Chebyshev differentiation matrices for efficient computation of the eigenvalues of fourth-order Sturm–Liouville problems
In this paper, an efficient technique based on the Chebyshev spectral collocation method for computing the eigenvalues of fourth-order Sturm–Liouville boundary value problems is proposed. The excellent performance of this scheme is illustrated through four examples. Numerical results and comparison...
Uloženo v:
| Vydáno v: | Applied mathematical modelling Ročník 37; číslo 7; s. 4634 - 4642 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.04.2013
|
| Témata: | |
| ISSN: | 0307-904X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, an efficient technique based on the Chebyshev spectral collocation method for computing the eigenvalues of fourth-order Sturm–Liouville boundary value problems is proposed. The excellent performance of this scheme is illustrated through four examples. Numerical results and comparison with other methods are presented. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0307-904X |
| DOI: | 10.1016/j.apm.2012.09.062 |