A Fixed-Parameter Perspective on #BIS

The problem of (approximately) counting the independent sets of a bipartite graph (#BIS) is the canonical approximate counting problem that is complete in the intermediate complexity class # RH Π 1 . It is believed that #BIS does not have an efficient approximation algorithm but also that it is not...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 81; číslo 10; s. 3844 - 3864
Hlavní autori: Curticapean, Radu, Dell, Holger, Fomin, Fedor, Goldberg, Leslie Ann, Lapinskas, John
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2019
Springer Nature B.V
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The problem of (approximately) counting the independent sets of a bipartite graph (#BIS) is the canonical approximate counting problem that is complete in the intermediate complexity class # RH Π 1 . It is believed that #BIS does not have an efficient approximation algorithm but also that it is not NP-hard. We study the robustness of the intermediate complexity of #BIS by considering variants of the problem parameterised by the size of the independent set. We map the complexity landscape for three problems, with respect to exact computation and approximation and with respect to conventional and parameterised complexity. The three problems are counting independent sets of a given size, counting independent sets with a given number of vertices in one vertex class and counting maximum independent sets amongst those with a given number of vertices in one vertex class. Among other things, we show that all of these problems are NP-hard to approximate within any polynomial ratio. (This is surprising because the corresponding problems without the size parameter are complete in # RH Π 1 , and hence are not believed to be NP-hard.) We also show that the first problem is #W[1]-hard to solve exactly but admits an FPTRAS, whereas the other two are W[1]-hard to approximate even within any polynomial ratio. Finally, we show that, when restricted to graphs of bounded degree, all three problems have efficient exact fixed-parameter algorithms.
AbstractList The problem of (approximately) counting the independent sets of a bipartite graph (#BIS) is the canonical approximate counting problem that is complete in the intermediate complexity class # RH Π 1 . It is believed that #BIS does not have an efficient approximation algorithm but also that it is not NP-hard. We study the robustness of the intermediate complexity of #BIS by considering variants of the problem parameterised by the size of the independent set. We map the complexity landscape for three problems, with respect to exact computation and approximation and with respect to conventional and parameterised complexity. The three problems are counting independent sets of a given size, counting independent sets with a given number of vertices in one vertex class and counting maximum independent sets amongst those with a given number of vertices in one vertex class. Among other things, we show that all of these problems are NP-hard to approximate within any polynomial ratio. (This is surprising because the corresponding problems without the size parameter are complete in # RH Π 1 , and hence are not believed to be NP-hard.) We also show that the first problem is #W[1]-hard to solve exactly but admits an FPTRAS, whereas the other two are W[1]-hard to approximate even within any polynomial ratio. Finally, we show that, when restricted to graphs of bounded degree, all three problems have efficient exact fixed-parameter algorithms.
The problem of (approximately) counting the independent sets of a bipartite graph (#BIS) is the canonical approximate counting problem that is complete in the intermediate complexity class #RHΠ1. It is believed that #BIS does not have an efficient approximation algorithm but also that it is not NP-hard. We study the robustness of the intermediate complexity of #BIS by considering variants of the problem parameterised by the size of the independent set. We map the complexity landscape for three problems, with respect to exact computation and approximation and with respect to conventional and parameterised complexity. The three problems are counting independent sets of a given size, counting independent sets with a given number of vertices in one vertex class and counting maximum independent sets amongst those with a given number of vertices in one vertex class. Among other things, we show that all of these problems are NP-hard to approximate within any polynomial ratio. (This is surprising because the corresponding problems without the size parameter are complete in #RHΠ1, and hence are not believed to be NP-hard.) We also show that the first problem is #W[1]-hard to solve exactly but admits an FPTRAS, whereas the other two are W[1]-hard to approximate even within any polynomial ratio. Finally, we show that, when restricted to graphs of bounded degree, all three problems have efficient exact fixed-parameter algorithms.
