Fairness in recommender systems: research landscape and future directions
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-base...
Gespeichert in:
| Veröffentlicht in: | User modeling and user-adapted interaction Jg. 34; H. 1; S. 59 - 108 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.03.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0924-1868, 1573-1391 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of
fairness
have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 160 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to certain research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner. |
|---|---|
| AbstractList | Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 160 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to certain research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner. Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 160 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to certain research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner. |
| Author | Deldjoo, Yashar Zanzonelli, Dario Bellogin, Alejandro Difonzo, Alessandro Jannach, Dietmar |
| Author_xml | – sequence: 1 givenname: Yashar surname: Deldjoo fullname: Deldjoo, Yashar email: deldjooy@acm.org organization: Polytechnic University of Bari – sequence: 2 givenname: Dietmar surname: Jannach fullname: Jannach, Dietmar organization: University of Klagenfurt – sequence: 3 givenname: Alejandro surname: Bellogin fullname: Bellogin, Alejandro organization: University Autonomous of Madrid – sequence: 4 givenname: Alessandro surname: Difonzo fullname: Difonzo, Alessandro organization: Polytechnic University of Bari – sequence: 5 givenname: Dario surname: Zanzonelli fullname: Zanzonelli, Dario organization: Polytechnic University of Bari |
| BookMark | eNp9kMFOwzAMhiM0JLbBC3CqxDmQNE3TcEMTG5MmcYFzlKYudFrTEbeH7enJKBISh51sWf9nW9-MTHzngZBbzu45Y-oBOU-loiwVlGmRZ_R4QaZcKkG50HxCpkynGeVFXlyRGeKWRShXekrWS9sED4hJ45MArmtb8BWEBA_YQ4uPcYhgg_tMdtZX6Owektgk9dAPAZKqiVDfdB6vyWVtdwg3v3VO3pfPb4sXunldrRdPG-pELnpal7XQWV7lkrGKl7JgDDKtLHCruM2qSjkttM0kaK7zsrQ6tbKUyjGtZFZaMSd349596L4GwN5suyH4eNKkWnDNCiFkTBVjyoUOMUBtXNPb06N9sM3OcGZO4swozkRx5kecOUY0_YfuQ9PacDgPiRHCGPYfEP6-OkN9A9NIg7M |
| CitedBy_id | crossref_primary_10_1080_15332861_2025_2547067 crossref_primary_10_3390_computers14080302 crossref_primary_10_1007_s10586_024_05063_5 crossref_primary_10_1080_10447318_2024_2348843 crossref_primary_10_1145_3700890 crossref_primary_10_5753_jis_2025_5407 crossref_primary_10_1007_s11257_024_09406_0 crossref_primary_10_1007_s00521_024_10828_5 crossref_primary_10_1007_s40558_024_00301_3 crossref_primary_10_1007_s40558_024_00304_0 crossref_primary_10_1016_j_neucom_2024_128718 crossref_primary_10_14778_3746405_3746440 crossref_primary_10_1007_s10462_023_10663_5 crossref_primary_10_1007_s10618_024_01087_y crossref_primary_10_1515_bfp_2023_0059 crossref_primary_10_1145_3624733 crossref_primary_10_1007_s10844_025_00976_y crossref_primary_10_3389_fdata_2023_1245198 crossref_primary_10_1016_j_eswa_2025_129608 crossref_primary_10_1080_10447318_2024_2440633 crossref_primary_10_1109_TKDE_2025_3557501 crossref_primary_10_1016_j_ijhcs_2025_103578 crossref_primary_10_3389_fdata_2025_1632766 crossref_primary_10_1145_3746648 crossref_primary_10_1145_3664928 crossref_primary_10_1145_3759261 crossref_primary_10_1080_15332861_2024_2375966 crossref_primary_10_1007_s42979_023_02375_y crossref_primary_10_1007_s42979_025_04095_x crossref_primary_10_1145_3690653 crossref_primary_10_1145_3744240 crossref_primary_10_1145_3765624 crossref_primary_10_1016_j_elerap_2023_101352 crossref_primary_10_1145_3690655 crossref_primary_10_1007_s00146_025_02436_1 crossref_primary_10_62762_TSCC_2024_898503 crossref_primary_10_1145_3731568 crossref_primary_10_1109_LRA_2024_3522842 crossref_primary_10_1177_20539517231206802 crossref_primary_10_1007_s13278_024_01394_8 crossref_primary_10_1016_j_neunet_2025_107695 crossref_primary_10_4018_IJDWM_345361 crossref_primary_10_1007_s10270_025_01277_2 |
| Cites_doi | 10.1016/j.elerap.2022.101195 10.1016/j.ipm.2022.103139 10.1145/3404835.3462850 10.1145/3490099.3511108 10.1145/3450613.3456821 10.1145/3038912.3052660 10.1007/978-3-030-52485-2_1 10.1145/3442381.3450080 10.1145/3474085.3475266 10.1609/aaai.v35i5.16573 10.1145/3494672 10.1145/3397271.3401051 10.1007/s11257-017-9195-0 10.3389/fdata.2019.00013 10.1145/3366423.3380196 10.1145/3289600.3291002 10.1109/ICDM.2011.110 10.1007/s41060-019-00181-5 10.1109/MC.2021.3067225 10.1145/3372923.3404793 10.1016/j.ipm.2021.102663 10.1145/3336191.3371877 10.1145/3383313.3412232 10.1007/978-1-4899-7637-6_6 10.1145/3474085.3475706 10.1145/3359221 10.1145/3450614.3461679 10.1145/3292500.3330664 10.1145/3213586.3226207 10.1016/j.ipm.2022.103115 10.1145/3287560.3287570 10.1145/3624733 10.1017/CBO9780511763113 10.1007/s43681-021-00107-7 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-9 10.1007/s11257-021-09294-8 10.1016/j.ipm.2021.102662 10.1145/3511808.3557656 10.1145/3370082 10.1016/j.ipm.2021.102646 10.1145/3512728 10.3390/a12090199 10.1145/3269206.3272027 10.1016/j.ipm.2021.102519 10.1145/3460231.3470936 10.1145/3442381.3449866 10.1016/j.knosys.2019.07.028 10.1201/9781003278290-37 10.1002/widm.1356 10.1609/aaai.v32i1.11564 10.1007/978-3-030-47426-3_13 10.1109/ICWS.2018.00029 10.1016/j.eswa.2021.115112 10.1145/3404835.3462966 10.1145/3461702.3462602 10.1145/3450613.3456835 10.1145/3437963.3441824 10.2139/ssrn.3799525 10.1007/s40558-018-0106-y 10.1145/3292500.3330745 10.1007/978-3-031-28244-7_3 10.1109/ACCESS.2021.3113975 10.1109/ACCESS.2020.3007617 10.1145/2827872 10.1145/3533380 10.1145/3209581 10.1145/3397481.3450642 10.1145/3269206.3271795 10.1016/j.artint.2018.07.007 10.1145/3404835.3462882 10.1016/j.ipm.2021.102722 10.1145/3383313.3418487 10.1145/3351095.3372864 10.1145/3457607 10.1145/3442188.3445944 10.1016/j.eswa.2017.03.055 10.1145/3404835.3462814 10.1007/978-1-4899-7637-6_16 10.1145/3356994.3365497 10.1145/3533379 10.1145/3397271.3401177 10.1007/978-1-0716-2197-4_19 10.1145/3437963.3441732 10.1145/3298689.3347052 10.1145/3523227.3551481 10.1145/1401890.1401959 10.1145/2090236.2090255 10.1145/3292500.3330691 10.2307/25148784 10.1007/978-1-0716-2197-4_15 10.1145/3412841.3442123 10.1145/3477495.3531718 10.1145/3308560.3317303 10.1145/3404835.3462953 10.1145/3437963.3441724 10.1145/3383313.3411527 10.1016/j.eswa.2022.117700 10.1007/978-3-030-52485-2_3 10.1007/s00778-021-00697-y 10.1007/s11257-020-09285-1 10.1109/WoWMoM51794.2021.00020 10.1145/3404835.3462948 10.1145/3287560.3287598 10.1007/s11257-015-9165-3 10.1089/big.2016.0047 10.1145/3576840.3578287 10.1145/3450614.3463293 10.1145/3038912.3052612 10.1145/3194770.3194776 10.2307/j.ctv31xf5v0 10.1609/icwsm.v11i1.14894 10.1016/j.infsof.2008.09.009 10.1007/978-3-319-75067-5 10.1145/3240323.3240372 10.1145/3477495.3531959 10.1007/978-1-4899-7637-6_19 10.1016/j.ipm.2021.102666 10.1145/3439729 10.1561/1500000079 10.1145/3460231.3473326 10.1007/s11257-019-09256-1 10.1145/3564284 10.1007/978-3-031-09316-6_6 10.1145/3336191.3371855 10.1145/3404835.3463235 10.1016/j.jnca.2020.102579 10.1145/230538.230561 10.1145/3404835.3462943 10.1145/2891406 10.1007/978-3-642-32273-0_7 10.1016/j.ipm.2020.102387 10.1145/3341105.3375766 10.1007/s11257-021-09302-x 10.1145/3433949 10.1007/s43681-021-00126-4 10.1109/ICDE.2017.217 10.1007/s13735-020-00203-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88G 8AL 8AO 8FD 8FE 8FG 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2M P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PSYQQ Q9U |
| DOI | 10.1007/s11257-023-09364-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Psychology Database (Alumni) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ProQuest Health & Medical Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Psychology Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest One Psychology New ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Psychology Journals ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Languages & Literatures Education Computer Science |
| EISSN | 1573-1391 |
| EndPage | 108 |
| ExternalDocumentID | 10_1007_s11257_023_09364_z |
| GrantInformation_xml | – fundername: Politecnico di Bari |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FI 8FJ 8FL 8FW 8TC 8UJ 8V8 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACYUM ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2M M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c363t-fbf3946d6500d1b5800e497ae1a71a4dd7c939a45e9196bba92a5b57c09754ba3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972922200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-1868 |
| IngestDate | Wed Nov 05 07:37:49 EST 2025 Tue Nov 18 21:41:58 EST 2025 Sat Nov 29 04:38:22 EST 2025 Fri Feb 21 02:40:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Survey Recommender systems Fairness |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-fbf3946d6500d1b5800e497ae1a71a4dd7c939a45e9196bba92a5b57c09754ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s11257-023-09364-z |
| PQID | 2931908335 |
| PQPubID | 30100 |
| PageCount | 50 |
| ParticipantIDs | proquest_journals_2931908335 crossref_citationtrail_10_1007_s11257_023_09364_z crossref_primary_10_1007_s11257_023_09364_z springer_journals_10_1007_s11257_023_09364_z |
| PublicationCentury | 2000 |
| PublicationDate | 20240300 2024-03-00 20240301 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | The Journal of Personalization Research |
| PublicationTitle | User modeling and user-adapted interaction |
| PublicationTitleAbbrev | User Model User-Adap Inter |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Farnadi, G., Kouki, P., Thompson, S.K., Srinivasan, S., Getoor, L.: A fairness-aware hybrid recommender system, (2018). arXiv:1809.09030 Geyik, S.C., Ambler, S., Kenthapadi, K., Karypis, G.: Fairness-aware ranking in search & recommendation systems with application to linkedin talent search. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2221–2231, (2019) MasthoffJDelicARokachLShapiraBKantorPRicciFGroup recommender systems: beyond preference aggregationRecommender Systems Handbook2022BerlinSpringer Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. In: Ethics of Data and Analytics, Auerbach Publications, pp. 254–264, (2016) GharahighehiAVensCPliakosKFair multi-stakeholder news recommender system with hypergraph rankingInf. Process. Manag.202158510.1016/j.ipm.2021.102663 Baeza-YatesRBias on the webCommun. ACM2018616546110.1145/3209581 Anelli, V.W., Deldjoo, Y., Di Noia, T., Malitesta, D., Paparella, V., Pomo, C.: Auditing consumer- and producer-fairness in graph collaborative filtering. In: Proceedings ECIR ’23, (2023) Wang, Y., Ma, W., Zhang, M., Liu, Y., Ma, S.: A survey on the fairness of recommender systems. ACM TOIS forthcoming, (2022b) Binns, R.: On the apparent conflict between individual and group fairness. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20, pp. 514–524, (2020) Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, pp. 77–91. Accountability and Transparency, PMLR (2018) Htun, N.N., Lecluse, E., Verbert, K.: Perception of fairness in group music recommender systems. In: 26th International Conference on Intelligent User Interfaces, pp. 302–306, (2021) Wu, C., Wu, F., Wang, X., Huang, Y., Xie. X.: Fairness-aware news recommendation with decomposed adversarial learning. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, pp 4462–4469, (2021a) Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput Surv 54(6), (2021) Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci F, Rokach L, Shapira B (eds) Recommender Systems Handbook, pp. 191–226, (2015) da SilvaDCManzatoMGDurãoFAExploiting personalized calibration and metrics for fairness recommendationExpert Syst. Appl.202118110.1016/j.eswa.2021.115112 AmigóEDeldjooYMizzaroSBellogínAA unifying and general account of fairness measurement in recommender systemsInf. Process. Manag.202360110.1016/j.ipm.2022.103115 Ferraro, A.: Music cold-start and long-tail recommendation: bias in deep representations. In: Bogers T, Said A, Brusilovsky P, Tikk D (eds) Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, pp. 586–590, (2019) TrattnerCJannachDMottaEMeijerICDiakopoulosNElahiMOpdahlALTessemBBorchNFjeldMØvrelidLSmedtKDMoeHResponsible Media Technology and AI: Challenges and Research DirectionsAI and Ethics2022258559410.1007/s43681-021-00126-4 Giannakas, T., Sermpezis, P., Giovanidis, A., Spyropoulos, T., Arvanitakis, G.: Fairness in network-friendly recommendations. In: 22nd IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2021, pp. 71–80, (2021) Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-Kurlanda, K., Wagner, C., Karimi, F., Fernández, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., Broelemann, K., Kasneci, G., Tiropanis, T., Staab, S.: Bias in data-driven artificial intelligence systems - an introductory survey. WIREs Data Mining Knowl Discov 10(3), (2020) Beutel, A., Chen, J., Doshi, T., Qian, H., Wei, L., Wu, Y., Heldt, L., Zhao, Z., Hong, L., Chi, E.H., Goodrow, C.: Fairness in recommendation ranking through pairwise comparisons. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2212–2220, (2019) Friedman, A., Knijnenburg, B.P., Vanhecke, K., Martens, L., Berkovsky, S.: Privacy aspects of recommender systems. In: Recommender Systems Handbook, Springer, pp. 649–688, (2015) Deldjoo, Y., Anelli, V.W., Zamani, H., Bellogin, A., Di Noia, T.: A flexible framework for evaluating user and item fairness in recommender systems. User Modeling and User-Adapted Interaction pp. 1–47, (2021a) Chakraborty, A., Patro, G.K., Ganguly, N., Gummadi, K.P., Loiseau, P.: Equality of voice: Towards fair representation in crowdsourced top-k recommendations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* 2019, pp. 129–138, (2019) Anelli, V.W., Belli, L., Deldjoo, Y., Di Noia, T., Ferrara, A., Narducci, F., Pomo, C.: Pursuing privacy in recommender systems: the view of users and researchers from regulations to applications. In: Fifteenth ACM Conference on Recommender Systems, pp. 838–841, (2021) BellogínASaidAImproving accountability in recommender systems research through reproducibilityUser Model User Adapt Interact202131594197710.1007/s11257-021-09302-x Kirnap, Ö., Diaz, F., Biega, A., Ekstrand, M.D., Carterette, B., Yilmaz, E.: Estimation of fair ranking metrics with incomplete judgments. In: WWW ’21: The Web Conference 2021, pp. 1065–1075, (2021) OlteanuACastilloCDiazFKicimanESocial data: Biases, methodological pitfalls, and ethical boundariesFrontiers Big Data201921310.3389/fdata.2019.00013 Schelenz, L.: Diversity-aware Recommendations for Social Justice? Exploring User Diversity and Fairness in Recommender Systems. In: Adjunct Publication of the 29th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2021, pp 404–410, (2021) Sühr, T., Hilgard, S., Lakkaraju, H.: Does Fair Ranking Improve Minority Outcomes? Understanding the Interplay of Human and Algorithmic Biases in Online Hiring, p 989–999, (2021) JannachDBauerCEscaping the McNamara fallacy: towards more impactful recommender systems researchAI Mag.20204147995 Li, Y., Ge, Y., Zhang, Y.: Tutorial on fairness of machine learning in recommender systems. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2654–2657, (2021c) NunesIJannachDA systematic review and taxonomy of explanations in decision support and recommender systemsUser-Modeling and User-Adapted Interaction2017273–539344410.1007/s11257-017-9195-0 Stratigi, M., Kondylakis, H., Stefanidis, K.: Fairness in group recommendations in the health domain. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017, pp 1481–1488, (2017) FriedmanBNissenbaumHBias in computer systemsACM Trans. Inf. Syst.199614333034710.1145/230538.230561 Grgic-Hlaca, N., Zafar, M.B., Gummadi, K.P., Weller, A.: The case for process fairness in learning: Feature selection for fair decision making. In: NIPS Symposium on Machine Learning and the Law, Barcelona, Spain, vol. 1, pp. 2, (2016) Oh, J., Park, S., Yu, H., Song, M., Park, S.T.: Novel recommendation based on personal popularity tendency. In: ICDM ’11, pp 507–516, (2011) Adomavicius, G., Jannach, D., Leitner, S., Zhang, J.: Understanding longitudinal dynamics of recommender systems with agent-based modeling and simulation. In: SimuRec Workshop at ACM RecSys 2021, (2021) Lin, K., Sonboli, N., Mobasher, B., Burke, R.: Calibration in collaborative filtering recommender systems: a user-centered analysis. In: HT ’20: 31st ACM Conference on Hypertext and Social Media, pp. 197–206, (2020) DeldjooYNoiaTDMerraFAA survey on adversarial recommender systems: from attack/defense strategies to generative adversarial networksACM Comput. Surv.202154213810.1145/3439729 Sonboli, N., Burke, R., Mattei, N., Eskandanian, F., Gao, T.: “and the winner is...”: Dynamic lotteries for multi-group fairness-aware recommendation. In: FAccTRec Workshop: Responsible Recommendation (RecSys ’20), (2020) Mladenov, M., Hsu, C., Jain, V., Ie, E., Colby, C., Mayoraz, N., Pham, H., Tran, D., Vendrov, I., Boutilier, C.: RecSim NG: toward principled uncertainty modeling for recommender ecosystems. (2021), CoRR arXiv:2103.08057 Yadav, H., Du, Z., Joachims, T.: Policy-gradient training of fair and unbiased ranking functions. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 1044–1053, (2021) SlokomMHanjalicALarsonMTowards user-oriented privacy for recommender system data: A personalization-based approach to gender obfuscation for user profilesInformation Processing & Management202158610.1016/j.ipm.2021.102722 Lin, C., Liu, X., Xv, G., Li, H.: Mitigating sentiment bias for recommender systems. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 31–40, (2021) Jannach, D., Zanker, M., Ge, M., Gröning, M.: Recommender systems in computer science and information systems-a landscape of research. In: 13th International Conference on Electronic Commerce and Web Technologies (EC-Web 2012), pp. 76–87, (2012) Gupta, A., Johnson, E., Payan, J., Roy, A.K., Kobren, A., Panda, S., Tristan, J.B., Wick, M.: Online post-processing in rankings for fair utility maximization. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, WSDM ’21, pp. 454–462, (2021) Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: Goldwasser S (ed) Innovations in Theoretical Computer Science 2012, pp. 214–226, (2012) DeldjooYBelloginADi NoiaTExplaining recommender systems fairness and accuracy through the lens of data characteristicsInf. Process. Manag.202158510.1016/j.ipm.2021.102662 DelicANeidhardtJNguyenTNRicciFAn observational user study for group recommender systems in the tourism 9364_CR49 9364_CR161 9364_CR160 9364_CR45 9364_CR44 9364_CR166 9364_CR163 9364_CR41 SA Friedler (9364_CR57) 2021; 64 A Gharahighehi (9364_CR64) 2021; 58 9364_CR169 9364_CR40 9364_CR167 9364_CR168 9364_CR5 9364_CR3 9364_CR2 9364_CR1 E Pitoura (9364_CR124) 2022; 31 Y Xiao (9364_CR165) 2020; 156 P Cremonesi (9364_CR36) 2021; 42 9364_CR39 9364_CR38 9364_CR150 NR Council (9364_CR35) 2004 9364_CR34 9364_CR154 9364_CR33 9364_CR155 9364_CR32 9364_CR152 MD Ekstrand (9364_CR51) 2022; 16 9364_CR153 9364_CR30 9364_CR158 9364_CR159 9364_CR156 9364_CR157 D Jannach (9364_CR80) 2010 9364_CR149 C Trattner (9364_CR151) 2022; 2 Q Zhu (9364_CR176) 2020; 8 9364_CR180 Y Deldjoo (9364_CR42) 2021; 58 9364_CR69 9364_CR68 9364_CR67 M Elahi (9364_CR52) 2022; 2 9364_CR66 9364_CR100 R Baeza-Yates (9364_CR14) 2018; 61 9364_CR65 9364_CR63 9364_CR103 9364_CR62 9364_CR104 9364_CR61 9364_CR101 9364_CR60 9364_CR102 AS Koshiyama (9364_CR91) 2022; 55 A Felfernig (9364_CR54) 2018 9364_CR172 9364_CR173 9364_CR58 9364_CR170 9364_CR171 9364_CR56 M Jugovac (9364_CR85) 2017; 81 9364_CR55 9364_CR177 9364_CR174 DC da Silva (9364_CR37) 2021; 181 9364_CR53 9364_CR175 9364_CR8 9364_CR7 9364_CR178 9364_CR6 B Friedman (9364_CR59) 1996; 14 9364_CR179 A Bellogín (9364_CR16) 2021; 31 D Pessach (9364_CR123) 2022; 55 DK Mulligan (9364_CR114) 2019; 3 D Jannach (9364_CR82) 2015; 25 AB Melchiorre (9364_CR108) 2021; 58 B Xiao (9364_CR164) 2007; 31 9364_CR89 9364_CR121 A Olteanu (9364_CR120) 2019; 2 9364_CR122 9364_CR87 9364_CR86 9364_CR125 9364_CR126 9364_CR81 9364_CR119 9364_CR116 D Jannach (9364_CR78) 2020; 41 9364_CR117 BA Kitchenham (9364_CR88) 2009; 51 B Edizel (9364_CR50) 2020; 9 YR Shrestha (9364_CR140) 2019; 12 L Boratto (9364_CR21) 2021; 31 9364_CR77 9364_CR111 9364_CR76 9364_CR75 9364_CR74 9364_CR73 J Masthoff (9364_CR105) 2022 9364_CR115 9364_CR72 9364_CR112 9364_CR113 9364_CR70 9364_CR107 A Gunawardana (9364_CR71) 2022 9364_CR106 Q Dong (9364_CR48) 2021; 9 J Misztal-Radecka (9364_CR110) 2021; 58 M Slokom (9364_CR141) 2021; 58 T Miller (9364_CR109) 2019; 267 H Abdollahpouri (9364_CR4) 2020; 30 D Jannach (9364_CR84) 2021; 42 9364_CR29 9364_CR28 9364_CR27 9364_CR26 9364_CR25 9364_CR24 9364_CR23 9364_CR143 L Boratto (9364_CR20) 2021; 58 9364_CR22 9364_CR144 9364_CR142 BD Wundervald (9364_CR162) 2021; 10 9364_CR147 9364_CR148 9364_CR145 9364_CR146 9364_CR138 9364_CR139 A Chouldechova (9364_CR31) 2017; 5 J Bobadilla (9364_CR19) 2021; 6 9364_CR18 9364_CR17 Y Deldjoo (9364_CR43) 2021; 54 9364_CR15 D Jannach (9364_CR83) 2016; 59 A Ashokan (9364_CR13) 2021; 58 E Amigó (9364_CR9) 2023; 60 9364_CR12 9364_CR132 9364_CR11 A Delic (9364_CR46) 2018; 19 9364_CR99 9364_CR133 9364_CR10 T Di Noia (9364_CR47) 2022; 65 9364_CR98 9364_CR130 9364_CR97 9364_CR131 9364_CR96 9364_CR136 9364_CR95 9364_CR137 9364_CR94 9364_CR134 D Jannach (9364_CR79) 2019; 10 9364_CR93 9364_CR135 9364_CR92 9364_CR129 9364_CR90 I Nunes (9364_CR118) 2017; 27 9364_CR127 9364_CR128 |
| References_xml | – reference: BorattoLFenuGMarrasMConnecting user and item perspectives in popularity debiasing for collaborative recommendationInf. Process. Manag.202158110.1016/j.ipm.2020.102387 – reference: Moscati, M., Parada-Cabaleiro, E., Deldjoo, Y., Zangerle, E., Schedl, M.: Music4all-onion. a large-scale multi-faceted content-centric music recommendation dataset. In: Proceedings of the 31th ACM International Conference on Information & Knowledge Management (CIKM’22), (2022) – reference: Li, Y., Chen, H., Fu, Z., Ge, Y., Zhang, Y.: User-oriented fairness in recommendation. In: Proceedings of The Web Conference 2021, WWW ’21, pp. 624–632, (2021a) – reference: Rahmani, H.A., Deldjoo, Y., Tourani, A., Naghiaei, M.: The unfairness of active users and popularity bias in point-of-interest recommendation. In: Advances in Bias and Fairness in Information Retrieval - Third International Workshop, BIAS 2022, Springer, Communications in Computer and Information Science, vol 1610, pp 56–68, (2022b) – reference: XiaoYPeiQYaoLYuSBaiLWangXAn enhanced probabilistic fairness-aware group recommendation by incorporating social activenessJ. Netw. Comput. Appl.202015610.1016/j.jnca.2020.102579 – reference: Farnadi, G., Kouki, P., Thompson, S.K., Srinivasan, S., Getoor, L.: A fairness-aware hybrid recommender system, (2018). arXiv:1809.09030 – reference: AbdollahpouriHAdomaviciusGBurkeRGuyIJannachDKamishimaTKrasnodebskiJPizzatoLMultistakeholder recommendation: Survey and research directionsUser Model. User-Adap. Inter.20203012715810.1007/s11257-019-09256-1 – reference: Wu, C., Wu, F., Wang, X., Huang, Y., Xie. X.: Fairness-aware news recommendation with decomposed adversarial learning. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, pp 4462–4469, (2021a) – reference: ElahiMJannachDSkjærvenLKnudsenESjøvaagHTolonenKHolmstadØPipkinIThrondsenEStenbomAFiskerudEOeschAVredenbergLTrattnerCTowards responsible media recommendationAI Ethics2022210311410.1007/s43681-021-00107-7 – reference: JannachDLercheLKamehkhoshIJugovacMWhat recommenders recommend: an analysis of recommendation biases and possible countermeasuresUser Model. User-Adap. Inter.201525542749110.1007/s11257-015-9165-3 – reference: NunesIJannachDA systematic review and taxonomy of explanations in decision support and recommender systemsUser-Modeling and User-Adapted Interaction2017273–539344410.1007/s11257-017-9195-0 – reference: Zhu, Z., Wang, J., Zhang, Y., Caverlee, J.: Fairness-aware recommendation of information curators. (2018c), arXiv:1809.03040 – reference: Li, Y., Chen, H., Xu, S., Ge, Y., Tan, J., Liu, S., Zhang, Y.: Fairness in recommendation: a survey. (2022), CoRR arXiv:2205.13619 – reference: Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions. ACM Trans. Inf. Syst. (2022) – reference: Pedreshi, D., Ruggieri, S., Turini, F.: Discrimination-aware data mining. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08, p 560–568, (2008) – reference: Serbos, D., Qi, S., Mamoulis, N., Pitoura, E., Tsaparas, P.: Fairness in package-to-group recommendations. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp 371–379, (2017) – reference: Lin, C., Liu, X., Xv, G., Li, H.: Mitigating sentiment bias for recommender systems. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 31–40, (2021) – reference: PitouraEStefanidisKKoutrikaGFairness in rankings and recommendations: an overviewVLDB J.202231343145810.1007/s00778-021-00697-y – reference: Friedman, A., Knijnenburg, B.P., Vanhecke, K., Martens, L., Berkovsky, S.: Privacy aspects of recommender systems. In: Recommender Systems Handbook, Springer, pp. 649–688, (2015) – reference: Deldjoo, Y., Di Noia, T., Merra, F.A.: Adversarial machine learning in recommender systems (aml-recsys). In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 869–872, (2020) – reference: Oh, J., Park, S., Yu, H., Song, M., Park, S.T.: Novel recommendation based on personal popularity tendency. In: ICDM ’11, pp 507–516, (2011) – reference: Giannakas, T., Sermpezis, P., Giovanidis, A., Spyropoulos, T., Arvanitakis, G.: Fairness in network-friendly recommendations. In: 22nd IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2021, pp. 71–80, (2021) – reference: MelchiorreABRekabsazNParada-CabaleiroEBrandlSLesotaOSchedlMInvestigating gender fairness of recommendation algorithms in the music domainInf. Process. Manag.202158510.1016/j.ipm.2021.102666 – reference: Zhu, Z., Kim, J., Nguyen, T., Fenton, A., Caverlee, J.: Fairness among new items in cold start recommender systems. In: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, pp 767–776, (2021) – reference: DelicANeidhardtJNguyenTNRicciFAn observational user study for group recommender systems in the tourism domainJ. Inf. Technol. Tour.2018191–48711610.1007/s40558-018-0106-y – reference: EkstrandMDDasABurkeRDiazFFairness in information access systemsFound. Trends Inf. Retr.2022161–2117710.1561/1500000079 – reference: Ghanem, N., Leitner, S., Jannach, D.: Balancing consumer and business value of recommender systems: a simulation-based analysis. E-Commerce Research and Applications forthcoming, (2022) – reference: Gupta, A., Johnson, E., Payan, J., Roy, A.K., Kobren, A., Panda, S., Tristan, J.B., Wick, M.: Online post-processing in rankings for fair utility maximization. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, WSDM ’21, pp. 454–462, (2021) – reference: FriedlerSAScheideggerCVenkatasubramanianSThe (im)possibility of fairness: different value systems require different mechanisms for fair decision makingCommun. ACM202164413614310.1145/3433949 – reference: MillerTExplanation in artificial intelligence: Insights from the social sciencesArtif. Intell.2019267138387451110.1016/j.artint.2018.07.007 – reference: Koprinska, I., Yacef, K.: People-to-people reciprocal recommenders. In: Recommender Systems Handbook, Springer, pp. 545–567, (2015) – reference: Schelenz, L.: Diversity-aware Recommendations for Social Justice? Exploring User Diversity and Fairness in Recommender Systems. In: Adjunct Publication of the 29th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2021, pp 404–410, (2021) – reference: Zhao, Z., Chen, J., Zhou, S., He, X., Cao, X., Zhang, F., Wu, W.: Popularity bias is not always evil: Disentangling benign and harmful bias for recommendation. IEEE Transactions on Knowledge & Data Engineering (01):1–13, (2022) – reference: Zhu, Z., Hu, X., Caverlee, J.: Fairness-aware tensor-based recommendation. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, pp 1153–1162, (2018b) – reference: Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B.: The connection between popularity bias, calibration, and fairness in recommendation. In: Fourteenth ACM Conference on Recommender Systems, pp. 726–731, (2020b) – reference: JugovacMJannachDLercheLEfficient optimization of multiple recommendation quality factors according to individual user tendenciesExpert Syst. Appl.20178132133110.1016/j.eswa.2017.03.055 – reference: Riederer, C., Chaintreau, A.: The price of fairness in location based advertising. In: FATREC’17, (2017) – reference: Stratigi, M., Kondylakis, H., Stefanidis, K.: Fairness in group recommendations in the health domain. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017, pp 1481–1488, (2017) – reference: Deldjoo, Y., Anelli, V.W., Zamani, H., Bellogin, A., Di Noia, T.: A flexible framework for evaluating user and item fairness in recommender systems. User Modeling and User-Adapted Interaction pp. 1–47, (2021a) – reference: Sonboli, N., Smith, J.J., Cabral Berenfus, F., Burke, R., Fiesler, C.: Fairness and transparency in recommendation: The users’ perspective. In: Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, p 274–279, (2021) – reference: Rahmani, H.A., Naghiaei, M., Tourani, A., Deldjoo, Y.: Exploring the impact of temporal bias in point-of-interest recommendation. In: Proceedings of the 16th ACM Conference on Recommender Systems, (2022d) – reference: AmigóEDeldjooYMizzaroSBellogínAA unifying and general account of fairness measurement in recommender systemsInf. Process. Manag.202360110.1016/j.ipm.2022.103115 – reference: CremonesiPJannachDProgress in recommender systems research: crisis? What crisis?AI Mag.20214234354 – reference: Fu, Z., Xian, Y., Gao, R., Zhao, J., Huang, Q., Ge, Y., Xu, S., Geng, S., Shah, C., Zhang, Y., de Melo, G.: Fairness-aware explainable recommendation over knowledge graphs. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, pp. 69–78, (2020) – reference: Steck, H.: Calibrated recommendations. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp 154–162, (2018) – reference: Weydemann, L., Sacharidis, D., Werthner, H.: Defining and measuring fairness in location recommendations. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising, LocalRec@SIGSPATIAL 2019, pp 6:1–6:8, (2019) – reference: Mehrotra, R., McInerney, J., Bouchard, H., Lalmas, M., Diaz, F.: Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, pp 2243–2251, (2018) – reference: Seymen, S., Abdollahpouri, H., Malthouse, E.C.: A unified optimization toolbox for solving popularity bias, fairness, and diversity in recommender systems. In: Proceedings of the 1st Workshop on Multi-Objective Recommender Systems (MORS 2021) co-located with 15th ACM Conference on Recommender Systems (RecSys 2021), CEUR Workshop Proceedings, vol 2959, (2021) – reference: ShresthaYRYangYFairness in algorithmic decision-making: Applications in multi-winner voting, machine learning, and recommender systemsAlgorithms2019129199401675410.3390/a12090199 – reference: Yadav, H., Du, Z., Joachims, T.: Policy-gradient training of fair and unbiased ranking functions. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 1044–1053, (2021) – reference: Burke, R., Sonboli, N., Ordonez-Gauger, A.: Balanced neighborhoods for multi-sided fairness in recommendation. In: Conference on Fairness, Accountability and Transparency, FAT 2018, Proceedings of Machine Learning Research, vol. 81, pp. 202–214, (2018) – reference: Liu, W., Liu, F., Tang, R., Liao, B., Chen, G., Heng, P.: Balancing between accuracy and fairness for interactive recommendation with reinforcement learning. In: Advances in Knowledge Discovery and Data Mining-24th Pacific-Asia Conference, PAKDD 2020, vol. 12084, pp. 155–167, (2020) – reference: Grgic-Hlaca, N., Zafar, M.B., Gummadi, K.P., Weller, A.: The case for process fairness in learning: Feature selection for fair decision making. In: NIPS Symposium on Machine Learning and the Law, Barcelona, Spain, vol. 1, pp. 2, (2016) – reference: Zhu, Z., Wang, J., Caverlee, J.: Measuring and mitigating item under-recommendation bias in personalized ranking systems. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, p 449–458, (2020b) – reference: Naghiaei, M., Rahmani, H.A., Deldjoo, Y.: CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems. In: SIGIR ’22SIGIR ’22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, (2022) – reference: Ghosh, A., Dutt, R., Wilson, C.: When fair ranking meets uncertain inference. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1033–1043, (2021a) – reference: MasthoffJDelicARokachLShapiraBKantorPRicciFGroup recommender systems: beyond preference aggregationRecommender Systems Handbook2022BerlinSpringer – reference: Rastegarpanah, B., Gummadi, K.P., Crovella, M.: Fighting fire with fire: Using antidote data to improve polarization and fairness of recommender systems. In: Proceedings of the twelfth ACM International Conference on Web Search and Data Mining, pp 231–239, (2019) – reference: Koutsopoulos, I., Halkidi, M.: Efficient and fair item coverage in recommender systems. In: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), IEEE, pp. 912–918, (2018) – reference: Krafft, T.D., Hauer, M.P., Zweig, K.A.: Why do we need to be bots? what prevents society from detecting biases in recommendation systems. In: Bias and Social Aspects in Search and Recommendation - First International Workshop, BIAS 2020, vol 1245, pp. 27–34, (2020) – reference: Cooper, A.F.: Where is the normative proof? assumptions and contradictions in ML fairness research. (2020), CoRR arXiv:2010.10407 – reference: OlteanuACastilloCDiazFKicimanESocial data: Biases, methodological pitfalls, and ethical boundariesFrontiers Big Data201921310.3389/fdata.2019.00013 – reference: Zehlike, M., Yang, K., Stoyanovich, J.: Fairness in ranking, part ii: Learning-to-rank and recommender systems. ACM Comput Surv forthcoming, (2022b) – reference: Jannach, D., Zanker, M., Ge, M., Gröning, M.: Recommender systems in computer science and information systems-a landscape of research. In: 13th International Conference on Electronic Commerce and Web Technologies (EC-Web 2012), pp. 76–87, (2012) – reference: Ferraro, A.: Music cold-start and long-tail recommendation: bias in deep representations. In: Bogers T, Said A, Brusilovsky P, Tikk D (eds) Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, pp. 586–590, (2019) – reference: Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput Surv 54(6), (2021) – reference: Rahmani, H.A., Deldjoo, Y., di Noia, T.: The role of context fusion on accuracy, beyond-accuracy, and fairness of point-of-interest recommendation systems. Expert Systems with Applications p 117700, (2022a) – reference: Rohde, D., Bonner, S., Dunlop, T., Vasile, F., Karatzoglou, A.: Recogym: A reinforcement learning environment for the problem of product recommendation in online advertising. arXiv preprint arXiv:1808.00720, (2018) – reference: Ferwerda, B., Ingesson, E., Berndl, M., Schedl, M.: I Don’t Care How Popular You Are! Investigating Popularity Bias From a User’s Perspective. In: Proceedings of the 8th ACM SIGIR Conference on Human Information Interaction and Retrieval (CHIIR 2023), ACM, Austin, USA, (2023) – reference: Misztal-RadeckaJIndurkhyaBBias-aware hierarchical clustering for detecting the discriminated groups of users in recommendation systemsInformation Processing & Management202158310.1016/j.ipm.2021.102519 – reference: Srivastava, M., Heidari, H., Krause, A.: Mathematical notions vs. human perception of fairness: A descriptive approach to fairness for machine learning. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp 2459–2468, (2019) – reference: Adomavicius, G., Jannach, D., Leitner, S., Zhang, J.: Understanding longitudinal dynamics of recommender systems with agent-based modeling and simulation. In: SimuRec Workshop at ACM RecSys 2021, (2021) – reference: Corbett-Davies, S., Goel, S.: The measure and mismeasure of fairness: a critical review of fair machine learning. (2018), CoRR arXiv:1808.00023 – reference: ZhuQSunQLiZWangSFARM: A fairness-aware recommendation method for high visibility and low visibility mobile appsIEEE Access2020812274712275610.1109/ACCESS.2020.3007617 – reference: Malecek, L., Peska, L.: Fairness-preserving group recommendations with user weighting. In: Adjunct Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, pp. 4–9, (2021) – reference: EdizelBBonchiFHajianSPanissonATassaTFairecsys: mitigating algorithmic bias in recommender systemsInt. J. Data Sci. Anal.20209219721310.1007/s41060-019-00181-5 – reference: Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: Goldwasser S (ed) Innovations in Theoretical Computer Science 2012, pp. 214–226, (2012) – reference: Stratigi, M., Nummenmaa, J., Pitoura, E., Stefanidis, K.: Fair sequential group recommendations. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp 1443–1452, (2020) – reference: da SilvaDCManzatoMGDurãoFAExploiting personalized calibration and metrics for fairness recommendationExpert Syst. Appl.202118110.1016/j.eswa.2021.115112 – reference: Kleinberg, J.M., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair determination of risk scores. In: 8th Innovations in Theoretical Computer Science Conference, ITCS, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, LIPIcs, vol. 67, pp. 43:1–43:23, (2017) – reference: Dash, A., Chakraborty, A., Ghosh, S., Mukherjee, A., Gummadi, K.P.: When the umpire is also a player: Bias in private label product recommendations on e-commerce marketplaces. In: FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 873–884, (2021) – reference: Gorantla, S., Deshpande, A., Louis, A.: On the problem of underranking in group-fair ranking. In: Proceedings of the 38th International Conference on Machine Learning, ICML 2021, Proceedings of Machine Learning Research, vol. 139, pp. 3777–3787, (2021) – reference: Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. In: Proceedings of the 26th International Conference on World Wide Web, pp 1171–1180, (2017) – reference: DeldjooYBelloginADi NoiaTExplaining recommender systems fairness and accuracy through the lens of data characteristicsInf. Process. Manag.202158510.1016/j.ipm.2021.102662 – reference: Lin, K., Sonboli, N., Mobasher, B., Burke, R.: Crank up the volume: Preference bias amplification in collaborative recommendation. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), CEUR Workshop Proceedings, vol. 2440, (2019) – reference: Cornacchia, G., Narducci, F., Ragone, A.: A general model for fair and explainable recommendation in the loan domain. In: Joint Workshop Proceedings of the 3rd Edition of Knowledge-aware and Conversational Recommender Systems (KaRS) and the 5th Edition of Recommendation in Complex Environments (ComplexRec) co-located with 15th ACM Conference on Recommender Systems (RecSys 2021), (2021) – reference: Chakraborty, A., Patro, G.K., Ganguly, N., Gummadi, K.P., Loiseau, P.: Equality of voice: Towards fair representation in crowdsourced top-k recommendations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* 2019, pp. 129–138, (2019) – reference: Qiu, R., Wang, S., Chen, Z., Yin, H., Huang, Z.: CausalRec: Causal Inference for Visual Debiasing in Visually-Aware Recommendation. In: MM ’21: ACM Multimedia Conference, pp 3844–3852, (2021) – reference: Li, Y., Chen, H., Xu, S., Ge, Y., Zhang, Y.: Towards personalized fairness based on causal notion. In: 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, pp. 1054–1063, (2021b) – reference: Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-Kurlanda, K., Wagner, C., Karimi, F., Fernández, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., Broelemann, K., Kasneci, G., Tiropanis, T., Staab, S.: Bias in data-driven artificial intelligence systems - an introductory survey. WIREs Data Mining Knowl Discov 10(3), (2020) – reference: Verma, S., Gao, R., Shah, C.: Facets of fairness in search and recommendation. In: Bias and Social Aspects in Search and Recommendation - First International Workshop, BIAS 2020, Communications in Computer and Information Science, vol 1245, pp 1–11, (2020) – reference: Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact Intell. Syst. 5(4), (2015) – reference: Wu, Y., Cao, J., Xu, G., Tan, Y.: TFROM: A two-sided fairness-aware recommendation model for both customers and providers. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, pp 1013–1022, (2021b) – reference: Shen, T., Li, J., Bouadjenek, M.R., Mai, Z., Sanner, S.: Towards understanding and mitigating unintended biases in language model-driven conversational recommendation. Information Processing and Management In press, (2023) – reference: Jannach, D., Adomavicius, G.: Price and profit awareness in recommender systems. In: Proceedings of the ACM RecSys 2017 Workshop on Value-Aware and Multi-Stakeholder Recommendation, (2017) – reference: Lin, K., Sonboli, N., Mobasher, B., Burke, R.: Calibration in collaborative filtering recommender systems: a user-centered analysis. In: HT ’20: 31st ACM Conference on Hypertext and Social Media, pp. 197–206, (2020) – reference: Beutel, A., Chen, J., Doshi, T., Qian, H., Wei, L., Wu, Y., Heldt, L., Zhao, Z., Hong, L., Chi, E.H., Goodrow, C.: Fairness in recommendation ranking through pairwise comparisons. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2212–2220, (2019) – reference: Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances in Neural Information Processing Systems, vol. 30, (2017) – reference: Kirnap, Ö., Diaz, F., Biega, A., Ekstrand, M.D., Carterette, B., Yilmaz, E.: Estimation of fair ranking metrics with incomplete judgments. In: WWW ’21: The Web Conference 2021, pp. 1065–1075, (2021) – reference: CouncilNRMeasuring Racial Discrimination2004LondonNational Academies Press – reference: Wang, X., Thain, N., Sinha, A., Prost, F., Chi, E.H., Chen, J., Beutel, A.: Practical compositional fairness: Understanding fairness in multi-component recommender systems. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp 436–444, (2021) – reference: Borges, R., Stefanidis, K.: On mitigating popularity bias in recommendations via variational autoencoders. In: SAC ’21: The 36th ACM/SIGAPP Symposium on Applied Computing, pp. 1383–1389, (2021) – reference: JannachDResnickPTuzhilinAZankerMRecommender systems-beyond matrix completionCommun. ACM201659119410210.1145/2891406 – reference: KoshiyamaASKazimETreleavenPCAlgorithm auditing: Managing the legal, ethical, and technological risks of artificial intelligence, machine learning, and associated algorithmsComputer2022554405010.1109/MC.2021.3067225 – reference: Deldjoo, Y., Anelli, V.W., Zamani, H., Kouki, A.B., Noia, T.D.: Recommender systems fairness evaluation via generalized cross entropy. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), Copenhagen, Denmark, September 20, 2019, (2019) – reference: Deldjoo, Y., Nazary, F., Ramisa, A., McAuley, J., Pellegrini, G., Bellogin, A., Di Noia, T.: A review of modern fashion recommender systems. ACM Comput. Surv. (2023) – reference: WundervaldBDCluster-based quotas for fairness improvements in music recommendation systemsInt J Multim Inf Retr2021101253210.1007/s13735-020-00203-0 – reference: Burke, R.: Multisided fairness for recommendation. In: 4th Workshop on Fairness, Accountability, and Transparency in Machine Learning (FAT/ML 2017), (2017) – reference: Xia, B., Yin, J., Xu, J., Li, Y.: We-rec: A fairness-aware reciprocal recommendation based on walrasian equilibrium. Knowl Based Syst 182, (2019) – reference: FelfernigABorattoLStettingerMTkaliMGroup Recommender Systems: An Introduction2018BerlinSpringer10.1007/978-3-319-75067-5 – reference: SlokomMHanjalicALarsonMTowards user-oriented privacy for recommender system data: A personalization-based approach to gender obfuscation for user profilesInformation Processing & Management202158610.1016/j.ipm.2021.102722 – reference: Baeza-YatesRBias on the webCommun. ACM2018616546110.1145/3209581 – reference: Tsintzou, V., Pitoura, E., Tsaparas, P.: Bias disparity in recommendation systems. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), vol 2440, (2019) – reference: Morina, G., Oliinyk, V., Waton, J., Marusic, I., Georgatzis, K.: Auditing and achieving intersectional fairness in classification problems. (2019), arXiv preprint arXiv:1911.01468 – reference: Gundersen, O.E., Kjensmo, S.: State of the art: Reproducibility in artificial intelligence. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), pp. 1644–1651, (2018) – reference: AshokanAHaasCFairness metrics and bias mitigation strategies for rating predictionsInf. Process. Manag.202158510.1016/j.ipm.2021.102646 – reference: Binns, R.: On the apparent conflict between individual and group fairness. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20, pp. 514–524, (2020) – reference: Zhang, J., Bareinboim, E.: Fairness in decision-making—the causal explanation formula. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32, (2018) – reference: Wang, Y., Ma, W., Zhang, M., Liu, Y., Ma, S.: A survey on the fairness of recommender systems. ACM TOIS forthcoming, (2022b) – reference: Zheng, Y., Dave, T., Mishra, N., Kumar, H.: Fairness in reciprocal recommendations: A speed-dating study. In: Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization, UMAP 2018, pp 29–34, (2018) – reference: Gómez, E., Zhang, C.S., Boratto, L., Salamó, M., Marras, M.: The winner takes it all: Geographic imbalance and provider (un)fairness in educational recommender systems. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1808–1812, (2021) – reference: JannachDZankerMFelfernigAFriedrichGRecommender Systems-An Introduction2010CambridgeCambridge University Press10.1017/CBO9780511763113 – reference: Chakraborty, A., Messias, J., Benevenuto, F., Ghosh, S., Ganguly, N., Gummadi, K.P.: Who Makes Trends? Understanding Demographic Biases in Crowdsourced Recommendations. In: Proceedings of the Eleventh International Conference on Web and Social Media, ICWSM 2017, pp. 22–31 (2017) – reference: Kaya, M., Bridge, D., Tintarev, N.: Ensuring Fairness in Group Recommendations by Rank-Sensitive Balancing of Relevance, pp. 101–110, (2020) – reference: Zehlike, M., Yang, K., Stoyanovich, J.: Fairness in ranking, part i: Score-based ranking. ACM Comput Surv Just Accepted, (2022a) – reference: FriedmanBNissenbaumHBias in computer systemsACM Trans. Inf. Syst.199614333034710.1145/230538.230561 – reference: Barocas, S., Hardt, M., Narayanan, A.: Fairness and Machine Learning. fairmlbook.org, (2019), http://www.fairmlbook.org – reference: JannachDBauerCEscaping the McNamara fallacy: towards more impactful recommender systems researchAI Mag.20204147995 – reference: Sonboli, N., Burke, R., Mattei, N., Eskandanian, F., Gao, T.: “and the winner is...”: Dynamic lotteries for multi-group fairness-aware recommendation. In: FAccTRec Workshop: Responsible Recommendation (RecSys ’20), (2020) – reference: Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B., Malthouse, E.C.: User-centered evaluation of popularity bias in recommender systems. In: Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2021, ACM, pp. 119–129, (2021) – reference: Verma, S., Rubin, J.: Fairness definitions explained. In: Brun Y, Johnson B, Meliou A (eds) Proceedings of the International Workshop on Software Fairness, FairWare@ICSE 2018, pp 1–7, (2018) – reference: Chaudhari, H.A., Lin, S., Linda, O.: A general framework for fairness in multistakeholder recommendations. (2020), arXiv:2009.02423 – reference: JannachDJugovacMMeasuring the business value of recommender systemsACM TMIS201910412310.1145/3370082 – reference: JannachDPuPRicciFZankerMRecommender systems: past, present, futureAI Mag.202142336 – reference: Deldjoo, Y., Schedl, M., Knees, P.: Content-driven music recommendation: evolution, state of the art, and challenges. (2021d), arXiv preprint arXiv:2107.11803 – reference: Tintarev, N., Masthoff, J.: Beyond explaining single item recommendations. In: Recommender Systems Handbook, Springer, pp 711–756, (2022) – reference: Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci F, Rokach L, Shapira B (eds) Recommender Systems Handbook, pp. 191–226, (2015) – reference: Htun, N.N., Lecluse, E., Verbert, K.: Perception of fairness in group music recommender systems. In: 26th International Conference on Intelligent User Interfaces, pp. 302–306, (2021) – reference: BobadillaJLara-CabreraRGonzález-PrietoÁOrtegaFDeepfair: deep learning for improving fairness in recommender systemsInt. J. Interact Multim. Artif. Intell.2021668694 – reference: GharahighehiAVensCPliakosKFair multi-stakeholder news recommender system with hypergraph rankingInf. Process. Manag.202158510.1016/j.ipm.2021.102663 – reference: PessachDShmueliEA review on fairness in machine learningACM Computing Surveys (CSUR)202255314410.1145/3494672 – reference: Ge, Y., Liu, S., Gao, R., Xian, Y., Li, Y., Zhao, X., Pei, C., Sun, F., Ge, J., Ou, W., Zhang, Y.: Towards long-term fairness in recommendation. In: WSDM ’21, The Fourteenth ACM International Conference on Web Search and Data Mining, pp. 445–453, (2021) – reference: Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, PMLR, pp. 22–34, (2021b) – reference: Sun, W., Khenissi, S., Nasraoui, O., Shafto, P.: Debiasing the human-recommender system feedback loop in collaborative filtering. In: Companion of The 2019 World Wide Web Conference, WWW 2019, ACM, pp 645–651, (2019) – reference: Anelli, V.W., Belli, L., Deldjoo, Y., Di Noia, T., Ferrara, A., Narducci, F., Pomo, C.: Pursuing privacy in recommender systems: the view of users and researchers from regulations to applications. In: Fifteenth ACM Conference on Recommender Systems, pp. 838–841, (2021) – reference: Rahmani, H.A., Naghiaei, M., Dehghan, M., Aliannejadi, M.: Experiments on generalizability of user-oriented fairness in recommender systems. In: SIGIR ’22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 2755–2764, (2022c) – reference: Yao, S., Huang, B.: Beyond parity: Fairness objectives for collaborative filtering. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS ’17, p 2925–2934, (2017) – reference: Geyik, S.C., Ambler, S., Kenthapadi, K., Karypis, G.: Fairness-aware ranking in search & recommendation systems with application to linkedin talent search. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2221–2231, (2019) – reference: Mladenov, M., Hsu, C., Jain, V., Ie, E., Colby, C., Mayoraz, N., Pham, H., Tran, D., Vendrov, I., Boutilier, C.: RecSim NG: toward principled uncertainty modeling for recommender ecosystems. (2021), CoRR arXiv:2103.08057 – reference: Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B.: The unfairness of popularity bias in recommendation. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), vol. 2440, (2019b) – reference: BorattoLFenuGMarrasMInterplay between upsampling and regularization for provider fairness in recommender systemsUser Model User Adapt Interact202131342145510.1007/s11257-021-09294-8 – reference: MulliganDKKrollJAKohliNWongRYThis thing called fairness: Disciplinary confusion realizing a value in technologyProc ACM Hum Comput Interact20193CSCW119:1119:3610.1145/3359221 – reference: ChouldechovaAFair prediction with disparate impact: a study of bias in recidivism prediction instrumentsBig Data2017521531632863243810.1089/big.2016.0047 – reference: DeldjooYNoiaTDMerraFAA survey on adversarial recommender systems: from attack/defense strategies to generative adversarial networksACM Comput. Surv.202154213810.1145/3439729 – reference: Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. In: Ethics of Data and Analytics, Auerbach Publications, pp. 254–264, (2016) – reference: Rawls, J.: Justice as fairness: A restatement. Harvard University Press (2001) – reference: Wang, C., Wang, K., Bian, A., Islam, R., Keya, K.N., Foulds, J.R., Pan, S.: Do humans prefer debiased AI algorithms? A case study in career recommendation. In: IUI 2022: 27th International Conference on Intelligent User Interfaces, pp 134–147, (2022a) – reference: Li, Y., Ge, Y., Zhang, Y.: Tutorial on fairness of machine learning in recommender systems. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2654–2657, (2021c) – reference: Sühr, T., Hilgard, S., Lakkaraju, H.: Does Fair Ranking Improve Minority Outcomes? Understanding the Interplay of Human and Algorithmic Biases in Online Hiring, p 989–999, (2021) – reference: Abdollahpouri, H., Burke, R.: Multi-stakeholder recommendation and its connection to multi-sided fairness. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), CEUR Workshop Proceedings, vol. 2440, (2019) – reference: Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, pp. 77–91. Accountability and Transparency, PMLR (2018) – reference: Burke, R., Sonboli, N., Mansoury, M., Ordoñez-Gauger, A.: Balanced neighborhoods for fairness-aware collaborative recommendation, (2017) – reference: KitchenhamBABreretonPBudgenDTurnerMBaileyJLinkmanSGSystematic literature reviews in software engineering-a systematic literature reviewInf. Softw. Technol.200951171510.1016/j.infsof.2008.09.009 – reference: Wan, M., Ni, J., Misra, R., McAuley, J.: Addressing marketing bias in product recommendations. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp 618–626, (2020) – reference: Zhu, Q., Zhou, A., Sun, Q., Wang, S., Yang, F.: FMSR: A fairness-aware mobile service recommendation method. In: 2018 IEEE International Conference on Web Services, ICWS 2018, San Francisco, CA, USA, July 2-7, 2018, IEEE, pp 171–178, (2018a) – reference: TrattnerCJannachDMottaEMeijerICDiakopoulosNElahiMOpdahlALTessemBBorchNFjeldMØvrelidLSmedtKDMoeHResponsible Media Technology and AI: Challenges and Research DirectionsAI and Ethics2022258559410.1007/s43681-021-00126-4 – reference: Di NoiaTTintarevNFatourouPSchedlMRecommender systems under European AI regulationsCommun. ACM2022654697310.1145/3512728 – reference: Selbst, A.D., Boyd, D., Friedler, S.A., Venkatasubramanian, S., Vertesi, J.: Fairness and abstraction in sociotechnical systems. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* ’19, p 59–68, (2019) – reference: Hao, Q., Xu, Q., Yang, Z., Huang, Q.: Pareto optimality for fairness-constrained collaborative filtering. In: MM ’21: ACM Multimedia Conference, ACM, pp. 5619–5627, (2021) – reference: BellogínASaidAImproving accountability in recommender systems research through reproducibilityUser Model User Adapt Interact202131594197710.1007/s11257-021-09302-x – reference: Abdollahpouri, H., Burke, R., Mobasher, B.: Managing popularity bias in recommender systems with personalized re-ranking. In: Proceedings of the Thirty-Second International Florida Artificial Intelligence Research Society Conference, pp. 413–418, (2019a) – reference: Mansoury, M., Mobasher, B., Burke, R., Pechenizkiy, M.: Bias disparity in collaborative recommendation: Algorithmic evaluation and comparison. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), (2019) – reference: Shakespeare, D., Porcaro, L., Gómez, E., Castillo, C.: Exploring artist gender bias in music recommendation. In: Proceedings of the Workshops on Recommendation in Complex Scenarios and the Impact of Recommender Systems co-located with 14th ACM Conference on Recommender Systems (RecSys 2020), CEUR Workshop Proceedings, vol 2697, (2020) – reference: Anelli, V.W., Deldjoo, Y., Di Noia, T., Malitesta, D., Paparella, V., Pomo, C.: Auditing consumer- and producer-fairness in graph collaborative filtering. In: Proceedings ECIR ’23, (2023) – reference: DongQXieSLiWUser-item matching for recommendation fairnessIEEE Access2021913038913039810.1109/ACCESS.2021.3113975 – reference: Narayanan, A.: 21 definitions of fairness and their politics. Tutorial at FAT* 2018, (2018) – reference: GunawardanaAShaniGYogevSRokachLShapiraBRicciFEvaluating recommender systemsRecommender Systems Handbook2022BerlinSpringer54760110.1007/978-1-0716-2197-4_15 – reference: XiaoBBenbasatIE-commerce product recommendation agents: Use, characteristics, and impactMIS Q.200731113720910.2307/25148784 – reference: Patro, G.K., Biswas, A., Ganguly, N., Gummadi, K.P., Chakraborty, A.: Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms. In: WWW ’20: The Web Conference 2020, pp 1194–1204, (2020) – reference: Zhou, M., Zhang, J., Adomavicius, G.: Longitudinal impact of preference biases on recommender systems’ performance. Kelley School of Business (2021-10), (2021) – ident: 9364_CR63 doi: 10.1016/j.elerap.2022.101195 – ident: 9364_CR98 – ident: 9364_CR23 – ident: 9364_CR69 – ident: 9364_CR139 doi: 10.1016/j.ipm.2022.103139 – volume-title: Measuring Racial Discrimination year: 2004 ident: 9364_CR35 – ident: 9364_CR65 doi: 10.1145/3404835.3462850 – ident: 9364_CR156 doi: 10.1145/3490099.3511108 – ident: 9364_CR6 doi: 10.1145/3450613.3456821 – ident: 9364_CR104 – ident: 9364_CR168 doi: 10.1145/3038912.3052660 – volume: 41 start-page: 79 issue: 4 year: 2020 ident: 9364_CR78 publication-title: AI Mag. – ident: 9364_CR154 doi: 10.1007/978-3-030-52485-2_1 – ident: 9364_CR87 doi: 10.1145/3442381.3450080 – ident: 9364_CR125 doi: 10.1145/3474085.3475266 – ident: 9364_CR160 doi: 10.1609/aaai.v35i5.16573 – volume: 55 start-page: 1 issue: 3 year: 2022 ident: 9364_CR123 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3494672 – ident: 9364_CR60 doi: 10.1145/3397271.3401051 – volume: 27 start-page: 393 issue: 3–5 year: 2017 ident: 9364_CR118 publication-title: User-Modeling and User-Adapted Interaction doi: 10.1007/s11257-017-9195-0 – volume: 6 start-page: 86 issue: 6 year: 2021 ident: 9364_CR19 publication-title: Int. J. Interact Multim. Artif. Intell. – ident: 9364_CR133 – volume: 2 start-page: 13 year: 2019 ident: 9364_CR120 publication-title: Frontiers Big Data doi: 10.3389/fdata.2019.00013 – ident: 9364_CR138 – ident: 9364_CR26 – ident: 9364_CR121 doi: 10.1145/3366423.3380196 – ident: 9364_CR72 – ident: 9364_CR130 doi: 10.1145/3289600.3291002 – ident: 9364_CR119 doi: 10.1109/ICDM.2011.110 – ident: 9364_CR89 – volume: 9 start-page: 197 issue: 2 year: 2020 ident: 9364_CR50 publication-title: Int. J. Data Sci. Anal. doi: 10.1007/s41060-019-00181-5 – volume: 55 start-page: 40 issue: 4 year: 2022 ident: 9364_CR91 publication-title: Computer doi: 10.1109/MC.2021.3067225 – ident: 9364_CR101 doi: 10.1145/3372923.3404793 – volume: 58 issue: 5 year: 2021 ident: 9364_CR64 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102663 – ident: 9364_CR40 doi: 10.1145/3336191.3371877 – ident: 9364_CR3 – ident: 9364_CR86 doi: 10.1145/3383313.3412232 – ident: 9364_CR7 doi: 10.1007/978-1-4899-7637-6_6 – ident: 9364_CR74 doi: 10.1145/3474085.3475706 – volume: 3 start-page: 119:1 issue: CSCW year: 2019 ident: 9364_CR114 publication-title: Proc ACM Hum Comput Interact doi: 10.1145/3359221 – ident: 9364_CR103 doi: 10.1145/3450614.3461679 – ident: 9364_CR144 doi: 10.1145/3292500.3330664 – ident: 9364_CR173 doi: 10.1145/3213586.3226207 – volume: 60 issue: 1 year: 2023 ident: 9364_CR9 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2022.103115 – ident: 9364_CR28 doi: 10.1145/3287560.3287570 – ident: 9364_CR45 doi: 10.1145/3624733 – volume-title: Recommender Systems-An Introduction year: 2010 ident: 9364_CR80 doi: 10.1017/CBO9780511763113 – volume: 2 start-page: 103 year: 2022 ident: 9364_CR52 publication-title: AI Ethics doi: 10.1007/s43681-021-00107-7 – ident: 9364_CR112 – ident: 9364_CR92 doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-9 – ident: 9364_CR44 – volume: 31 start-page: 421 issue: 3 year: 2021 ident: 9364_CR21 publication-title: User Model User Adapt Interact doi: 10.1007/s11257-021-09294-8 – volume: 58 issue: 5 year: 2021 ident: 9364_CR42 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102662 – ident: 9364_CR15 – ident: 9364_CR8 – ident: 9364_CR113 doi: 10.1145/3511808.3557656 – volume: 10 start-page: 1 issue: 4 year: 2019 ident: 9364_CR79 publication-title: ACM TMIS doi: 10.1145/3370082 – volume: 58 issue: 5 year: 2021 ident: 9364_CR13 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102646 – volume: 65 start-page: 69 issue: 4 year: 2022 ident: 9364_CR47 publication-title: Commun. ACM doi: 10.1145/3512728 – volume: 12 start-page: 199 issue: 9 year: 2019 ident: 9364_CR140 publication-title: Algorithms doi: 10.3390/a12090199 – ident: 9364_CR107 doi: 10.1145/3269206.3272027 – volume: 58 issue: 3 year: 2021 ident: 9364_CR110 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2021.102519 – ident: 9364_CR137 doi: 10.1145/3460231.3470936 – ident: 9364_CR95 doi: 10.1145/3442381.3449866 – ident: 9364_CR163 doi: 10.1016/j.knosys.2019.07.028 – ident: 9364_CR12 doi: 10.1201/9781003278290-37 – ident: 9364_CR117 doi: 10.1002/widm.1356 – ident: 9364_CR171 doi: 10.1609/aaai.v32i1.11564 – ident: 9364_CR24 – ident: 9364_CR102 doi: 10.1007/978-3-030-47426-3_13 – ident: 9364_CR175 doi: 10.1109/ICWS.2018.00029 – ident: 9364_CR66 – volume: 181 year: 2021 ident: 9364_CR37 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115112 – ident: 9364_CR32 – ident: 9364_CR96 doi: 10.1145/3404835.3462966 – volume-title: Recommender Systems Handbook year: 2022 ident: 9364_CR105 – ident: 9364_CR148 doi: 10.1145/3461702.3462602 – ident: 9364_CR143 doi: 10.1145/3450613.3456835 – ident: 9364_CR61 doi: 10.1145/3437963.3441824 – ident: 9364_CR174 doi: 10.2139/ssrn.3799525 – volume: 19 start-page: 87 issue: 1–4 year: 2018 ident: 9364_CR46 publication-title: J. Inf. Technol. Tour. doi: 10.1007/s40558-018-0106-y – ident: 9364_CR29 – ident: 9364_CR17 doi: 10.1145/3292500.3330745 – ident: 9364_CR77 – ident: 9364_CR11 doi: 10.1007/978-3-031-28244-7_3 – volume: 9 start-page: 130389 year: 2021 ident: 9364_CR48 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3113975 – ident: 9364_CR132 – volume: 8 start-page: 122747 year: 2020 ident: 9364_CR176 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007617 – ident: 9364_CR75 doi: 10.1145/2827872 – ident: 9364_CR94 – ident: 9364_CR170 doi: 10.1145/3533380 – volume: 61 start-page: 54 issue: 6 year: 2018 ident: 9364_CR14 publication-title: Commun. ACM doi: 10.1145/3209581 – ident: 9364_CR76 doi: 10.1145/3397481.3450642 – ident: 9364_CR177 doi: 10.1145/3269206.3271795 – volume: 267 start-page: 1 year: 2019 ident: 9364_CR109 publication-title: Artif. Intell. doi: 10.1016/j.artint.2018.07.007 – ident: 9364_CR161 doi: 10.1145/3404835.3462882 – volume: 58 issue: 6 year: 2021 ident: 9364_CR141 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2021.102722 – ident: 9364_CR5 doi: 10.1145/3383313.3418487 – ident: 9364_CR18 doi: 10.1145/3351095.3372864 – ident: 9364_CR106 doi: 10.1145/3457607 – ident: 9364_CR38 doi: 10.1145/3442188.3445944 – volume: 81 start-page: 321 year: 2017 ident: 9364_CR85 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.03.055 – ident: 9364_CR2 – ident: 9364_CR97 doi: 10.1145/3404835.3462814 – ident: 9364_CR100 – ident: 9364_CR90 doi: 10.1007/978-1-4899-7637-6_16 – ident: 9364_CR159 doi: 10.1145/3356994.3365497 – ident: 9364_CR169 doi: 10.1145/3533379 – ident: 9364_CR179 doi: 10.1145/3397271.3401177 – ident: 9364_CR152 – ident: 9364_CR150 doi: 10.1007/978-1-0716-2197-4_19 – ident: 9364_CR157 doi: 10.1145/3437963.3441732 – ident: 9364_CR55 doi: 10.1145/3298689.3347052 – ident: 9364_CR129 doi: 10.1145/3523227.3551481 – ident: 9364_CR122 doi: 10.1145/1401890.1401959 – ident: 9364_CR49 doi: 10.1145/2090236.2090255 – ident: 9364_CR62 doi: 10.1145/3292500.3330691 – volume: 31 start-page: 137 issue: 1 year: 2007 ident: 9364_CR164 publication-title: MIS Q. doi: 10.2307/25148784 – start-page: 547 volume-title: Recommender Systems Handbook year: 2022 ident: 9364_CR71 doi: 10.1007/978-1-0716-2197-4_15 – ident: 9364_CR172 – ident: 9364_CR22 doi: 10.1145/3412841.3442123 – ident: 9364_CR128 doi: 10.1145/3477495.3531718 – ident: 9364_CR149 doi: 10.1145/3308560.3317303 – ident: 9364_CR33 – ident: 9364_CR166 doi: 10.1145/3404835.3462953 – ident: 9364_CR73 doi: 10.1145/3437963.3441724 – ident: 9364_CR111 doi: 10.1145/3383313.3411527 – ident: 9364_CR126 doi: 10.1016/j.eswa.2022.117700 – ident: 9364_CR93 doi: 10.1007/978-3-030-52485-2_3 – volume: 31 start-page: 431 issue: 3 year: 2022 ident: 9364_CR124 publication-title: VLDB J. doi: 10.1007/s00778-021-00697-y – ident: 9364_CR41 doi: 10.1007/s11257-020-09285-1 – ident: 9364_CR67 doi: 10.1109/WoWMoM51794.2021.00020 – ident: 9364_CR180 doi: 10.1145/3404835.3462948 – ident: 9364_CR135 doi: 10.1145/3287560.3287598 – volume: 25 start-page: 427 issue: 5 year: 2015 ident: 9364_CR82 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-015-9165-3 – ident: 9364_CR25 – volume: 5 start-page: 153 issue: 2 year: 2017 ident: 9364_CR31 publication-title: Big Data doi: 10.1089/big.2016.0047 – ident: 9364_CR158 – ident: 9364_CR56 doi: 10.1145/3576840.3578287 – ident: 9364_CR134 doi: 10.1145/3450614.3463293 – ident: 9364_CR136 doi: 10.1145/3038912.3052612 – ident: 9364_CR153 doi: 10.1145/3194770.3194776 – ident: 9364_CR131 doi: 10.2307/j.ctv31xf5v0 – ident: 9364_CR27 doi: 10.1609/icwsm.v11i1.14894 – volume: 51 start-page: 7 issue: 1 year: 2009 ident: 9364_CR88 publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2008.09.009 – ident: 9364_CR34 – volume-title: Group Recommender Systems: An Introduction year: 2018 ident: 9364_CR54 doi: 10.1007/978-3-319-75067-5 – ident: 9364_CR145 doi: 10.1145/3240323.3240372 – ident: 9364_CR115 doi: 10.1145/3477495.3531959 – ident: 9364_CR58 doi: 10.1007/978-1-4899-7637-6_19 – volume: 58 issue: 5 year: 2021 ident: 9364_CR108 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102666 – volume: 54 start-page: 1 issue: 2 year: 2021 ident: 9364_CR43 publication-title: ACM Comput. Surv. doi: 10.1145/3439729 – volume: 16 start-page: 1 issue: 1–2 year: 2022 ident: 9364_CR51 publication-title: Found. Trends Inf. Retr. doi: 10.1561/1500000079 – ident: 9364_CR116 – ident: 9364_CR10 doi: 10.1145/3460231.3473326 – volume: 30 start-page: 127 year: 2020 ident: 9364_CR4 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-019-09256-1 – ident: 9364_CR30 doi: 10.1145/3564284 – ident: 9364_CR70 – ident: 9364_CR127 doi: 10.1007/978-3-031-09316-6_6 – ident: 9364_CR155 doi: 10.1145/3336191.3371855 – ident: 9364_CR167 – ident: 9364_CR53 – ident: 9364_CR68 doi: 10.1145/3404835.3463235 – volume: 42 start-page: 3 issue: 3 year: 2021 ident: 9364_CR84 publication-title: AI Mag. – volume: 156 year: 2020 ident: 9364_CR165 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2020.102579 – ident: 9364_CR142 – volume: 42 start-page: 43 issue: 3 year: 2021 ident: 9364_CR36 publication-title: AI Mag. – volume: 14 start-page: 330 issue: 3 year: 1996 ident: 9364_CR59 publication-title: ACM Trans. Inf. Syst. doi: 10.1145/230538.230561 – ident: 9364_CR99 doi: 10.1145/3404835.3462943 – ident: 9364_CR1 – volume: 59 start-page: 94 issue: 11 year: 2016 ident: 9364_CR83 publication-title: Commun. ACM doi: 10.1145/2891406 – ident: 9364_CR81 doi: 10.1007/978-3-642-32273-0_7 – ident: 9364_CR39 – volume: 58 issue: 1 year: 2021 ident: 9364_CR20 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2020.102387 – ident: 9364_CR147 doi: 10.1145/3341105.3375766 – ident: 9364_CR178 – volume: 31 start-page: 941 issue: 5 year: 2021 ident: 9364_CR16 publication-title: User Model User Adapt Interact doi: 10.1007/s11257-021-09302-x – volume: 64 start-page: 136 issue: 4 year: 2021 ident: 9364_CR57 publication-title: Commun. ACM doi: 10.1145/3433949 – volume: 2 start-page: 585 year: 2022 ident: 9364_CR151 publication-title: AI and Ethics doi: 10.1007/s43681-021-00126-4 – ident: 9364_CR146 doi: 10.1109/ICDE.2017.217 – volume: 10 start-page: 25 issue: 1 year: 2021 ident: 9364_CR162 publication-title: Int J Multim Inf Retr doi: 10.1007/s13735-020-00203-0 |
| SSID | ssj0007679 |
| Score | 2.5960064 |
| SecondaryResourceType | review_article |
| Snippet | Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 59 |
| SubjectTerms | Computer Science Interdisciplinary studies Management of Computing and Information Systems Multimedia Information Systems Questions Recommender systems User Interfaces and Human Computer Interaction |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o9ODF6fw1nZKDeNFg06aN8SIiDsUxPCjsVpI0xYHr5jo97K83adMVBXfxVmgaCu_lfS_Je98HcBokgfC0CDGnoT2tYgJLA5xYEKE8SZindVqITbB-_2ow4M_uwC13ZZVVTCwCdTJW9oz80sCSwS7bInQz-cBWNcrerjoJjVVYI75PrJ8_MbyIxCxyXHs-xZYW3jXNlK1zBtkZNoiFzZ4-onj-E5jqbPPXBWmBO93mf_94CzZdxoluSxfZhhWdtaBZqTkgt7hbVr_Z1Xq0YL_njjFzdIZ6C-blfAceu2I4teERDTNkd9OjUSFGh0pK6PwaOfqgN1R0Edv6KmQeUElegkoItb6-C6_d-5e7B-zkGLAKomCGU5kGnEaJyem8hMjQpJqaciY0EYwImiRM8YALGmpulrWUgvsilCFTHmchlSLYg0Y2zvQBIJNmmrxIqUhJM55GUhEVER1xLkmaSN4GUtkiVo6r3EpmvMc1y7K1X2zsFxf2i-dtOF98MymZOpaO7lRGi92qzePaYm24qMxev_57tsPlsx3Bhm9yobJ0rQON2fRTH8O6-poN8-lJ4bPfpN3xmw priority: 102 providerName: ProQuest |
| Title | Fairness in recommender systems: research landscape and future directions |
| URI | https://link.springer.com/article/10.1007/s11257-023-09364-z https://www.proquest.com/docview/2931908335 |
| Volume | 34 |
| WOSCitedRecordID | wos000972922200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Link customDbUrl: eissn: 1573-1391 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007679 issn: 0924-1868 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHbiwlK0slQ-IC1iKGyfG3ABRgYCqYodLZDuuqEQLagoHvp5x4rQCARJcrERxosj2-D3bM28ANsM0VIFVEZU8crtVQlGNwEkVUybQTATWtvNkE6LZ3L27ky0fFJaV3u7lkWQ-U4-C3RCLBUWMobgKjzl9H4dJhLtdZ44XlzfD-VfEXmGvzqkTg_ehMt9_4zMcjTjml2PRHG0as__7zzmY8eyS7BfDYR7GbK8Cs2XmBuINueJyNXu_jgosn_kty4xskbOhynK2ACcN1em7qZB0esStnLvdPPEcKeSfsz3ipYIeSR4x7HypCF6QQqiEFHDpxvUiXDeOrg6PqU-9QE0YhwPa1u1Q8jhF_hakTEdIKy2XQlmmBFM8TYWRoVQ8shJNWGsl6yrSkTCBFBHXKlyCid5zz64AQUqJHMiY2Gisz2NtmImZjaXUrJ1qWQVW9kBivC65S4_xlIwUlV2LJtiiSd6iyXsVtofvvBSqHL_WXi87NvEWmiVIc5ALuZCzKuyUHTl6_PPXVv9WfQ2m68iDCre1dZgY9F_tBkyZt0En69dgXNze12Dy4KjZusC7U0GxPA8OXVk_x7IVPdTy8f0B67ru-w |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0qBWl7oVDGViibH2AvYBEnTjwjIYTYqlb90B6KtLdgO65Waeu6poDoj9pv5DpxWoHE3vrAW6QklhIf33v8cc8BeB1lkQqsiqnksVutEopqTJxUMWUCzURg7aQwmxCj0cnFhTyvwV1VC-OOVVYxsQjU2Y1xa-TvMS1h7nIlQp_mt9S5Rrnd1cpCo4RF3_76iVO2_GPvFPv3TRh2zsZfutS7ClATJdGSTvQkkjzJkJoEGdMxMibLpVCWKcEUzzJhZCQVj61EdGqtZKhiHQsTSBFzrSJs9wE85DgTclYRw3C4jvwi8dp-IadOht4X6ZSlesgkBMUMSQMZJZyu_kyEG3b714Zskec6jf_tDz2Bx55Rk8_lEHgKNTtrQqNyqyA-eDWdP7U_y9KE_YFfps3JMRmslaXzZ9DrqOnChX8ynRG3WnB9XZjtkVLyOv9AvDzSJSmqpN35MYIXpBRnISVFcGN5D75u5bOfQ312M7MHQJBGI-8zJjEan-eJNswkzCZSajbJtGwBq_o-NV6L3VmCXKUbFWmHlxTxkhZ4SVcteLt-Z14qkdz7dLsCSeqjUp5uENKCdxXMNrf_3dqL-1s7gp3ueDhIB71R_yXshsj7ymN6bagvF9_tK3hkfiyn-eKwGC8Evm0bfr8B6vpOiQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4qG0Jc6FYYK2zDB-AC1uLEifGkCU0b0apW1Q4g9RZsx9EqbdnWlE30p_HreE6cViCx2w7cIiWxlOR7_r7Y730P4G2URyqwKqaSx261SiiqkTipYsoEmonA2qJuNiHG40-TiTzrwK-2FsalVbZzYj1R51fGrZHvIy0hd7kSof3Cp0WcnaSfr2-o6yDldlrbdhoNRIb25x3-vlWHgxP81u_CMP3y9fiU-g4D1ERJNKeFLiLJkxxlSpAzHaN6slwKZZkSTPE8F0ZGUvHYSkSq1kqGKtaxMIEUMdcqwnEfwTqycOxibCjokgVE4n3-Qk6dJb0v2GnK9lBVCIpsSQMZJZwu_iTFldL9a3O25ry0-z-_rQ145pU2OWpCYxM6tuxBt-1iQfyk1nN9q32OSw9ejvzybUXek9HScbp6DoNUTWeOFsi0JG4V4fKybsJHGivs6oB426RzUldPu7wyggekMW0hjXRwMf4Cvj3IY2_BWnlV2m0gKK9RDxqTGI3X80QbZhJmEyk1K3It-8BaHGTGe7S7ViEX2cpd2mEnQ-xkNXayRR8-LO-5bhxK7r16pwVM5merKluhpQ8fW8itTv97tFf3j_YGniDqstFgPHwNT0OUg0323g6szWc_7C48NrfzaTXbq0OHwPeHRt9vdIVXFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fairness+in+recommender+systems%3A+research+landscape+and+future+directions&rft.jtitle=User+modeling+and+user-adapted+interaction&rft.au=Deldjoo%2C+Yashar&rft.au=Jannach%2C+Dietmar&rft.au=Bellogin%2C+Alejandro&rft.au=Difonzo%2C+Alessandro&rft.date=2024-03-01&rft.pub=Springer+Netherlands&rft.issn=0924-1868&rft.eissn=1573-1391&rft.volume=34&rft.issue=1&rft.spage=59&rft.epage=108&rft_id=info:doi/10.1007%2Fs11257-023-09364-z&rft.externalDocID=10_1007_s11257_023_09364_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-1868&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-1868&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-1868&client=summon |