On the Connectivity and Independence Number of Power Graphs of Groups

Let G be a group. The power graph of G is a graph with vertex set G in which two distinct elements x ,  y are adjacent if one of them is a power of the other. We characterize all groups whose power graphs have finite independence number, show that they have clique cover number equal to their indepen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Graphs and combinatorics Ročník 36; číslo 3; s. 895 - 904
Hlavní autoři: Cameron, Peter J., Jafari, Sayyed Heidar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tokyo Springer Japan 01.05.2020
Springer Nature B.V
Témata:
ISSN:0911-0119, 1435-5914
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let G be a group. The power graph of G is a graph with vertex set G in which two distinct elements x ,  y are adjacent if one of them is a power of the other. We characterize all groups whose power graphs have finite independence number, show that they have clique cover number equal to their independence number, and calculate this number. The proper power graph is the induced subgraph of the power graph on the set G - { 1 } . A group whose proper power graph is connected must be either a torsion group or a torsion-free group; we give characterizations of some groups whose proper power graphs are connected.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-020-02162-z