Author Fomin, Fedor
Lapinskas, John
Curticapean, Radu
Goldberg, Leslie Ann
Dell, Holger
Author_xml – sequence: 1
  givenname: Radu
  surname: Curticapean
  fullname: Curticapean, Radu
  organization: Basic Algorithms Research Copenhagen, IT University of Copenhagen
– sequence: 2
  givenname: Holger
  surname: Dell
  fullname: Dell, Holger
  organization: Department of Computer Science, IT University of Copenhagen
– sequence: 3
  givenname: Fedor
  surname: Fomin
  fullname: Fomin, Fedor
  organization: Department of Informatics, University of Bergen
– sequence: 4
  givenname: Leslie Ann
  surname: Goldberg
  fullname: Goldberg, Leslie Ann
  organization: Department of Computer Science, University of Oxford
– sequence: 5
  givenname: John
  orcidid: 0000-0003-3197-0854
  surname: Lapinskas
  fullname: Lapinskas, John
  email: john.lapinskas@cs.ox.ac.uk
  organization: Department of Computer Science, University of Oxford
BookMark eNp9kE1LAzEURYMo2Fb_gKuB4jL6Xj4m02UtVgsFC-o6xMyLTGlnajIV_feOjiC46Opt7nn3cobsuG5qYuwC4QoBzHUCUFpywAkHyCHn6ogNUEnBQSs8ZgNAU3CVozllw5TWACjMJB-wy2k2rz6o5CsX3ZZaitmKYtqRb6t3ypo6G98sHs_YSXCbROe_d8Se57dPs3u-fLhbzKZL7mUuWx6CeDGEaDA3BQrhJ74MTuiAkjwGL53q5hRakS5BmCByIm0cloUpJ0qCHLFx_3cXm7c9pdaum32su0orRAG5kBp1lxJ9yscmpUjB7mK1dfHTIthvHbbXYTsd9keHVR1U_IN81bq2auo2umpzGJU9mrqe-pXi36oD1Bdl2HL8
CitedBy_id crossref_primary_10_1137_22M1535668
crossref_primary_10_1145_3654926
crossref_primary_10_1007_s12469_022_00304_5
crossref_primary_10_1137_21M1466220
crossref_primary_10_1145_3565558
crossref_primary_10_1137_20M1365624
Cites_doi 10.1016/j.jcss.2015.11.009
10.1007/978-1-4471-5559-1
10.1090/coll/060
10.1007/978-3-319-21275-3
10.1137/S0097539703427203
10.1145/2746539.2746598
10.1007/s00453-003-1073-y
10.1145/3055399.3055502
10.1016/0001-8708(85)90121-5
10.1137/140997580
10.1002/9781118032718
10.1006/jcss.2000.1727
10.1109/FOCS.2014.22
10.1007/s00224-003-1111-9
10.1007/11847250_5
10.1073/pnas.1505664112
10.1016/j.tcs.2007.05.023
10.1137/S0097539797321602
ContentType Journal Article
Copyright The Author(s) 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: The Author(s) 2019
– notice: Copyright Springer Nature B.V. 2019
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-019-00606-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 3864
ExternalDocumentID 10_1007_s00453_019_00606_4
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 334828; 280152
  funderid: http://dx.doi.org/10.13039/100010663
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
28-
2P1
2VQ
5QI
AAAVM
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABDPE
ABFSG
ABFSI
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
E.L
H13
H~9
KOW
N2Q
NDZJH
O9-
R4E
RNI
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
UQL
VH1
ZY4
JQ2
ID FETCH-LOGICAL-c363t-ff2b7e1171678122c9cdfa25f13ec1fc3a4054854e5d027f26ee57a1d87d94303
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482896500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 15:03:59 EDT 2025
Sat Nov 29 02:20:29 EST 2025
Tue Nov 18 21:09:24 EST 2025
Fri Feb 21 02:43:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Parameterised complexity
Independent sets
Approximate counting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-ff2b7e1171678122c9cdfa25f13ec1fc3a4054854e5d027f26ee57a1d87d94303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3197-0854
