Component Order Connectivity in Directed Graphs

A directed graph D is semicomplete if for every pair x ,  y of vertices of D ,  there is at least one arc between x and y . Thus, a tournament is a semicomplete digraph. In the Directed Component Order Connectivity (DCOC) problem, given a digraph D = ( V , A ) and a pair of natural numbers k and ℓ ,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 84; číslo 9; s. 2767 - 2784
Hlavní autoři: Bang-Jensen, Jørgen, Eiben, Eduard, Gutin, Gregory, Wahlström, Magnus, Yeo, Anders
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2022
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A directed graph D is semicomplete if for every pair x ,  y of vertices of D ,  there is at least one arc between x and y . Thus, a tournament is a semicomplete digraph. In the Directed Component Order Connectivity (DCOC) problem, given a digraph D = ( V , A ) and a pair of natural numbers k and ℓ , we are to decide whether there is a subset X of V of size k such that the largest strongly connected component in D - X has at most ℓ vertices. Note that DCOC reduces to the Directed Feedback Vertex Set problem for ℓ = 1 . We study the parameterized complexity of DCOC for general and semicomplete digraphs with the following parameters: k , ℓ , ℓ + k and n - ℓ . In particular, we prove that DCOC with parameter k on semicomplete digraphs can be solved in time O ∗ ( 2 16 k ) but not in time O ∗ ( 2 o ( k ) ) unless the Exponential Time Hypothesis (ETH) fails. The upper bound O ∗ ( 2 16 k ) implies the upper bound O ∗ ( 2 16 ( n - ℓ ) ) for the parameter n - ℓ . We complement the latter by showing that there is no algorithm of time complexity O ∗ ( 2 o ( n - ℓ ) ) unless ETH fails. Finally, we improve (in dependency on ℓ ) the upper bound of Göke, Marx and Mnich (2019) for the time complexity of DCOC with parameter ℓ + k on general digraphs from O ∗ ( 2 O ( k ℓ log ( k ℓ ) ) ) to O ∗ ( 2 O ( k log ( k ℓ ) ) ) . Note that Drange, Dregi and van ’t Hof (2016) proved that even for the undirected version of DCOC on split graphs there is no algorithm of running time O ∗ ( 2 o ( k log ℓ ) ) unless ETH fails and it is a long-standing problem to decide whether Directed Feedback Vertex Set admits an algorithm of time complexity O ∗ ( 2 o ( k log k ) ) .
AbstractList A directed graph D is semicomplete if for every pair x ,  y of vertices of D ,  there is at least one arc between x and y . Thus, a tournament is a semicomplete digraph. In the Directed Component Order Connectivity (DCOC) problem, given a digraph $$D=(V,A)$$ D = ( V , A ) and a pair of natural numbers k and $$\ell $$ ℓ , we are to decide whether there is a subset X of V of size k such that the largest strongly connected component in $$D-X$$ D - X has at most $$\ell $$ ℓ vertices. Note that DCOC reduces to the Directed Feedback Vertex Set problem for $$\ell =1.$$ ℓ = 1 . We study the parameterized complexity of DCOC for general and semicomplete digraphs with the following parameters: $$k, \ell ,\ell +k$$ k , ℓ , ℓ + k and $$n-\ell $$ n - ℓ . In particular, we prove that DCOC with parameter k on semicomplete digraphs can be solved in time $$O^*(2^{16k})$$ O ∗ ( 2 16 k ) but not in time $$O^*(2^{o(k)})$$ O ∗ ( 2 o ( k ) ) unless the Exponential Time Hypothesis (ETH) fails. The upper bound $$O^*(2^{16k})$$ O ∗ ( 2 16 k ) implies the upper bound $$O^*(2^{16(n-\ell )})$$ O ∗ ( 2 16 ( n - ℓ ) ) for the parameter $$n-\ell .$$ n - ℓ . We complement the latter by showing that there is no algorithm of time complexity $$O^*(2^{o({n-\ell })})$$ O ∗ ( 2 o ( n - ℓ ) ) unless ETH fails. Finally, we improve (in dependency on $$\ell $$ ℓ ) the upper bound of Göke, Marx and Mnich (2019) for the time complexity of DCOC with parameter $$\ell +k$$ ℓ + k on general digraphs from $$O^*(2^{O(k\ell \log (k\ell ))})$$ O ∗ ( 2 O ( k ℓ log ( k ℓ ) ) ) to $$O^*(2^{O(k\log (k\ell ))}).$$ O ∗ ( 2 O ( k log ( k ℓ ) ) ) . Note that Drange, Dregi and van ’t Hof (2016) proved that even for the undirected version of DCOC on split graphs there is no algorithm of running time $$O^*(2^{o(k\log \ell )})$$ O ∗ ( 2 o ( k log ℓ ) ) unless ETH fails and it is a long-standing problem to decide whether Directed Feedback Vertex Set admits an algorithm of time complexity $$O^*(2^{o(k\log k)}).$$ O ∗ ( 2 o ( k log k ) ) .
