Complex-Valued Multivariate Neural Network (MNN) Approximation by Parameterized Half-Hyperbolic Tangent Function
This paper deals with a family of normalized multivariate neural network (MNN) operators of complex-valued continuous functions for a multivariate context on a box of RN¯, N¯∈N. Moreover, we consider the case of approximation employing iterated MNN operators. In addition, pointwise and uniform conve...
Uloženo v:
| Vydáno v: | Mathematics (Basel) Ročník 13; číslo 3; s. 453 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.02.2025
|
| Témata: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper deals with a family of normalized multivariate neural network (MNN) operators of complex-valued continuous functions for a multivariate context on a box of RN¯, N¯∈N. Moreover, we consider the case of approximation employing iterated MNN operators. In addition, pointwise and uniform convergence results are obtained in Banach spaces thanks to the multivariate versions of trigonometric and hyperbolic-type Taylor formulae on the corresponding feed-forward neural networks (FNNs) based on one or more hidden layers. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math13030453 |