OpenAccessLink https://link.springer.com/10.1007/s00453-019-00606-4
PQID 2280623515
PQPubID 2043795
PageCount 21
ParticipantIDs proquest_journals_2280623515
crossref_primary_10_1007_s00453_019_00606_4
crossref_citationtrail_10_1007_s00453_019_00606_4
springer_journals_10_1007_s00453_019_00606_4
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Curticapean, R., Dell, H., Fomin, F., Goldberg, L.A., Lapinskas, J.: A fixed-parameter perspective on #BIS. In: 12th International Symposium on Parameterized and Exact Computation (IPEC), pp. 13:1–13:13 (2017)
FlumJGroheMThe parameterized complexity of counting problemsSIAM J. Comput.2004334892922206533810.1137/S00975397034272031105.68042
XiaMZhangPZhaoWComputational complexity of counting problems on 3-regular planar graphsTheor. Comput. Sci.20073841111125235422710.1016/j.tcs.2007.05.0231124.68083
FrickMGeneralized model-checking over locally tree-decomposable classesTheory Comput. Syst.2004371157191203840710.1007/s00224-003-1111-91101.68727
GoldbergLAJerrumMA complexity classification of spin systems with an external fieldProc. Natl. Acad. Sci.2015112431316113166342176210.1073/pnas.15056641121355.68120
Liu, J., Lu, P.: FPTAS for #BIS with degree bounds on one side. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp. 549–556 (2015)
VadhanSPThe complexity of counting in sparse, regular, and planar graphsSIAM J. Comput.2001312398427186128210.1137/S00975397973216020994.68070
LovászLLarge Networks and Graph Limits2012ProvidenceAmerican Mathematical Society1292.05001
Müller, M.: Randomized approximations of parameterized counting problems. In: Proceedings of the Second International Conference on Parameterized and Exact Computation, IWPEC’06, pp. 50–59. Springer, Berlin (2006)
SipserMIntroduction to the Theory of Computation19961StamfordInternational Thomson Publishing1169.68300
Patel, V., Regts, G.: Computing the number of induced copies of a fixed graph in a bounded degree graph. CoRR, abs/1707.05186 (2017)
CaiJ-YGalanisAGoldbergLAGuoHJerrumMStefankovicDVigodaE#BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness regionJ. Comput. Syst. Sci.2016825690711348036010.1016/j.jcss.2015.11.0091338.68086
Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs. In: Proceedings of the 49th Annual ACM Symposium on Theory of Computing, pp. 210–213 (2017)
JansonSŁuczakTRucinskiARandom Graphs2000New YorkWiley10.1002/97811180327180968.05003
FlumJGroheMParameterized Complexity Theory2006BerlinSpringer1143.68016
Curticapean, R., Marx, D.: Complexity of counting subgraphs: only the boundedness of the vertex-cover number counts. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, 18–21 Oct 2014, pp. 130–139 (2014)
CyganMFominFKowalikŁLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015BerlinSpringer10.1007/978-3-319-21275-31334.90001
DyerMEGoldbergLAGreenhillCSJerrumMThe relative complexity of approximate counting problemsAlgorithmica2003383471500204488610.1007/s00453-003-1073-y1138.68424
DowneyRGFellowsMRFundamentals of Parameterized Complexity2013BerlinSpringer10.1007/978-1-4471-5559-11358.68006
GalanisAStefankovicDVigodaEYangLFerromagnetic Potts model: refined #BIS-hardness and related resultsSIAM J. Comput.201645620042065357237510.1137/1409975801355.68198
ImpagliazzoRPaturiROn the complexity of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-SATJ. Comput. Syst. Sci.2001622367375182059710.1006/jcss.2000.17270990.68079
