These two features make the model-based algorithms also potential candidates for computations in structural dynamics. Based on the algorithmic difference equations, these algorithms can be classified as either explicit or semi-explicit, where the former refers to the algorithms with explicit difference equations for both displacement and velocity, while the latter for displacement only. The algorithms pertaining to each class are reviewed, and a new family of second-order unconditionally stable parametrically dissipative semi-explicit algorithms is presented. Numerical characteristics of these two classes of algorithms are assessed under linear and nonlinear structural behavior. Representative numerical examples are presented to complement the analytical findings. The analysis and numerical examples demonstrate the advantages and limitations of these two classes of model-based algorithms for applications in structural dynamics.
Author Ricles, James M.
Kolay, Chinmoy
Author_xml – sequence: 1
  givenname: Chinmoy
  surname: Kolay
  fullname: Kolay, Chinmoy
  email: Correspondence to: Chinmoy Kolay, ATLSS Research Center, 117 ATLSS Drive, Bethlehem, PA 18015., chk311@lehigh.edu
  organization: Department of Civil and Environmental Engineering, Lehigh University, PA, 18015, Bethlehem, USA
– sequence: 2
  givenname: James M.
  surname: Ricles
  fullname: Ricles, James M.
  organization: Department of Civil and Environmental Engineering, Lehigh University, PA, 18015, Bethlehem, USA
BookMark eNp10V1rFDEUBuAgFdxWwZ8Q8MabWfOxmcxclrWtwrqFUtG7kMmcqamZZE0ydPffm3VlxdJe5ZA8CefkPUUnPnhA6C0lc0oI--BHmAsq-As0o6SVFWFEnqBZOWor0Tb0FTpN6Z4QSgXhM7Q9TwlSGsFnHAYM242zxmasfY8TjLY67hin93SvxtCDqzqdoMfa3YVo848x4SFE3NsIJmPrM9xFnW3wpcYpx8nkKWqH-53XozXpNXo5aJfgzd_1DH29vLhdfqpW11efl-eryvB6wauBN7zrWip0wzinZuhlZ0zfCV3LgUsiWE8ENIV0sgapKYfGMM0EbRgTRPMz9P7w7iaGXxOkrEabDDinPYQpqeLEomWipoW-e0TvwxR96U5R2fKWLwhnRc0PysSQUoRBld_5M2mO2jpFidoHoUoQah_Evw6OFzbRjjrunqLVgT5YB7tnnVp_ufjf25Rhe_Q6_lS15FKob-srdXuzWt5cfvyu1vw3RK-qMA
CODEN IJNMBH
CitedBy_id crossref_primary_10_1007_s11803_019_0504_y
crossref_primary_10_1061__ASCE_EM_1943_7889_0001329
crossref_primary_10_1016_j_apm_2022_06_005
crossref_primary_10_1061__ASCE_EM_1943_7889_0001866
crossref_primary_10_1016_j_apm_2019_11_033
crossref_primary_10_1002_stc_2295
crossref_primary_10_1007_s11071_019_04936_4
crossref_primary_10_1007_s00366_020_00960_w
crossref_primary_10_1080_13632469_2017_1326423
crossref_primary_10_1002_eqe_3694
crossref_primary_10_1002_eqe_4002
crossref_primary_10_1002_tal_1588
crossref_primary_10_1016_j_ymssp_2024_111576
crossref_primary_10_1002_eqe_3156
crossref_primary_10_1016_j_cma_2017_11_012
crossref_primary_10_1016_j_engstruct_2024_118298
crossref_primary_10_1061__ASCE_EM_1943_7889_0001454
crossref_primary_10_1016_j_istruc_2025_109232
crossref_primary_10_3390_su10082846
crossref_primary_10_1155_2016_2831206
crossref_primary_10_3390_sym13091739
crossref_primary_10_1155_2021_4689090
crossref_primary_10_1016_j_istruc_2025_108606
crossref_primary_10_1016_j_soildyn_2019_105777
crossref_primary_10_1061__ASCE_ST_1943_541X_0001944
crossref_primary_10_3390_math11132987
crossref_primary_10_3390_math13081231
crossref_primary_10_1016_j_soildyn_2019_03_031
crossref_primary_10_1016_j_engstruct_2024_118170
crossref_primary_10_4028_www_scientific_net_KEM_763_566
Cites_doi 10.1016/j.engstruct.2012.08.009
10.1002/nme.4869
10.1061/JMCEA3.0000098
10.1061/(ASCE)0733-9445(2008)134:4(581)
10.1002/eqe.4290060111
10.1061/(ASCE)0733-9399(2002)128:9(935)
10.1002/eqe.4290050306
10.1002/nme.4720
10.1061/(ASCE)0733-9445(1994)120:2(441)
10.1016/S0045-7825(00)00262-0
10.1002/eqe.2484
10.1115/1.2900803
10.1007/BF01963532
10.1061/(ASCE)0733-9399(2008)134:8(676)
10.1002/eqe.838
10.1061/(ASCE)0733-9399(2007)133:5(541)
10.1002/eqe.2401
10.1002/nme.1620151011
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.5153
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 73
ExternalDocumentID 4079133691
10_1002_nme_5153
NME5153
ark_67375_WNG_TRLCRFDX_N
Genre article
GrantInformation_xml – fundername: P.C. Rossin College of Engineering and Applied Science (RCEAS) fellowship
– fundername: Yen fellowship
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3643-f383bb915a82331cfd7bccdb5a67f37052d05e8bb9b76e7a13e8c2a25182250a3
IEDL.DBID DRFUL
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378428200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 11 16:35:21 EDT 2025
Fri Jul 25 12:20:03 EDT 2025
Sat Nov 29 06:43:51 EST 2025
Tue Nov 18 21:01:53 EST 2025
Wed Aug 20 07:24:42 EDT 2025
Tue Nov 11 03:31:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3643-f383bb915a82331cfd7bccdb5a67f37052d05e8bb9b76e7a13e8c2a25182250a3
Notes P.C. Rossin College of Engineering and Applied Science (RCEAS) fellowship
ArticleID:NME5153
istex:2126BF408B4BAF507FA4CB55BB0EC3A94E9791F0
Yen fellowship
ark:/67375/WNG-TRLCRFDX-N
PhD candidate and P. C. Rossin Doctoral Fellow.
Bruce G. Johnston Professor.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1793934032
PQPubID 996376
PageCount 25
ParticipantIDs proquest_miscellaneous_1825492561
proquest_journals_1793934032
crossref_citationtrail_10_1002_nme_5153
crossref_primary_10_1002_nme_5153
wiley_primary_10_1002_nme_5153_NME5153
istex_primary_ark_67375_WNG_TRLCRFDX_N
PublicationCentury 2000
PublicationDate 06 July 2016
PublicationDateYYYYMMDD 2016-07-06
PublicationDate_xml – month: 07
  year: 2016
  text: 06 July 2016
  day: 06
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Chen C, Ricles JM. Development of direct integration algorithms for structural dynamics using discrete control theory. Journal of Engineering Mechanics 2008; 134(8):676-683.
Ricles J, Popov E. Inelastic link element for EBF seismic analysis. Journal of Structural Engineering-ASCE 1994; 120(2):441-463.
Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics 1977; 5(3):283-292.
Wood WL, Bossak M, Zienkiewicz OC. An alpha modification of Newmark's method. International Journal for Numerical Methods in Engineering 1980; 15(10):1562-1566.
Newmark N. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division-ASCE 1959; 85(3):67-94.
Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. Journal of Applied Mechanics 1993; 60(2):371-375.
Pegon P. Alternative characterization of time integration schemes. Computer Methods in Applied Mechanics and Engineering 2001; 190(20-21):2707-2727.
Chang S. A family of noniterative integration methods with desired numerical dissipation. International Journal for Numerical Methods in Engineering 2014; 100(1):62-86.
Chang SY. An explicit structure-dependent algorithm for pseudodynamic testing. Engineering Structures 2013; 46:511-525.
Hilber HM, Hughes TJR. Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics. Earthquake Engineering and Structural Dynamics 1978; 6(1):99-117.
Dahlquist G. A special stability problem for linear multistep methods. BIT Numerical Mathematics 1963; 3(1):27-43.
Großeholz G, Soares JD, Estorff O. A stabilized central difference scheme for dynamic analysis. International Journal for Numerical Methods in Engineering 2015; 102(11):1750-1760.
Chopra AK. Dynamics of Structures (4edn.) Prentice Hall: Upper Saddle River, New Jersey 07458, 2011.
