Spectral Torsion Spectral Torsion
We introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral t...
Uloženo v:
| Vydáno v: | Communications in mathematical physics Ročník 405; číslo 5; s. 130 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0010-3616, 1432-0916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral triples, including Hodge-de Rham, Einstein-Yang-Mills, almost-commutative two-sheeted space, conformally rescaled noncommutative tori, and quantum
SU
(2) group, showing that the third one has a nonvanishing torsion if nontrivially coupled. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0010-3616 1432-0916 |
| DOI: | 10.1007/s00220-024-04950-7 |