GesselIViennotGBinomial determinants, paths, and hook length formulaeAdv. Math.198558330032181536010.1016/0001-8708(85)90121-50579.05004
ArvindVRamanVApproximation Algorithms for Some Parameterized Counting Problems2002BerlinSpringer4534641019.68135
Patel, V., Regts, G.: Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. CoRR, abs/1607.01167 (2016)
M Cygan (606_CR6) 2015
I Gessel (606_CR13) 1985; 58
S Janson (606_CR16) 2000
L Lovász (606_CR18) 2012
M Sipser (606_CR22) 1996
RG Downey (606_CR7) 2013
ME Dyer (606_CR8) 2003; 38
J Flum (606_CR9) 2004; 33
R Impagliazzo (606_CR15) 2001; 62
M Xia (606_CR24) 2007; 384
LA Goldberg (606_CR14) 2015; 112
606_CR19
606_CR17
M Frick (606_CR11) 2004; 37
J-Y Cai (606_CR2) 2016; 82
606_CR20
V Arvind (606_CR1) 2002
606_CR21
606_CR4
SP Vadhan (606_CR23) 2001; 31
606_CR5
A Galanis (606_CR12) 2016; 45
606_CR3
J Flum (606_CR10) 2006
References_xml – reference: FlumJGroheMParameterized Complexity Theory2006BerlinSpringer1143.68016
– reference: Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs. In: Proceedings of the 49th Annual ACM Symposium on Theory of Computing, pp. 210–213 (2017)
– reference: JansonSŁuczakTRucinskiARandom Graphs2000New YorkWiley10.1002/97811180327180968.05003
– reference: LovászLLarge Networks and Graph Limits2012ProvidenceAmerican Mathematical Society1292.05001
– reference: XiaMZhangPZhaoWComputational complexity of counting problems on 3-regular planar graphsTheor. Comput. Sci.20073841111125235422710.1016/j.tcs.2007.05.0231124.68083
– reference: GoldbergLAJerrumMA complexity classification of spin systems with an external fieldProc. Natl. Acad. Sci.2015112431316113166342176210.1073/pnas.15056641121355.68120
– reference: CaiJ-YGalanisAGoldbergLAGuoHJerrumMStefankovicDVigodaE#BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness regionJ. Comput. Syst. Sci.2016825690711348036010.1016/j.jcss.2015.11.0091338.68086
– reference: DowneyRGFellowsMRFundamentals of Parameterized Complexity2013BerlinSpringer10.1007/978-1-4471-5559-11358.68006
– reference: FrickMGeneralized model-checking over locally tree-decomposable classesTheory Comput. Syst.2004371157191203840710.1007/s00224-003-1111-91101.68727
– reference: Patel, V., Regts, G.: Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. CoRR, abs/1607.01167 (2016)
– reference: GalanisAStefankovicDVigodaEYangLFerromagnetic Potts model: refined #BIS-hardness and related resultsSIAM J. Comput.201645620042065357237510.1137/1409975801355.68198
– reference: Müller, M.: Randomized approximations of parameterized counting problems. In: Proceedings of the Second International Conference on Parameterized and Exact Computation, IWPEC’06, pp. 50–59. Springer, Berlin (2006)
– reference: GesselIViennotGBinomial determinants, paths, and hook length formulaeAdv. Math.198558330032181536010.1016/0001-8708(85)90121-50579.05004
– reference: Liu, J., Lu, P.: FPTAS for #BIS with degree bounds on one side. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp. 549–556 (2015)
– reference: Patel, V., Regts, G.: Computing the number of induced copies of a fixed graph in a bounded degree graph. CoRR, abs/1707.05186 (2017)
– reference: CyganMFominFKowalikŁLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015BerlinSpringer10.1007/978-3-319-21275-31334.90001
– reference: ImpagliazzoRPaturiROn the complexity of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-SATJ. Comput. Syst. Sci.2001622367375182059710.1006/jcss.2000.17270990.68079
– reference: VadhanSPThe complexity of counting in sparse, regular, and planar graphsSIAM J. Comput.2001312398427186128210.1137/S00975397973216020994.68070
– reference: DyerMEGoldbergLAGreenhillCSJerrumMThe relative complexity of approximate counting problemsAlgorithmica2003383471500204488610.1007/s00453-003-1073-y1138.68424
– reference: Curticapean, R., Dell, H., Fomin, F., Goldberg, L.A., Lapinskas, J.: A fixed-parameter perspective on #BIS. In: 12th International Symposium on Parameterized and Exact Computation (IPEC), pp. 13:1–13:13 (2017)
– reference: FlumJGroheMThe parameterized complexity of counting problemsSIAM J. Comput.2004334892922206533810.1137/S00975397034272031105.68042
– reference: Curticapean, R., Marx, D.: Complexity of counting subgraphs: only the boundedness of the vertex-cover number counts. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, 18–21 Oct 2014, pp. 130–139 (2014)
– reference: ArvindVRamanVApproximation Algorithms for Some Parameterized Counting Problems2002BerlinSpringer4534641019.68135
– reference: SipserMIntroduction to the Theory of Computation19961StamfordInternational Thomson Publishing1169.68300
– volume: 82
  start-page: 690
  issue: 5
  year: 2016
  ident: 606_CR2
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2015.11.009
– volume-title: Parameterized Complexity Theory
  year: 2006
  ident: 606_CR10
– volume-title: Fundamentals of Parameterized Complexity
  year: 2013
  ident: 606_CR7
  doi: 10.1007/978-1-4471-5559-1
– volume-title: Large Networks and Graph Limits
  year: 2012
  ident: 606_CR18
  doi: 10.1090/coll/060
– ident: 606_CR3
– volume-title: Parameterized Algorithms
  year: 2015
  ident: 606_CR6
  doi: 10.1007/978-3-319-21275-3
– volume: 33
  start-page: 892
  issue: 4
  year: 2004
  ident: 606_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539703427203
– ident: 606_CR17
  doi: 10.1145/2746539.2746598
– volume: 38
  start-page: 471
  issue: 3
  year: 2003
  ident: 606_CR8
  publication-title: Algorithmica
  doi: 10.1007/s00453-003-1073-y
– ident: 606_CR4
  doi: 10.1145/3055399.3055502
– volume: 58
  start-page: 300
  issue: 3
  year: 1985
  ident: 606_CR13
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(85)90121-5
– ident: 606_CR21
– ident: 606_CR20
– volume: 45
  start-page: 2004
  issue: 6
  year: 2016
  ident: 606_CR12
  publication-title: SIAM J. Comput.
  doi: 10.1137/140997580
– volume-title: Random Graphs
  year: 2000
  ident: 606_CR16
  doi: 10.1002/9781118032718
– volume: 62
  start-page: 367
  issue: 2
  year: 2001
  ident: 606_CR15
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2000.1727
– start-page: 453
  volume-title: Approximation Algorithms for Some Parameterized Counting Problems
  year: 2002
  ident: 606_CR1
– ident: 606_CR5
  doi: 10.1109/FOCS.2014.22
– volume: 37
  start-page: 157
  issue: 1
  year: 2004
  ident: 606_CR11
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-003-1111-9
– ident: 606_CR19
  doi: 10.1007/11847250_5
– volume: 112
  start-page: 13161
  issue: 43
  year: 2015
  ident: 606_CR14
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1505664112
– volume: 384
  start-page: 111
  issue: 1
  year: 2007
  ident: 606_CR24
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2007.05.023
– volume-title: Introduction to the Theory of Computation
  year: 1996
  ident: 606_CR22
– volume: 31
  start-page: 398
  issue: 2
  year: 2001
  ident: 606_CR23
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539797321602
SSID ssj0012796
Score 2.3076136
Snippet The problem of (approximately) counting the independent sets of a bipartite graph (#BIS) is the canonical approximate counting problem that is complete in the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3844
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Approximation
Complexity
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graph theory
Mathematical analysis
Mathematics of Computing
Parameterization
Parameters
Polynomials
Special Issue: Parameterized and Exact Computation
Theory of Computation
Title A Fixed-Parameter Perspective on #BIS
URI https://link.springer.com/article/10.1007/s00453-019-00606-4
https://www.proquest.com/docview/2280623515
Volume 81
WOSCitedRecordID wos000482896500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink [Stanislaus State]
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20evBi_cRqlQX1pIHuJtlkj1UsClKKVektpNkECmUrbRV_vkma3aKooOckw_KSybwlM28AzjLdMpxqhVLOFCJU504DEqNccykJMQxLrzN7z7pdPhhkvVAUNiuz3csnSX9TV8Vujn243J8MORGRFJFVWLPhjjt3fOg_V28HCfNduVzfeURsgA6lMt_b-ByOlhzzy7Oojzad-v--cws2A7uM2ovjsA0rutiBetm5IQqOvAvn7agzereI9aRLznJjvWXVZTQpotOru_4ePHVuHq9vUWiYgBRO8RwZkwyZjp0CDrOBO1GZyo1MqImxVrFRWFp6Rjglmub2d9QkqdaUyTjnLHcy7HgfasWk0AcQ2TXpsOWkcAgn9g7kMtNyaK1TxTXFaQPiEjehgpq4a2oxFpUOssdBWByEx0GQBlxUa14WWhq_zm6W2yGCX82EE--xhM2SsAZclvAvh3-2dvi36Uewkbgd9Fl7TajNp6_6GNbV23w0m5748_YBsK3K5A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20CnqxfmK16oJ60kB3k2yyxyqWFmsptoq3kGYTKEgrbRV_vkm6u0VRQc9JhuXlY94yM28AzhJdM5xqhWLOFCJUp04DEqNUcykJMQxLrzPbZp0Of3pKullR2DTPds9Dkv6lLordHPtwuT8JciIiMSLLsEKsx3KJfPe9xyJ2EDHflcv1nUfEOuisVOZ7G5_d0YJjfgmLem_TKP_vOzdhI2OXQX1-HLZgSY-2oZx3bgiyi7wD5_WgMXy3iHWlS85yY91F1WUwHgWnV63eLjw0bvrXTZQ1TEAKx3iGjIkGTIdOAYdZxx2pRKVGRtSEWKvQKCwtPSOcEk1T-ztqolhrymSYcpY6GXa8B6XReKT3IbBr4kHNSeEQTuwbyGWi5cBap4priuMKhDluQmVq4q6pxbModJA9DsLiIDwOglTgoljzMtfS-HV2Nd8Okd2rqXDiPZawWRJWgcsc_sXwz9YO_jb9BNaa_bu2aLc6t4ewHrnd9Bl8VSjNJq_6CFbV22w4nRz7s_cBPSDNyA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50ivji_InTqQX1ScPWJm3Tx_mjOBxjMJW9hSxNYCDd2Kr455tkbaeigvic5CiXpPeFu_s-gLNINhX1pUABDQUivkwMByRGiaScE6JCzC3PbCfsdulgEPU-dPHbavciJTnvaTAsTWnWmCSqUTa-GSRi6oAiZAhFAkSWYYUY0SDzXu8_lXkEL7QKXUaDHhEdrPO2me9tfA5NC7z5JUVqI09c_f83b8JGjjqd1vyYbMGSTLehWig6OPkF34HzlhOP3rQne9wUbZmx3qIb0xmnzulVu78Lj_Htw_UdyoUUkMABzpBS3jCUrmHGCXVA90QkEsU9X7lYClcJzDVsI9Qn0k_0M1V5gZR-yN2EhomhZ8d7UEnHqdwHR68Jhk1DkUMo0f9GyiPJh9q6L6j0cVADt_AhEznLuBG7eGYlP7L1A9N-YNYPjNTgolwzmXNs_Dq7XmwNy-_bjBlSHw3kNDirwWWxFYvhn60d_G36Caz1bmLWaXfvD2HdM5tpC_vqUMmmL_IIVsVrNppNj-0xfAcyytas
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fixed-Parameter+Perspective+on+%23BIS&rft.jtitle=Algorithmica&rft.au=Curticapean%2C+Radu&rft.au=Dell%2C+Holger&rft.au=Fomin%2C+Fedor&rft.au=Goldberg%2C+Leslie+Ann&rft.date=2019-10-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=81&rft.issue=10&rft.spage=3844&rft.epage=3864&rft_id=info:doi/10.1007%2Fs00453-019-00606-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_019_00606_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon