Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems
Summary The performance analysis of the recursive algorithms for the multivariate systems with an autoregressive moving average noise process is still open. This paper analyzes the convergence of two recursive identification algorithms, the multivariate recursive generalized extended least squares a...
Uloženo v:
| Vydáno v: | International journal of adaptive control and signal processing Ročník 30; číslo 6; s. 824 - 842 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bognor Regis
Blackwell Publishing Ltd
01.06.2016
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0890-6327, 1099-1115 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Summary
The performance analysis of the recursive algorithms for the multivariate systems with an autoregressive moving average noise process is still open. This paper analyzes the convergence of two recursive identification algorithms, the multivariate recursive generalized extended least squares algorithm and the multivariate generalized extended stochastic gradient algorithm, for pseudo‐linear multivariate systems and proves that the parameter estimation errors consistently converge to zero under persistent excitation conditions. The simulation results show that the proposed algorithms work well. Copyright © 2015 John Wiley & Sons, Ltd. |
|---|---|
| Bibliografie: | istex:F4B45B6DF399643062471D1F681336F4BA997D19 PAPD of Jiangsu Higher Education Institutions ark:/67375/WNG-750Z5TDK-S ArticleID:ACS2642 Graduate Research Innovation Program of Jiangsu Province - No. KYLX15_1166 National Natural Science Foundation of China - No. 61273194 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0890-6327 1099-1115 |
| DOI: | 10.1002/acs.2642 |