Hilbert space methods for reduced-rank Gaussian process regression
This paper proposes a novel scheme for reduced-rank Gaussian process regression. The method is based on an approximate series expansion of the covariance function in terms of an eigenfunction expansion of the Laplace operator in a compact subset of R d . On this approximate eigenbasis, the eigenvalu...
Uloženo v:
| Vydáno v: | Statistics and computing Ročník 30; číslo 2; s. 419 - 446 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 0960-3174, 1573-1375 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!