Charney FA. Unintended consequences of modeling damping in structures. Journal of Structural Engineering 2008; 134(4):581-592.
Richtmyer RD, Morton K. Difference Methods for Initial-value Problems (2edn.) Krieger Pub Co: Malabar, Florida, 1994.
Franklin GF, Powell JD, Emami-Naeini A. Feedback Control of Dynamic Systems (6edn.) Prentice Hall: Upper Saddle River, New Jersey, 2009.
Enhanced CSY, Stable U. Explicit pseudodynamic algorithm. Journal of Engineering Mechanics 2007; 133(5):541-554.
Chang SY. Explicit pseudodynamic algorithm with unconditional stability. Journal of Engineering Mechanics 2002; 128(9):935-947.
Chen C, Ricles JM, Marullo T, Mercan O. Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm. Earthquake Engineering and Structural Dynamics 2009; 38(1):23-44.
Kolay C, Ricles JM, Marullo TM, Mahvashmohammadi A, Sause R. Implementation and application of the unconditionally stable explicit parametrically dissipative KR-α method for real-time hybrid simulation. Earthquake Engineering and Structural Dynamics 2015; 44(5):735-755.
Kolay C, Ricles JM. Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. Earthquake Engineering and Structural Dynamics 2014; 43(9):1361-1380.
1959; 85
1980; 15
2011
2001; 190
1993; 60
2013; 46
2015; 102
2007; 133
1994; 120
2015; 44
1963; 3
2002; 128
1976
2009
1994
2008; 134
2014; 100
2009; 38
1968
1977; 5
2014; 43
1978; 6
e_1_2_11_10_1
e_1_2_11_21_1
e_1_2_11_14_1
e_1_2_11_13_1
Franklin GF (e_1_2_11_19_1) 2009
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_12_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_11_1
e_1_2_11_22_1
e_1_2_11_7_1
e_1_2_11_18_1
e_1_2_11_6_1
Newmark N (e_1_2_11_2_1) 1959; 85
e_1_2_11_5_1
e_1_2_11_16_1
e_1_2_11_4_1
e_1_2_11_15_1
e_1_2_11_3_1
Richtmyer RD (e_1_2_11_17_1) 1994
Chopra AK (e_1_2_11_20_1) 2011
References_xml – reference: Enhanced CSY, Stable U. Explicit pseudodynamic algorithm. Journal of Engineering Mechanics 2007; 133(5):541-554.
– reference: Dahlquist G. A special stability problem for linear multistep methods. BIT Numerical Mathematics 1963; 3(1):27-43.
– reference: Hilber HM, Hughes TJR. Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics. Earthquake Engineering and Structural Dynamics 1978; 6(1):99-117.
– reference: Charney FA. Unintended consequences of modeling damping in structures. Journal of Structural Engineering 2008; 134(4):581-592.
– reference: Ricles J, Popov E. Inelastic link element for EBF seismic analysis. Journal of Structural Engineering-ASCE 1994; 120(2):441-463.
– reference: Kolay C, Ricles JM. Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. Earthquake Engineering and Structural Dynamics 2014; 43(9):1361-1380.
– reference: Franklin GF, Powell JD, Emami-Naeini A. Feedback Control of Dynamic Systems (6edn.) Prentice Hall: Upper Saddle River, New Jersey, 2009.
– reference: Chang S. A family of noniterative integration methods with desired numerical dissipation. International Journal for Numerical Methods in Engineering 2014; 100(1):62-86.
– reference: Chen C, Ricles JM. Development of direct integration algorithms for structural dynamics using discrete control theory. Journal of Engineering Mechanics 2008; 134(8):676-683.
– reference: Chang SY. An explicit structure-dependent algorithm for pseudodynamic testing. Engineering Structures 2013; 46:511-525.
– reference: Pegon P. Alternative characterization of time integration schemes. Computer Methods in Applied Mechanics and Engineering 2001; 190(20-21):2707-2727.
– reference: Newmark N. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division-ASCE 1959; 85(3):67-94.
– reference: Wood WL, Bossak M, Zienkiewicz OC. An alpha modification of Newmark's method. International Journal for Numerical Methods in Engineering 1980; 15(10):1562-1566.
– reference: Richtmyer RD, Morton K. Difference Methods for Initial-value Problems (2edn.) Krieger Pub Co: Malabar, Florida, 1994.
– reference: Chen C, Ricles JM, Marullo T, Mercan O. Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm. Earthquake Engineering and Structural Dynamics 2009; 38(1):23-44.
– reference: Großeholz G, Soares JD, Estorff O. A stabilized central difference scheme for dynamic analysis. International Journal for Numerical Methods in Engineering 2015; 102(11):1750-1760.
– reference: Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics 1977; 5(3):283-292.
– reference: Kolay C, Ricles JM, Marullo TM, Mahvashmohammadi A, Sause R. Implementation and application of the unconditionally stable explicit parametrically dissipative KR-α method for real-time hybrid simulation. Earthquake Engineering and Structural Dynamics 2015; 44(5):735-755.
– reference: Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. Journal of Applied Mechanics 1993; 60(2):371-375.
– reference: Chopra AK. Dynamics of Structures (4edn.) Prentice Hall: Upper Saddle River, New Jersey 07458, 2011.
– reference: Chang SY. Explicit pseudodynamic algorithm with unconditional stability. Journal of Engineering Mechanics 2002; 128(9):935-947.
– year: 2011
– year: 2009
– volume: 134
  start-page: 581
  issue: 4
  year: 2008
  end-page: 592
  article-title: Unintended consequences of modeling damping in structures
  publication-title: Journal of Structural Engineering
– volume: 38
  start-page: 23
  issue: 1
  year: 2009
  end-page: 44
  article-title: Real‐time hybrid testing using the unconditionally stable explicit CR integration algorithm
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 60
  start-page: 371
  issue: 2
  year: 1993
  end-page: 375
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized‐ method
  publication-title: Journal of Applied Mechanics
– volume: 190
  start-page: 2707
  issue: 20‐21
  year: 2001
  end-page: 2727
  article-title: Alternative characterization of time integration schemes
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 134
  start-page: 676
  issue: 8
  year: 2008
  end-page: 683
  article-title: Development of direct integration algorithms for structural dynamics using discrete control theory
  publication-title: Journal of Engineering Mechanics
– volume: 102
  start-page: 1750
  issue: 11
  year: 2015
  end-page: 1760
  article-title: A stabilized central difference scheme for dynamic analysis
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 5
  start-page: 283
  issue: 3
  year: 1977
  end-page: 292
  article-title: Improved numerical dissipation for time integration algorithms in structural dynamics
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 120
  start-page: 441
  issue: 2
  year: 1994
  end-page: 463
  article-title: Inelastic link element for EBF seismic analysis
  publication-title: Journal of Structural Engineering‐ASCE
– volume: 128
  start-page: 935
  issue: 9
  year: 2002
  end-page: 947
  article-title: Explicit pseudodynamic algorithm with unconditional stability
  publication-title: Journal of Engineering Mechanics
– year: 1968
– volume: 46
  start-page: 511
  year: 2013
  end-page: 525
  article-title: An explicit structure‐dependent algorithm for pseudodynamic testing
  publication-title: Engineering Structures
– volume: 44
  start-page: 735
  issue: 5
  year: 2015
  end-page: 755
  article-title: Implementation and application of the unconditionally stable explicit parametrically dissipative KR‐ method for real‐time hybrid simulation
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  end-page: 94
  article-title: A method of computation for structural dynamics
  publication-title: Journal of the Engineering Mechanics Division‐ASCE
– volume: 100
  start-page: 62
  issue: 1
  year: 2014
  end-page: 86
  article-title: A family of noniterative integration methods with desired numerical dissipation
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 133
  start-page: 541
  issue: 5
  year: 2007
  end-page: 554
  article-title: Explicit pseudodynamic algorithm
  publication-title: Journal of Engineering Mechanics
– volume: 6
  start-page: 99
  issue: 1
  year: 1978
  end-page: 117
  article-title: Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 15
  start-page: 1562
  issue: 10
  year: 1980
  end-page: 1566
  article-title: An alpha modification of Newmark's method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 43
  start-page: 1361
  issue: 9
  year: 2014
  end-page: 1380
  article-title: Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 3
  start-page: 27
  issue: 1
  year: 1963
  end-page: 43
  article-title: A special stability problem for linear multistep methods
  publication-title: BIT Numerical Mathematics
– year: 1976
– year: 1994
– ident: e_1_2_11_12_1
  doi: 10.1016/j.engstruct.2012.08.009
– ident: e_1_2_11_14_1
  doi: 10.1002/nme.4869
– volume-title: Dynamics of Structures
  year: 2011
  ident: e_1_2_11_20_1
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  ident: e_1_2_11_2_1
  article-title: A method of computation for structural dynamics
  publication-title: Journal of the Engineering Mechanics Division‐ASCE
  doi: 10.1061/JMCEA3.0000098
– ident: e_1_2_11_23_1
  doi: 10.1061/(ASCE)0733-9445(2008)134:4(581)
– ident: e_1_2_11_18_1
  doi: 10.1002/eqe.4290060111
– ident: e_1_2_11_7_1
  doi: 10.1061/(ASCE)0733-9399(2002)128:9(935)
– ident: e_1_2_11_16_1
– ident: e_1_2_11_4_1
  doi: 10.1002/eqe.4290050306
– ident: e_1_2_11_13_1
  doi: 10.1002/nme.4720
– ident: e_1_2_11_22_1
  doi: 10.1061/(ASCE)0733-9445(1994)120:2(441)
– ident: e_1_2_11_21_1
  doi: 10.1016/S0045-7825(00)00262-0
– volume-title: Difference Methods for Initial‐value Problems
  year: 1994
  ident: e_1_2_11_17_1
– ident: e_1_2_11_24_1
  doi: 10.1002/eqe.2484
– volume-title: Feedback Control of Dynamic Systems
  year: 2009
  ident: e_1_2_11_19_1
– ident: e_1_2_11_6_1
  doi: 10.1115/1.2900803
– ident: e_1_2_11_15_1
  doi: 10.1007/BF01963532
– ident: e_1_2_11_8_1
  doi: 10.1061/(ASCE)0733-9399(2008)134:8(676)
– ident: e_1_2_11_10_1
  doi: 10.1002/eqe.838
– ident: e_1_2_11_11_1
  doi: 10.1061/(ASCE)0733-9399(2007)133:5(541)
– ident: e_1_2_11_3_1
– ident: e_1_2_11_9_1
  doi: 10.1002/eqe.2401
– ident: e_1_2_11_5_1
  doi: 10.1002/nme.1620151011
SSID ssj0011503
Score 2.3804262
Snippet Summary The ‘model‐based’ algorithms available in the literature are primarily developed for the direct integration of the equations of motion for hybrid...
The ‘model‐based’ algorithms available in the literature are primarily developed for the direct integration of the equations of motion for hybrid simulation in...
Summary The 'model-based' algorithms available in the literature are primarily developed for the direct integration of the equations of motion for hybrid...
The 'model-based' algorithms available in the literature are primarily developed for the direct integration of the equations of motion for hybrid simulation in...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Algorithms
Computer simulation
Difference equations
direct integration algorithm
dynamic analysis
Dynamic structural analysis
Dynamical systems
Dynamics
explicit
Mathematical analysis
Mathematical models
numerical damping
unconditional stability
Title Assessment of explicit and semi-explicit classes of model-based algorithms for direct integration in structural dynamics
URI https://api.istex.fr/ark:/67375/WNG-TRLCRFDX-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5153
https://www.proquest.com/docview/1793934032
https://www.proquest.com/docview/1825492561
Volume 107
WOSCitedRecordID wos000378428200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZglwMcKBQqFgoyEoJTaOJHHB-rtguHbYRWLezNsh0bVu1mq80WFYkDP4Hf2F_ScV7aSiAhccprIlv2jOebePINQm-o5yQ1hkfMSBkxnbJI8sJHzHJrrCFG12U6P09EnmezmfzUZlWGf2Eafoj-g1uwjHq9DgauTbW3QRq6cO_BGdO7aEhAbdkADQ-n49NJv4cAUId2CR5cZklHPRuTve7dW85oGMb16hbS3MSrtcMZb_1PVx-hhy3MxPuNXjxGd1y5jbZayIlbg6620YMNPkK4Ou5JXKsn6Od-z9qJlx67q7DVPV9jXRa4cov59a_f_T0bQLirglxdWweeBf9YYH3-dbmar78tKgzwGDceFHckFaAUcI4bEttAAIKLH6VeQPNP0en46OTgY9QWa4gsBVQTeQh1jZEJ1xmhNLG-EMbawnCdCk9FzEkRc5eBiBGpEzqhLrMENAECHIBhmu6gQbks3TOEDawriYbA1grDhI8zySXzgjvB0oJ7N0LvullTtmUyDwU1zlXDwUwUDLgKAz5Cr3vJi4a94w8yb-uJ7wX06ixkuwmuvuQf1Ml0cjAdH85UPkK7nWao1tArFdY3SVlMCbTVPwYTDfsuunTLS5Cpo3DAlgm0VevJXzuj8uOjcHz-r4Iv0H2AcGmdQJzuogHMl3uJ7tnv63m1etWaxA2mAxOg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NFgn2sMEAUTbASAiesiVxHCfiadpWhkgjVHXQN8t2HFZtTVHToSHxwEfgM_JJOOefOgkkJJ7yxxfZsu98v7Od3wG8pDnzQ6WYE6g4dgIZBk7MstwJNNNKK1_JKk3nx4SnaTSdxh824E37L0zND9EtuFnLqOZra-B2QfpgjTV0bvbRG9Nb0A9Qi1gP-sfj4VnSbSIg1qHtCQ8WR17LPev6B-23N7xR33bs9Q2ouQ5YK48z3P6vtt6DrQZoksNaM-7Dhil2YLsBnaQx6XIHNtcYCfFp1NG4lg_g-2HH20kWOTHXdrN7tiKyyEhp5rNfP35277SF4aa0clV2HSyzHjIj8vLzYjlbnc9LggCZ1D6UtDQVqBZ4T2oaW0sBQrJvhZxj9Q_hbHgyOTp1mnQNjqaIa5wcg12lYo_JyKfU03nGldaZYjLkOeUu8zOXmQhFFA8Nlx41kfZRFzDEQSAm6SPoFYvCPAaicGbxJIa2mquA524UszjIOTM8CDOWmwG8bodN6IbL3KbUuBQ1C7MvsMOF7fABvOgkv9T8HX-QeVWNfCcglxf2vBtn4lP6VkzGydF4eDwV6QD2WtUQjamXws5wMQ1c6mNdXTEaqd15kYVZXKFMFYcjuvSwrkpR_toYkY5O7PXJvwo-hzunk1Eiknfp-124i4AurI4Th3vQw7EzT-G2_rqalctnjX38Bg7SF5A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKFyE4UCggFgoYCcEpNIntOBanqtsAYhtVqxb2ZtmODSu62WqzoCJx6CP0GXkSxvnTVgIJiVN-PJEte8bzje18g9AL4licaM0CqoUIqEpoIFjhAmqY0UbHWtVpOj-OeZ6n06k42kBvun9hGn6IfsHNW0Y9X3sDt2eF211jDZ3b1-CNyTU0oEwkYJWD0SQ7GfebCIB1SHfCg4k06rhnw3i3-_aKNxr4jj2_AjXXAWvtcbKt_2rrHXS7BZp4r9GMu2jDlttoqwWduDXpahvdWmMkhKfDnsa1uod-7vW8nXjhsD33m92zFVZlgSs7n_26uOzfGQ_DbeXl6uw6UOY9ZIHV6efFcrb6Mq8wAGTc-FDc0VSAWsA9bmhsPQUILn6Uag7V30cn2cHx_rugTdcQGAK4JnAQ7GotIqbSmJDIuIJrYwrNVMId4SGLi5DZFEQ0TyxXEbGpiUEXIMQBIKbIA7RZLkr7EGENM0ukILQ1XFPuwlQwQR1nltOkYM4O0atu2KRpucx9So1T2bAwxxI6XPoOH6LnveRZw9_xB5mX9cj3Amr51Z9340x-yt_K48l4f5KNpjIfop1ONWRr6pX0M5wgNCQx1NUXg5H6nRdV2sU3kKnjcECXEdRVK8pfGyPzwwN_ffSvgs_QjaNRJsfv8w-P0U3Ac0l9mjjZQZswdPYJum6-r2bV8mlrHr8BeZUXCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+explicit+and+semi%E2%80%90explicit+classes+of+model%E2%80%90based+algorithms+for+direct+integration+in+structural+dynamics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Kolay%2C+Chinmoy&rft.au=Ricles%2C+James+M.&rft.date=2016-07-06&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=107&rft.issue=1&rft.spage=49&rft.epage=73&rft_id=info:doi/10.1002%2Fnme.5153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_5153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon