A pseudo-polynomial time algorithm for solving the resource dependent assignment problem

In this paper the resource dependent assignment problem (RDAP) is considered. In the RDAP the cost of assigning agent j to task i is a multiplication of task i’s cost parameter by a cost function of agent j and the cost function of agent j is a linear function of the amount of resource allocated to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 182; s. 115 - 121
Hlavní autoři: Shabtay, Dvir, Steiner, George, Yedidsion, Liron
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 19.02.2015
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper the resource dependent assignment problem (RDAP) is considered. In the RDAP the cost of assigning agent j to task i is a multiplication of task i’s cost parameter by a cost function of agent j and the cost function of agent j is a linear function of the amount of resource allocated to the agent. A solution for the RDAP problem is defined by the assignment of agents to tasks and by a resource allocation to each agent. The quality of a solution is measured by two criteria. The first criterion is the total assignment cost and the second one is the total weighted resource consumption. Yedidsion et al. showed that the bicriteria variations of the problem are all NP-hard for any given set of task costs. However, whether these problems are strongly or ordinarily NP-hard remained an open question. In this paper we close this gap by providing pseudo-polynomial time algorithms for solving these problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2013.08.037