A directed graph D is semicomplete if for every pair x ,  y of vertices of D ,  there is at least one arc between x and y . Thus, a tournament is a semicomplete digraph. In the Directed Component Order Connectivity (DCOC) problem, given a digraph D = ( V , A ) and a pair of natural numbers k and ℓ , we are to decide whether there is a subset X of V of size k such that the largest strongly connected component in D - X has at most ℓ vertices. Note that DCOC reduces to the Directed Feedback Vertex Set problem for ℓ = 1 . We study the parameterized complexity of DCOC for general and semicomplete digraphs with the following parameters: k , ℓ , ℓ + k and n - ℓ . In particular, we prove that DCOC with parameter k on semicomplete digraphs can be solved in time O ∗ ( 2 16 k ) but not in time O ∗ ( 2 o ( k ) ) unless the Exponential Time Hypothesis (ETH) fails. The upper bound O ∗ ( 2 16 k ) implies the upper bound O ∗ ( 2 16 ( n - ℓ ) ) for the parameter n - ℓ . We complement the latter by showing that there is no algorithm of time complexity O ∗ ( 2 o ( n - ℓ ) ) unless ETH fails. Finally, we improve (in dependency on ℓ ) the upper bound of Göke, Marx and Mnich (2019) for the time complexity of DCOC with parameter ℓ + k on general digraphs from O ∗ ( 2 O ( k ℓ log ( k ℓ ) ) ) to O ∗ ( 2 O ( k log ( k ℓ ) ) ) . Note that Drange, Dregi and van ’t Hof (2016) proved that even for the undirected version of DCOC on split graphs there is no algorithm of running time O ∗ ( 2 o ( k log ℓ ) ) unless ETH fails and it is a long-standing problem to decide whether Directed Feedback Vertex Set admits an algorithm of time complexity O ∗ ( 2 o ( k log k ) ) .
A directed graph D is semicomplete if for every pair x, y of vertices of D, there is at least one arc between x and y. Thus, a tournament is a semicomplete digraph. In the Directed Component Order Connectivity (DCOC) problem, given a digraph D=(V,A) and a pair of natural numbers k and ℓ, we are to decide whether there is a subset X of V of size k such that the largest strongly connected component in D-X has at most ℓ vertices. Note that DCOC reduces to the Directed Feedback Vertex Set problem for ℓ=1. We study the parameterized complexity of DCOC for general and semicomplete digraphs with the following parameters: k,ℓ,ℓ+k and n-ℓ. In particular, we prove that DCOC with parameter k on semicomplete digraphs can be solved in time O∗(216k) but not in time O∗(2o(k)) unless the Exponential Time Hypothesis (ETH) fails. The upper bound O∗(216k) implies the upper bound O∗(216(n-ℓ)) for the parameter n-ℓ. We complement the latter by showing that there is no algorithm of time complexity O∗(2o(n-ℓ)) unless ETH fails. Finally, we improve (in dependency on ℓ) the upper bound of Göke, Marx and Mnich (2019) for the time complexity of DCOC with parameter ℓ+k on general digraphs from O∗(2O(kℓlog(kℓ))) to O∗(2O(klog(kℓ))). Note that Drange, Dregi and van ’t Hof (2016) proved that even for the undirected version of DCOC on split graphs there is no algorithm of running time O∗(2o(klogℓ)) unless ETH fails and it is a long-standing problem to decide whether Directed Feedback Vertex Set admits an algorithm of time complexity O∗(2o(klogk)).
Author Gutin, Gregory
Eiben, Eduard
Wahlström, Magnus
Yeo, Anders
Bang-Jensen, Jørgen
Author_xml – sequence: 1
  givenname: Jørgen
  surname: Bang-Jensen
  fullname: Bang-Jensen, Jørgen
  organization: University of Southern Denmark
– sequence: 2
  givenname: Eduard
  surname: Eiben
  fullname: Eiben, Eduard
  organization: Royal Holloway, University of London
– sequence: 3
  givenname: Gregory
  orcidid: 0000-0002-2377-0417
  surname: Gutin
  fullname: Gutin, Gregory
  email: g.gutin@rhul.ac.uk
  organization: Royal Holloway, University of London
– sequence: 4
  givenname: Magnus
  surname: Wahlström
  fullname: Wahlström, Magnus
  organization: Royal Holloway, University of London
– sequence: 5
  givenname: Anders
  surname: Yeo
  fullname: Yeo, Anders
  organization: University of Southern Denmark
BookMark eNp9kM1KAzEUhYNUsK2-gKsB12PzN0lmKaNWodCNrkNmJtGUNhmTVGif3ugIgouuLudyvnMvZwYmzjsNwDWCtwhCvogQ0oqUEOMS5gUtj2dgiijJsqJoAqYQcVFShvgFmMW4gRBhXrMpWDR-N-Qsl4p16HUoGu-c7pL9tOlQWFfc25Cl7otlUMN7vATnRm2jvvqdc_D6-PDSPJWr9fK5uVuVHWEklca0rRIVMoxrXbdMKMFwrVSvldKa1rWixvSE0xYJSBGsudKCGsJEpxjpWjIHN2PuEPzHXsckN34fXD4pMYeoqjBFPLvE6OqCjzFoIzubVLLepaDsViIov-uRYz0y1yN_6pHHjOJ_6BDsToXDaYiMUMxm96bD31cnqC9ovnoY
CitedBy_id crossref_primary_10_1002_net_22284
crossref_primary_10_1016_j_cosrev_2023_100556
Cites_doi 10.1007/978-1-4471-5559-1
10.1137/0405027
10.1007/978-3-319-57586-5_13
10.1145/1411509.1411511
10.1006/jcss.2001.1774
10.1007/978-1-84800-998-1
10.1016/S0022-0000(03)00074-6
10.1007/978-1-4612-0515-9
10.1007/3-540-52292-1_16
10.1137/0222038
10.1007/978-3-319-71840-8
10.1007/s10107-018-1255-7
10.1007/s00453-016-0127-x
10.1007/978-3-030-17402-6_21
10.1007/978-3-319-21275-3
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-022-01004-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 2784
ExternalDocumentID 10_1007_s00453_022_01004_z
GrantInformation_xml – fundername: Leverhulme Trust
  grantid: RPG-2018-161
  funderid: http://dx.doi.org/10.13039/501100000275
– fundername: Danmarks Frie Forskningsfond
  grantid: DFF 7014-00037B
  funderid: http://dx.doi.org/10.13039/501100011958
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c363t-ffbba851f67ee9b68a8629aadeaaee499a4ffd374b18041097ae84f368ca63cb3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000829125600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 16:28:48 EDT 2025
Sat Nov 29 02:20:33 EST 2025
Tue Nov 18 22:08:46 EST 2025
Fri Feb 21 02:45:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Parameterized Complexity
Order connectivity
Strong connectivity
Directed graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-ffbba851f67ee9b68a8629aadeaaee499a4ffd374b18041097ae84f368ca63cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2377-0417
OpenAccessLink https://link.springer.com/10.1007/s00453-022-01004-z
PQID 2701552417
PQPubID 2043795
PageCount 18
ParticipantIDs proquest_journals_2701552417
crossref_citationtrail_10_1007_s00453_022_01004_z
crossref_primary_10_1007_s00453_022_01004_z
springer_journals_10_1007_s00453_022_01004_z
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DowneyRFellowsMFundamentals of Parameterized Complexity2013LondonSpringer10.1007/978-1-4471-5559-1
Neogi, R., Ramanujan, M.S., Saurabh, S., Sharma, R.: On the parameterized complexity of deletion to H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-free strong components. In: Esparza, J., Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pp. 75:1–75:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)
ImpagliazzoRPaturiRZaneFWhich problems have strongly exponential complexity?J. Comput. System Sci.2001634512530189451910.1006/jcss.2001.1774
BussJFGoldsmithJNondeterminism within PSIAM J. Comput.1993223560572121904110.1137/0222038
CaiLJuedesDOn the existence of subexponential parameterized algorithmsJ. Comput. System Sci.2003674789807203651410.1016/S0022-0000(03)00074-6
DrangePDregiMvan’t HofPOn the computational complexity of vertex integrity and component order connectivityAlgorithmica201676411811202356763210.1007/s00453-016-0127-x
Bang-JensenJGutinGDigraphs: Theory, Algorithms and Applications20092LondonSpringer-Verlag10.1007/978-1-84800-998-1
Göke, A., Marx, D., Mnich, M.: Parameterized algorithms for generalizations of directed feedback vertex set. In: Heggernes, P. (ed.) Algorithms and Complexity - 11th International Conference, CIAC 2019, Rome, Italy, May 27-29, 2019, Proceedings, volume 11485 of Lecture Notes in Computer Science, pp. 249–261. Springer (2019)
FlumJGroheMParameterized Complexity Theory2006BerlinSpringer1143.68016
LeeEPartitioning a graph into small pieces with applications to path transversalMath. Program.20191771–2119398719210.1007/s10107-018-1255-7
GrossDHeinigMIswaraLKazmierczakLWLuttrellKSaccomanJTSuffelCA survey of component order connectivity models of graph theoretic networksWSEAS Trans. on Math.201312895910
Bshouty, N., Gabizon, A.: Almost optimal cover-free families. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens, Greece, May 24-26, 2017, Proceedings, volume 10236 of Lecture Notes in Computer Science, pp. 140–151 (2017)
DowneyRFellowsMParameterized Complexity1999New YorkMonographs in Computer Science. Springer10.1007/978-1-4612-0515-9
Speckenmeyer, E.: On feedback problems in digraphs. In: Nagl, M. (ed.) Graph-Theoretic Concepts in Computer Science, 15th International Workshop, WG ’89, 1989, Proceedings, volume 411 of Lecture Notes in Computer Science, pp. 218–231. Springer (1989)
Bang-JensenJThomassenCA polynomial algorithm for the 2-path problem for semicomplete digraphsSIAM J. Discrete Math.199253366376117274410.1137/0405027
Kumar, M., Lokshtanov, D..: A 2lk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2lk$$\end{document} kernel for l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document}-component order connectivity. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pp. 20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)
Bang-Jensen, J., Gutin, G. (eds.) Classes of Directed Graphs. Springer Monographs in Mathematics. Springer (2018)
ChenJLiuYLuSO’SullivanBRazgonIA fixed-parameter algorithm for the directed feedback vertex set problemJ. Assoc. Comput. Mach.200855521:121:19245654610.1145/1411509.1411511
CyganMFominFKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015ChamSpringer10.1007/978-3-319-21275-3
1004_CR19
J Flum (1004_CR12) 2006
1004_CR18
J Bang-Jensen (1004_CR3) 1992; 5
1004_CR16
M Cygan (1004_CR8) 2015
R Downey (1004_CR9) 1999
P Drange (1004_CR11) 2016; 76
R Downey (1004_CR10) 2013
D Gross (1004_CR14) 2013; 12
R Impagliazzo (1004_CR15) 2001; 63
1004_CR2
L Cai (1004_CR6) 2003; 67
JF Buss (1004_CR5) 1993; 22
E Lee (1004_CR17) 2019; 177
J Chen (1004_CR7) 2008; 55
1004_CR13
J Bang-Jensen (1004_CR1) 2009
1004_CR4
References_xml – reference: Bshouty, N., Gabizon, A.: Almost optimal cover-free families. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens, Greece, May 24-26, 2017, Proceedings, volume 10236 of Lecture Notes in Computer Science, pp. 140–151 (2017)
– reference: FlumJGroheMParameterized Complexity Theory2006BerlinSpringer1143.68016
– reference: DrangePDregiMvan’t HofPOn the computational complexity of vertex integrity and component order connectivityAlgorithmica201676411811202356763210.1007/s00453-016-0127-x
– reference: LeeEPartitioning a graph into small pieces with applications to path transversalMath. Program.20191771–2119398719210.1007/s10107-018-1255-7
– reference: Neogi, R., Ramanujan, M.S., Saurabh, S., Sharma, R.: On the parameterized complexity of deletion to H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-free strong components. In: Esparza, J., Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pp. 75:1–75:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)
– reference: Bang-Jensen, J., Gutin, G. (eds.) Classes of Directed Graphs. Springer Monographs in Mathematics. Springer (2018)
– reference: DowneyRFellowsMParameterized Complexity1999New YorkMonographs in Computer Science. Springer10.1007/978-1-4612-0515-9
– reference: ChenJLiuYLuSO’SullivanBRazgonIA fixed-parameter algorithm for the directed feedback vertex set problemJ. Assoc. Comput. Mach.200855521:121:19245654610.1145/1411509.1411511
– reference: GrossDHeinigMIswaraLKazmierczakLWLuttrellKSaccomanJTSuffelCA survey of component order connectivity models of graph theoretic networksWSEAS Trans. on Math.201312895910
– reference: Bang-JensenJGutinGDigraphs: Theory, Algorithms and Applications20092LondonSpringer-Verlag10.1007/978-1-84800-998-1
– reference: CaiLJuedesDOn the existence of subexponential parameterized algorithmsJ. Comput. System Sci.2003674789807203651410.1016/S0022-0000(03)00074-6
– reference: Speckenmeyer, E.: On feedback problems in digraphs. In: Nagl, M. (ed.) Graph-Theoretic Concepts in Computer Science, 15th International Workshop, WG ’89, 1989, Proceedings, volume 411 of Lecture Notes in Computer Science, pp. 218–231. Springer (1989)
– reference: ImpagliazzoRPaturiRZaneFWhich problems have strongly exponential complexity?J. Comput. System Sci.2001634512530189451910.1006/jcss.2001.1774
– reference: Göke, A., Marx, D., Mnich, M.: Parameterized algorithms for generalizations of directed feedback vertex set. In: Heggernes, P. (ed.) Algorithms and Complexity - 11th International Conference, CIAC 2019, Rome, Italy, May 27-29, 2019, Proceedings, volume 11485 of Lecture Notes in Computer Science, pp. 249–261. Springer (2019)
– reference: Kumar, M., Lokshtanov, D..: A 2lk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2lk$$\end{document} kernel for l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document}-component order connectivity. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pp. 20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)
– reference: Bang-JensenJThomassenCA polynomial algorithm for the 2-path problem for semicomplete digraphsSIAM J. Discrete Math.199253366376117274410.1137/0405027
– reference: CyganMFominFKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015ChamSpringer10.1007/978-3-319-21275-3
– reference: DowneyRFellowsMFundamentals of Parameterized Complexity2013LondonSpringer10.1007/978-1-4471-5559-1
– reference: BussJFGoldsmithJNondeterminism within PSIAM J. Comput.1993223560572121904110.1137/0222038
– volume-title: Fundamentals of Parameterized Complexity
  year: 2013
  ident: 1004_CR10
  doi: 10.1007/978-1-4471-5559-1
– volume: 5
  start-page: 366
  issue: 3
  year: 1992
  ident: 1004_CR3
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/0405027
– ident: 1004_CR4
  doi: 10.1007/978-3-319-57586-5_13
– volume: 55
  start-page: 21:1
  issue: 5
  year: 2008
  ident: 1004_CR7
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/1411509.1411511
– volume: 63
  start-page: 512
  issue: 4
  year: 2001
  ident: 1004_CR15
  publication-title: J. Comput. System Sci.
  doi: 10.1006/jcss.2001.1774
– volume-title: Digraphs: Theory, Algorithms and Applications
  year: 2009
  ident: 1004_CR1
  doi: 10.1007/978-1-84800-998-1
– volume: 67
  start-page: 789
  issue: 4
  year: 2003
  ident: 1004_CR6
  publication-title: J. Comput. System Sci.
  doi: 10.1016/S0022-0000(03)00074-6
– volume-title: Parameterized Complexity
  year: 1999
  ident: 1004_CR9
  doi: 10.1007/978-1-4612-0515-9
– ident: 1004_CR19
  doi: 10.1007/3-540-52292-1_16
– volume: 12
  start-page: 895
  year: 2013
  ident: 1004_CR14
  publication-title: WSEAS Trans. on Math.
– volume: 22
  start-page: 560
  issue: 3
  year: 1993
  ident: 1004_CR5
  publication-title: SIAM J. Comput.
  doi: 10.1137/0222038
– ident: 1004_CR2
  doi: 10.1007/978-3-319-71840-8
– volume-title: Parameterized Complexity Theory
  year: 2006
  ident: 1004_CR12
– ident: 1004_CR16
– volume: 177
  start-page: 1
  issue: 1–2
  year: 2019
  ident: 1004_CR17
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1255-7
– volume: 76
  start-page: 1181
  issue: 4
  year: 2016
  ident: 1004_CR11
  publication-title: Algorithmica
  doi: 10.1007/s00453-016-0127-x
– ident: 1004_CR13
  doi: 10.1007/978-3-030-17402-6_21
– ident: 1004_CR18
– volume-title: Parameterized Algorithms
  year: 2015
  ident: 1004_CR8
  doi: 10.1007/978-3-319-21275-3
SSID ssj0012796
Score 2.3502285
Snippet A directed graph D is semicomplete if for every pair x ,  y of vertices of D ,  there is at least one arc between x and y . Thus, a tournament is a...
A directed graph D is semicomplete if for every pair x, y of vertices of D, there is at least one arc between x and y. Thus, a tournament is a semicomplete...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2767
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Complexity
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Feedback
Graph theory
Graphs
Mathematics of Computing
Number theory
Parameters
Special Issue: Parameterized and Exact Computation (IPEC 2020)
Theory of Computation
Upper bounds
Vertex sets
Title Component Order Connectivity in Directed Graphs
URI https://link.springer.com/article/10.1007/s00453-022-01004-z
https://www.proquest.com/docview/2701552417
Volume 84
WOSCitedRecordID wos000829125600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPXixPrFaJQdvGtxs0k1yFPFxkCq-6G3JEwqySrd66K83yT6KooJed5MQZpLMDDPzfQAcOpMoO2AMaakGiIpEIaEzjCTGDEvrBNGxUfiaDYd8NBK3dVNY2VS7NynJ-FK3zW7B-wg5x1BKEMonZotgyZs7Hggb7u6f2txByiIrV-CdR9Qb6LpV5vs1PpujuY_5JS0arc1F93_7XAOrtXcJT6vjsA4WbLEBug1zA6wv8iY4CZ9eCm9w4E3A3oSx3kVXTBJwXMDqJbQGXgZA63ILPF6cP5xdoZo6AWmSkSlyTinpnSmXMWuFyrj0kYuQ0lgprfVRjqTOGcKowgGAKBFMWk4dybiWGdGKbINO4bexA2BiJOFU80EmfCiHLWepptgIYXwkYonpAdxIMNc1rnigt3jOW0TkKJHcSySPEslnPXDUznmtUDV-Hd1vFJPXN6zMUxbR4yhmPXDcKGL---fVdv82fA-spFGXoaysDzrTyZvdB8v6fTouJwfx5H0Ah6LSNQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1D74psGmyZrmUUSdOKfolL2FNE1hIFXW6cP-epP0Yygq6GubhHCX5O64u98P4DBN_Fh3GENKxh1EuR8jrkKMJMYMS51yolyjcI_1-9FwyO_KprC8qnavUpLupa6b3az3YXOOtpTAlk9M52GBGotlEfPvH57q3EHAHCuX5Z1H1BjoslXm-zU-m6OZj_klLeqszUXzf_tchZXSu_ROi-OwBnM6W4dmxdzglRd5A07sp5fMGBzv1mJveq7eRRVMEt4o84qXUCfepQW0zjfh8eJ8cNZFJXUCUiQkE5SmcSyNM5WGTGseh5E0kQuXMtFSam2iHEnTNCGMxtgCEPmcSR3RlISRkiFRMdmCRma2sQ2en0gSURV1Qm5COawjFiiKE84TE4lokrQAVxIUqsQVt_QWz6JGRHYSEUYiwklETFtwVM95LVA1fh3drhQjyhuWi4A59DiKWQuOK0XMfv-82s7fhh_AUndw0xO9q_71LiwHTq-2xKwNjcn4Te_BonqfjPLxvjuFH2uN1Rk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFadQ_edGmzSTebo6hVsdSCD3pbsnlAQdbSrh76602yj6qoIF53s0OYSXZmmG--ATjWsp2oDqW-4EnHJ6yd-EyEyOcIUcSVZli4RuEe7fej4ZANPnTxO7R7WZLMexosS1OatcZSt6rGNxuJ2PqjhRVYKMVsEZaIBdLbfP3-qaojBNRN6LIz6H1inHXRNvO9jM-uaR5vfimROs_Trf9_z-uwVkSd3ll-TDZgQaWbUC8nOnjFBd-Cln30khqh3p3l5PQcDkbkEya8Uerlf0glvStLdD3dhsfu5cP5tV-MVPAFDnHma50k3ARZOqRKsSSMuMloGOdSca6UyX440VpiShJkiYnajHIVEY3DSPAQiwTvQC0129gFry05joiIOiEzKR5SEQ0EQZIxaTIUhWUDUKnNWBR843bsxXNcMSU7jcRGI7HTSDxrwEn1zThn2_h1dbM0UlzcvGkcUMcqRxBtwGlplPnrn6Xt_W35EawMLrpx76Z_uw-rgTOrRZ41oZZNXtUBLIu3bDSdHLoD-Q7BhN39
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Component+Order+Connectivity+in+Directed+Graphs&rft.jtitle=Algorithmica&rft.au=Bang-Jensen%2C+J%C3%B8rgen&rft.au=Eiben%2C+Eduard&rft.au=Gutin%2C+Gregory&rft.au=Wahlstr%C3%B6m%2C+Magnus&rft.date=2022-09-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=84&rft.issue=9&rft.spage=2767&rft.epage=2784&rft_id=info:doi/10.1007%2Fs00453-022-01004-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_022_01004_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon