On a spatial generalization of the Kolosov-Muskhelishvili formulae

The main goal of this paper is to construct a spatial analog to the Kolosov–Muskhelishvili formulae using the framework of the hypercomplex function theory. We prove a generalization of Goursat's representation theorem for solutions of the biharmonic equation in three dimensions. On the basis o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods in the applied sciences Ročník 32; číslo 2; s. 223 - 240
Hlavní autoři: Bock, S., Gürlebeck, K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 30.01.2009
Wiley
Témata:
ISSN:0170-4214, 1099-1476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The main goal of this paper is to construct a spatial analog to the Kolosov–Muskhelishvili formulae using the framework of the hypercomplex function theory. We prove a generalization of Goursat's representation theorem for solutions of the biharmonic equation in three dimensions. On the basis of this result, we construct explicitly hypercomplex displacement and stress formulae in terms of two monogenic functions. Copyright © 2008 John Wiley & Sons, Ltd.
Bibliografie:ArticleID:MMA1033
istex:06E514A1B07DF179F41250F4D3EFD989F7378727
ark:/67375/WNG-JSDNF080-C
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.1033