Fairness in recommender systems: research landscape and future directions

Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:User modeling and user-adapted interaction Jg. 34; H. 1; S. 59 - 108
Hauptverfasser: Deldjoo, Yashar, Jannach, Dietmar, Bellogin, Alejandro, Difonzo, Alessandro, Zanzonelli, Dario
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.03.2024
Springer Nature B.V
Schlagworte:
ISSN:0924-1868, 1573-1391
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 160 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to certain research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
AbstractList Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 160 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to certain research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 160 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to certain research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
Author Deldjoo, Yashar
Zanzonelli, Dario
Bellogin, Alejandro
Difonzo, Alessandro
Jannach, Dietmar
Author_xml – sequence: 1
  givenname: Yashar
  surname: Deldjoo
  fullname: Deldjoo, Yashar
  email: deldjooy@acm.org
  organization: Polytechnic University of Bari
– sequence: 2
  givenname: Dietmar
  surname: Jannach
  fullname: Jannach, Dietmar
  organization: University of Klagenfurt
– sequence: 3
  givenname: Alejandro
  surname: Bellogin
  fullname: Bellogin, Alejandro
  organization: University Autonomous of Madrid
– sequence: 4
  givenname: Alessandro
  surname: Difonzo
  fullname: Difonzo, Alessandro
  organization: Polytechnic University of Bari
– sequence: 5
  givenname: Dario
  surname: Zanzonelli
  fullname: Zanzonelli, Dario
  organization: Polytechnic University of Bari
BookMark eNp9kMFOwzAMhiM0JLbBC3CqxDmQNE3TcEMTG5MmcYFzlKYudFrTEbeH7enJKBISh51sWf9nW9-MTHzngZBbzu45Y-oBOU-loiwVlGmRZ_R4QaZcKkG50HxCpkynGeVFXlyRGeKWRShXekrWS9sED4hJ45MArmtb8BWEBA_YQ4uPcYhgg_tMdtZX6Owektgk9dAPAZKqiVDfdB6vyWVtdwg3v3VO3pfPb4sXunldrRdPG-pELnpal7XQWV7lkrGKl7JgDDKtLHCruM2qSjkttM0kaK7zsrQ6tbKUyjGtZFZaMSd349596L4GwN5suyH4eNKkWnDNCiFkTBVjyoUOMUBtXNPb06N9sM3OcGZO4swozkRx5kecOUY0_YfuQ9PacDgPiRHCGPYfEP6-OkN9A9NIg7M
CitedBy_id crossref_primary_10_1080_15332861_2025_2547067
crossref_primary_10_3390_computers14080302
crossref_primary_10_1007_s10586_024_05063_5
crossref_primary_10_1080_10447318_2024_2348843
crossref_primary_10_1145_3700890
crossref_primary_10_5753_jis_2025_5407
crossref_primary_10_1007_s11257_024_09406_0
crossref_primary_10_1007_s00521_024_10828_5
crossref_primary_10_1007_s40558_024_00301_3
crossref_primary_10_1007_s40558_024_00304_0
crossref_primary_10_1016_j_neucom_2024_128718
crossref_primary_10_14778_3746405_3746440
crossref_primary_10_1007_s10462_023_10663_5
crossref_primary_10_1007_s10618_024_01087_y
crossref_primary_10_1515_bfp_2023_0059
crossref_primary_10_1145_3624733
crossref_primary_10_1007_s10844_025_00976_y
crossref_primary_10_3389_fdata_2023_1245198
crossref_primary_10_1016_j_eswa_2025_129608
crossref_primary_10_1080_10447318_2024_2440633
crossref_primary_10_1109_TKDE_2025_3557501
crossref_primary_10_1016_j_ijhcs_2025_103578
crossref_primary_10_3389_fdata_2025_1632766
crossref_primary_10_1145_3746648
crossref_primary_10_1145_3664928
crossref_primary_10_1145_3759261
crossref_primary_10_1080_15332861_2024_2375966
crossref_primary_10_1007_s42979_023_02375_y
crossref_primary_10_1007_s42979_025_04095_x
crossref_primary_10_1145_3690653
crossref_primary_10_1145_3744240
crossref_primary_10_1145_3765624
crossref_primary_10_1016_j_elerap_2023_101352
crossref_primary_10_1145_3690655
crossref_primary_10_1007_s00146_025_02436_1
crossref_primary_10_62762_TSCC_2024_898503
crossref_primary_10_1145_3731568
crossref_primary_10_1109_LRA_2024_3522842
crossref_primary_10_1177_20539517231206802
crossref_primary_10_1007_s13278_024_01394_8
crossref_primary_10_1016_j_neunet_2025_107695
crossref_primary_10_4018_IJDWM_345361
crossref_primary_10_1007_s10270_025_01277_2
Cites_doi 10.1016/j.elerap.2022.101195
10.1016/j.ipm.2022.103139
10.1145/3404835.3462850
10.1145/3490099.3511108
10.1145/3450613.3456821
10.1145/3038912.3052660
10.1007/978-3-030-52485-2_1
10.1145/3442381.3450080
10.1145/3474085.3475266
10.1609/aaai.v35i5.16573
10.1145/3494672
10.1145/3397271.3401051
10.1007/s11257-017-9195-0
10.3389/fdata.2019.00013
10.1145/3366423.3380196
10.1145/3289600.3291002
10.1109/ICDM.2011.110
10.1007/s41060-019-00181-5
10.1109/MC.2021.3067225
10.1145/3372923.3404793
10.1016/j.ipm.2021.102663
10.1145/3336191.3371877
10.1145/3383313.3412232
10.1007/978-1-4899-7637-6_6
10.1145/3474085.3475706
10.1145/3359221
10.1145/3450614.3461679
10.1145/3292500.3330664
10.1145/3213586.3226207
10.1016/j.ipm.2022.103115
10.1145/3287560.3287570
10.1145/3624733
10.1017/CBO9780511763113
10.1007/s43681-021-00107-7
10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-9
10.1007/s11257-021-09294-8
10.1016/j.ipm.2021.102662
10.1145/3511808.3557656
10.1145/3370082
10.1016/j.ipm.2021.102646
10.1145/3512728
10.3390/a12090199
10.1145/3269206.3272027
10.1016/j.ipm.2021.102519
10.1145/3460231.3470936
10.1145/3442381.3449866
10.1016/j.knosys.2019.07.028
10.1201/9781003278290-37
10.1002/widm.1356
10.1609/aaai.v32i1.11564
10.1007/978-3-030-47426-3_13
10.1109/ICWS.2018.00029
10.1016/j.eswa.2021.115112
10.1145/3404835.3462966
10.1145/3461702.3462602
10.1145/3450613.3456835
10.1145/3437963.3441824
10.2139/ssrn.3799525
10.1007/s40558-018-0106-y
10.1145/3292500.3330745
10.1007/978-3-031-28244-7_3
10.1109/ACCESS.2021.3113975
10.1109/ACCESS.2020.3007617
10.1145/2827872
10.1145/3533380
10.1145/3209581
10.1145/3397481.3450642
10.1145/3269206.3271795
10.1016/j.artint.2018.07.007
10.1145/3404835.3462882
10.1016/j.ipm.2021.102722
10.1145/3383313.3418487
10.1145/3351095.3372864
10.1145/3457607
10.1145/3442188.3445944
10.1016/j.eswa.2017.03.055
10.1145/3404835.3462814
10.1007/978-1-4899-7637-6_16
10.1145/3356994.3365497
10.1145/3533379
10.1145/3397271.3401177
10.1007/978-1-0716-2197-4_19
10.1145/3437963.3441732
10.1145/3298689.3347052
10.1145/3523227.3551481
10.1145/1401890.1401959
10.1145/2090236.2090255
10.1145/3292500.3330691
10.2307/25148784
10.1007/978-1-0716-2197-4_15
10.1145/3412841.3442123
10.1145/3477495.3531718
10.1145/3308560.3317303
10.1145/3404835.3462953
10.1145/3437963.3441724
10.1145/3383313.3411527
10.1016/j.eswa.2022.117700
10.1007/978-3-030-52485-2_3
10.1007/s00778-021-00697-y
10.1007/s11257-020-09285-1
10.1109/WoWMoM51794.2021.00020
10.1145/3404835.3462948
10.1145/3287560.3287598
10.1007/s11257-015-9165-3
10.1089/big.2016.0047
10.1145/3576840.3578287
10.1145/3450614.3463293
10.1145/3038912.3052612
10.1145/3194770.3194776
10.2307/j.ctv31xf5v0
10.1609/icwsm.v11i1.14894
10.1016/j.infsof.2008.09.009
10.1007/978-3-319-75067-5
10.1145/3240323.3240372
10.1145/3477495.3531959
10.1007/978-1-4899-7637-6_19
10.1016/j.ipm.2021.102666
10.1145/3439729
10.1561/1500000079
10.1145/3460231.3473326
10.1007/s11257-019-09256-1
10.1145/3564284
10.1007/978-3-031-09316-6_6
10.1145/3336191.3371855
10.1145/3404835.3463235
10.1016/j.jnca.2020.102579
10.1145/230538.230561
10.1145/3404835.3462943
10.1145/2891406
10.1007/978-3-642-32273-0_7
10.1016/j.ipm.2020.102387
10.1145/3341105.3375766
10.1007/s11257-021-09302-x
10.1145/3433949
10.1007/s43681-021-00126-4
10.1109/ICDE.2017.217
10.1007/s13735-020-00203-0
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88G
8AL
8AO
8FD
8FE
8FG
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2M
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
Q9U
DOI 10.1007/s11257-023-09364-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Psychology Database (Alumni)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ProQuest Health & Medical Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Psychology Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest One Psychology New
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Psychology Journals
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Education
Computer Science
EISSN 1573-1391
EndPage 108
ExternalDocumentID 10_1007_s11257_023_09364_z
GrantInformation_xml – fundername: Politecnico di Bari
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FI
8FJ
8FL
8FW
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACYUM
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2M
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-fbf3946d6500d1b5800e497ae1a71a4dd7c939a45e9196bba92a5b57c09754ba3
IEDL.DBID RSV
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972922200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-1868
IngestDate Wed Nov 05 07:37:49 EST 2025
Tue Nov 18 21:41:58 EST 2025
Sat Nov 29 04:38:22 EST 2025
Fri Feb 21 02:40:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Survey
Recommender systems
Fairness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-fbf3946d6500d1b5800e497ae1a71a4dd7c939a45e9196bba92a5b57c09754ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11257-023-09364-z
PQID 2931908335
PQPubID 30100
PageCount 50
ParticipantIDs proquest_journals_2931908335
crossref_citationtrail_10_1007_s11257_023_09364_z
crossref_primary_10_1007_s11257_023_09364_z
springer_journals_10_1007_s11257_023_09364_z
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle The Journal of Personalization Research
PublicationTitle User modeling and user-adapted interaction
PublicationTitleAbbrev User Model User-Adap Inter
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Farnadi, G., Kouki, P., Thompson, S.K., Srinivasan, S., Getoor, L.: A fairness-aware hybrid recommender system, (2018). arXiv:1809.09030
Geyik, S.C., Ambler, S., Kenthapadi, K., Karypis, G.: Fairness-aware ranking in search & recommendation systems with application to linkedin talent search. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2221–2231, (2019)
MasthoffJDelicARokachLShapiraBKantorPRicciFGroup recommender systems: beyond preference aggregationRecommender Systems Handbook2022BerlinSpringer
Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. In: Ethics of Data and Analytics, Auerbach Publications, pp. 254–264, (2016)
GharahighehiAVensCPliakosKFair multi-stakeholder news recommender system with hypergraph rankingInf. Process. Manag.202158510.1016/j.ipm.2021.102663
Baeza-YatesRBias on the webCommun. ACM2018616546110.1145/3209581
Anelli, V.W., Deldjoo, Y., Di Noia, T., Malitesta, D., Paparella, V., Pomo, C.: Auditing consumer- and producer-fairness in graph collaborative filtering. In: Proceedings ECIR ’23, (2023)
Wang, Y., Ma, W., Zhang, M., Liu, Y., Ma, S.: A survey on the fairness of recommender systems. ACM TOIS forthcoming, (2022b)
Binns, R.: On the apparent conflict between individual and group fairness. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20, pp. 514–524, (2020)
Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, pp. 77–91. Accountability and Transparency, PMLR (2018)
Htun, N.N., Lecluse, E., Verbert, K.: Perception of fairness in group music recommender systems. In: 26th International Conference on Intelligent User Interfaces, pp. 302–306, (2021)
Wu, C., Wu, F., Wang, X., Huang, Y., Xie. X.: Fairness-aware news recommendation with decomposed adversarial learning. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, pp 4462–4469, (2021a)
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput Surv 54(6), (2021)
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci F, Rokach L, Shapira B (eds) Recommender Systems Handbook, pp. 191–226, (2015)
da SilvaDCManzatoMGDurãoFAExploiting personalized calibration and metrics for fairness recommendationExpert Syst. Appl.202118110.1016/j.eswa.2021.115112
AmigóEDeldjooYMizzaroSBellogínAA unifying and general account of fairness measurement in recommender systemsInf. Process. Manag.202360110.1016/j.ipm.2022.103115
Ferraro, A.: Music cold-start and long-tail recommendation: bias in deep representations. In: Bogers T, Said A, Brusilovsky P, Tikk D (eds) Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, pp. 586–590, (2019)
TrattnerCJannachDMottaEMeijerICDiakopoulosNElahiMOpdahlALTessemBBorchNFjeldMØvrelidLSmedtKDMoeHResponsible Media Technology and AI: Challenges and Research DirectionsAI and Ethics2022258559410.1007/s43681-021-00126-4
Giannakas, T., Sermpezis, P., Giovanidis, A., Spyropoulos, T., Arvanitakis, G.: Fairness in network-friendly recommendations. In: 22nd IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2021, pp. 71–80, (2021)
Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-Kurlanda, K., Wagner, C., Karimi, F., Fernández, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., Broelemann, K., Kasneci, G., Tiropanis, T., Staab, S.: Bias in data-driven artificial intelligence systems - an introductory survey. WIREs Data Mining Knowl Discov 10(3), (2020)
Beutel, A., Chen, J., Doshi, T., Qian, H., Wei, L., Wu, Y., Heldt, L., Zhao, Z., Hong, L., Chi, E.H., Goodrow, C.: Fairness in recommendation ranking through pairwise comparisons. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2212–2220, (2019)
Friedman, A., Knijnenburg, B.P., Vanhecke, K., Martens, L., Berkovsky, S.: Privacy aspects of recommender systems. In: Recommender Systems Handbook, Springer, pp. 649–688, (2015)
Deldjoo, Y., Anelli, V.W., Zamani, H., Bellogin, A., Di Noia, T.: A flexible framework for evaluating user and item fairness in recommender systems. User Modeling and User-Adapted Interaction pp. 1–47, (2021a)
Chakraborty, A., Patro, G.K., Ganguly, N., Gummadi, K.P., Loiseau, P.: Equality of voice: Towards fair representation in crowdsourced top-k recommendations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* 2019, pp. 129–138, (2019)
Anelli, V.W., Belli, L., Deldjoo, Y., Di Noia, T., Ferrara, A., Narducci, F., Pomo, C.: Pursuing privacy in recommender systems: the view of users and researchers from regulations to applications. In: Fifteenth ACM Conference on Recommender Systems, pp. 838–841, (2021)
BellogínASaidAImproving accountability in recommender systems research through reproducibilityUser Model User Adapt Interact202131594197710.1007/s11257-021-09302-x
Kirnap, Ö., Diaz, F., Biega, A., Ekstrand, M.D., Carterette, B., Yilmaz, E.: Estimation of fair ranking metrics with incomplete judgments. In: WWW ’21: The Web Conference 2021, pp. 1065–1075, (2021)
OlteanuACastilloCDiazFKicimanESocial data: Biases, methodological pitfalls, and ethical boundariesFrontiers Big Data201921310.3389/fdata.2019.00013
Schelenz, L.: Diversity-aware Recommendations for Social Justice? Exploring User Diversity and Fairness in Recommender Systems. In: Adjunct Publication of the 29th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2021, pp 404–410, (2021)
Sühr, T., Hilgard, S., Lakkaraju, H.: Does Fair Ranking Improve Minority Outcomes? Understanding the Interplay of Human and Algorithmic Biases in Online Hiring, p 989–999, (2021)
JannachDBauerCEscaping the McNamara fallacy: towards more impactful recommender systems researchAI Mag.20204147995
Li, Y., Ge, Y., Zhang, Y.: Tutorial on fairness of machine learning in recommender systems. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2654–2657, (2021c)
NunesIJannachDA systematic review and taxonomy of explanations in decision support and recommender systemsUser-Modeling and User-Adapted Interaction2017273–539344410.1007/s11257-017-9195-0
Stratigi, M., Kondylakis, H., Stefanidis, K.: Fairness in group recommendations in the health domain. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017, pp 1481–1488, (2017)
FriedmanBNissenbaumHBias in computer systemsACM Trans. Inf. Syst.199614333034710.1145/230538.230561
Grgic-Hlaca, N., Zafar, M.B., Gummadi, K.P., Weller, A.: The case for process fairness in learning: Feature selection for fair decision making. In: NIPS Symposium on Machine Learning and the Law, Barcelona, Spain, vol. 1, pp. 2, (2016)
Oh, J., Park, S., Yu, H., Song, M., Park, S.T.: Novel recommendation based on personal popularity tendency. In: ICDM ’11, pp 507–516, (2011)
Adomavicius, G., Jannach, D., Leitner, S., Zhang, J.: Understanding longitudinal dynamics of recommender systems with agent-based modeling and simulation. In: SimuRec Workshop at ACM RecSys 2021, (2021)
Lin, K., Sonboli, N., Mobasher, B., Burke, R.: Calibration in collaborative filtering recommender systems: a user-centered analysis. In: HT ’20: 31st ACM Conference on Hypertext and Social Media, pp. 197–206, (2020)
DeldjooYNoiaTDMerraFAA survey on adversarial recommender systems: from attack/defense strategies to generative adversarial networksACM Comput. Surv.202154213810.1145/3439729
Sonboli, N., Burke, R., Mattei, N., Eskandanian, F., Gao, T.: “and the winner is...”: Dynamic lotteries for multi-group fairness-aware recommendation. In: FAccTRec Workshop: Responsible Recommendation (RecSys ’20), (2020)
Mladenov, M., Hsu, C., Jain, V., Ie, E., Colby, C., Mayoraz, N., Pham, H., Tran, D., Vendrov, I., Boutilier, C.: RecSim NG: toward principled uncertainty modeling for recommender ecosystems. (2021), CoRR arXiv:2103.08057
Yadav, H., Du, Z., Joachims, T.: Policy-gradient training of fair and unbiased ranking functions. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 1044–1053, (2021)
SlokomMHanjalicALarsonMTowards user-oriented privacy for recommender system data: A personalization-based approach to gender obfuscation for user profilesInformation Processing & Management202158610.1016/j.ipm.2021.102722
Lin, C., Liu, X., Xv, G., Li, H.: Mitigating sentiment bias for recommender systems. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 31–40, (2021)
Jannach, D., Zanker, M., Ge, M., Gröning, M.: Recommender systems in computer science and information systems-a landscape of research. In: 13th International Conference on Electronic Commerce and Web Technologies (EC-Web 2012), pp. 76–87, (2012)
Gupta, A., Johnson, E., Payan, J., Roy, A.K., Kobren, A., Panda, S., Tristan, J.B., Wick, M.: Online post-processing in rankings for fair utility maximization. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, WSDM ’21, pp. 454–462, (2021)
Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: Goldwasser S (ed) Innovations in Theoretical Computer Science 2012, pp. 214–226, (2012)
DeldjooYBelloginADi NoiaTExplaining recommender systems fairness and accuracy through the lens of data characteristicsInf. Process. Manag.202158510.1016/j.ipm.2021.102662
DelicANeidhardtJNguyenTNRicciFAn observational user study for group recommender systems in the tourism
9364_CR49
9364_CR161
9364_CR160
9364_CR45
9364_CR44
9364_CR166
9364_CR163
9364_CR41
SA Friedler (9364_CR57) 2021; 64
A Gharahighehi (9364_CR64) 2021; 58
9364_CR169
9364_CR40
9364_CR167
9364_CR168
9364_CR5
9364_CR3
9364_CR2
9364_CR1
E Pitoura (9364_CR124) 2022; 31
Y Xiao (9364_CR165) 2020; 156
P Cremonesi (9364_CR36) 2021; 42
9364_CR39
9364_CR38
9364_CR150
NR Council (9364_CR35) 2004
9364_CR34
9364_CR154
9364_CR33
9364_CR155
9364_CR32
9364_CR152
MD Ekstrand (9364_CR51) 2022; 16
9364_CR153
9364_CR30
9364_CR158
9364_CR159
9364_CR156
9364_CR157
D Jannach (9364_CR80) 2010
9364_CR149
C Trattner (9364_CR151) 2022; 2
Q Zhu (9364_CR176) 2020; 8
9364_CR180
Y Deldjoo (9364_CR42) 2021; 58
9364_CR69
9364_CR68
9364_CR67
M Elahi (9364_CR52) 2022; 2
9364_CR66
9364_CR100
R Baeza-Yates (9364_CR14) 2018; 61
9364_CR65
9364_CR63
9364_CR103
9364_CR62
9364_CR104
9364_CR61
9364_CR101
9364_CR60
9364_CR102
AS Koshiyama (9364_CR91) 2022; 55
A Felfernig (9364_CR54) 2018
9364_CR172
9364_CR173
9364_CR58
9364_CR170
9364_CR171
9364_CR56
M Jugovac (9364_CR85) 2017; 81
9364_CR55
9364_CR177
9364_CR174
DC da Silva (9364_CR37) 2021; 181
9364_CR53
9364_CR175
9364_CR8
9364_CR7
9364_CR178
9364_CR6
B Friedman (9364_CR59) 1996; 14
9364_CR179
A Bellogín (9364_CR16) 2021; 31
D Pessach (9364_CR123) 2022; 55
DK Mulligan (9364_CR114) 2019; 3
D Jannach (9364_CR82) 2015; 25
AB Melchiorre (9364_CR108) 2021; 58
B Xiao (9364_CR164) 2007; 31
9364_CR89
9364_CR121
A Olteanu (9364_CR120) 2019; 2
9364_CR122
9364_CR87
9364_CR86
9364_CR125
9364_CR126
9364_CR81
9364_CR119
9364_CR116
D Jannach (9364_CR78) 2020; 41
9364_CR117
BA Kitchenham (9364_CR88) 2009; 51
B Edizel (9364_CR50) 2020; 9
YR Shrestha (9364_CR140) 2019; 12
L Boratto (9364_CR21) 2021; 31
9364_CR77
9364_CR111
9364_CR76
9364_CR75
9364_CR74
9364_CR73
J Masthoff (9364_CR105) 2022
9364_CR115
9364_CR72
9364_CR112
9364_CR113
9364_CR70
9364_CR107
A Gunawardana (9364_CR71) 2022
9364_CR106
Q Dong (9364_CR48) 2021; 9
J Misztal-Radecka (9364_CR110) 2021; 58
M Slokom (9364_CR141) 2021; 58
T Miller (9364_CR109) 2019; 267
H Abdollahpouri (9364_CR4) 2020; 30
D Jannach (9364_CR84) 2021; 42
9364_CR29
9364_CR28
9364_CR27
9364_CR26
9364_CR25
9364_CR24
9364_CR23
9364_CR143
L Boratto (9364_CR20) 2021; 58
9364_CR22
9364_CR144
9364_CR142
BD Wundervald (9364_CR162) 2021; 10
9364_CR147
9364_CR148
9364_CR145
9364_CR146
9364_CR138
9364_CR139
A Chouldechova (9364_CR31) 2017; 5
J Bobadilla (9364_CR19) 2021; 6
9364_CR18
9364_CR17
Y Deldjoo (9364_CR43) 2021; 54
9364_CR15
D Jannach (9364_CR83) 2016; 59
A Ashokan (9364_CR13) 2021; 58
E Amigó (9364_CR9) 2023; 60
9364_CR12
9364_CR132
9364_CR11
A Delic (9364_CR46) 2018; 19
9364_CR99
9364_CR133
9364_CR10
T Di Noia (9364_CR47) 2022; 65
9364_CR98
9364_CR130
9364_CR97
9364_CR131
9364_CR96
9364_CR136
9364_CR95
9364_CR137
9364_CR94
9364_CR134
D Jannach (9364_CR79) 2019; 10
9364_CR93
9364_CR135
9364_CR92
9364_CR129
9364_CR90
I Nunes (9364_CR118) 2017; 27
9364_CR127
9364_CR128
References_xml – reference: BorattoLFenuGMarrasMConnecting user and item perspectives in popularity debiasing for collaborative recommendationInf. Process. Manag.202158110.1016/j.ipm.2020.102387
– reference: Moscati, M., Parada-Cabaleiro, E., Deldjoo, Y., Zangerle, E., Schedl, M.: Music4all-onion. a large-scale multi-faceted content-centric music recommendation dataset. In: Proceedings of the 31th ACM International Conference on Information & Knowledge Management (CIKM’22), (2022)
– reference: Li, Y., Chen, H., Fu, Z., Ge, Y., Zhang, Y.: User-oriented fairness in recommendation. In: Proceedings of The Web Conference 2021, WWW ’21, pp. 624–632, (2021a)
– reference: Rahmani, H.A., Deldjoo, Y., Tourani, A., Naghiaei, M.: The unfairness of active users and popularity bias in point-of-interest recommendation. In: Advances in Bias and Fairness in Information Retrieval - Third International Workshop, BIAS 2022, Springer, Communications in Computer and Information Science, vol 1610, pp 56–68, (2022b)
– reference: XiaoYPeiQYaoLYuSBaiLWangXAn enhanced probabilistic fairness-aware group recommendation by incorporating social activenessJ. Netw. Comput. Appl.202015610.1016/j.jnca.2020.102579
– reference: Farnadi, G., Kouki, P., Thompson, S.K., Srinivasan, S., Getoor, L.: A fairness-aware hybrid recommender system, (2018). arXiv:1809.09030
– reference: AbdollahpouriHAdomaviciusGBurkeRGuyIJannachDKamishimaTKrasnodebskiJPizzatoLMultistakeholder recommendation: Survey and research directionsUser Model. User-Adap. Inter.20203012715810.1007/s11257-019-09256-1
– reference: Wu, C., Wu, F., Wang, X., Huang, Y., Xie. X.: Fairness-aware news recommendation with decomposed adversarial learning. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, pp 4462–4469, (2021a)
– reference: ElahiMJannachDSkjærvenLKnudsenESjøvaagHTolonenKHolmstadØPipkinIThrondsenEStenbomAFiskerudEOeschAVredenbergLTrattnerCTowards responsible media recommendationAI Ethics2022210311410.1007/s43681-021-00107-7
– reference: JannachDLercheLKamehkhoshIJugovacMWhat recommenders recommend: an analysis of recommendation biases and possible countermeasuresUser Model. User-Adap. Inter.201525542749110.1007/s11257-015-9165-3
– reference: NunesIJannachDA systematic review and taxonomy of explanations in decision support and recommender systemsUser-Modeling and User-Adapted Interaction2017273–539344410.1007/s11257-017-9195-0
– reference: Zhu, Z., Wang, J., Zhang, Y., Caverlee, J.: Fairness-aware recommendation of information curators. (2018c), arXiv:1809.03040
– reference: Li, Y., Chen, H., Xu, S., Ge, Y., Tan, J., Liu, S., Zhang, Y.: Fairness in recommendation: a survey. (2022), CoRR arXiv:2205.13619
– reference: Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions. ACM Trans. Inf. Syst. (2022)
– reference: Pedreshi, D., Ruggieri, S., Turini, F.: Discrimination-aware data mining. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08, p 560–568, (2008)
– reference: Serbos, D., Qi, S., Mamoulis, N., Pitoura, E., Tsaparas, P.: Fairness in package-to-group recommendations. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp 371–379, (2017)
– reference: Lin, C., Liu, X., Xv, G., Li, H.: Mitigating sentiment bias for recommender systems. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 31–40, (2021)
– reference: PitouraEStefanidisKKoutrikaGFairness in rankings and recommendations: an overviewVLDB J.202231343145810.1007/s00778-021-00697-y
– reference: Friedman, A., Knijnenburg, B.P., Vanhecke, K., Martens, L., Berkovsky, S.: Privacy aspects of recommender systems. In: Recommender Systems Handbook, Springer, pp. 649–688, (2015)
– reference: Deldjoo, Y., Di Noia, T., Merra, F.A.: Adversarial machine learning in recommender systems (aml-recsys). In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 869–872, (2020)
– reference: Oh, J., Park, S., Yu, H., Song, M., Park, S.T.: Novel recommendation based on personal popularity tendency. In: ICDM ’11, pp 507–516, (2011)
– reference: Giannakas, T., Sermpezis, P., Giovanidis, A., Spyropoulos, T., Arvanitakis, G.: Fairness in network-friendly recommendations. In: 22nd IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2021, pp. 71–80, (2021)
– reference: MelchiorreABRekabsazNParada-CabaleiroEBrandlSLesotaOSchedlMInvestigating gender fairness of recommendation algorithms in the music domainInf. Process. Manag.202158510.1016/j.ipm.2021.102666
– reference: Zhu, Z., Kim, J., Nguyen, T., Fenton, A., Caverlee, J.: Fairness among new items in cold start recommender systems. In: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, pp 767–776, (2021)
– reference: DelicANeidhardtJNguyenTNRicciFAn observational user study for group recommender systems in the tourism domainJ. Inf. Technol. Tour.2018191–48711610.1007/s40558-018-0106-y
– reference: EkstrandMDDasABurkeRDiazFFairness in information access systemsFound. Trends Inf. Retr.2022161–2117710.1561/1500000079
– reference: Ghanem, N., Leitner, S., Jannach, D.: Balancing consumer and business value of recommender systems: a simulation-based analysis. E-Commerce Research and Applications forthcoming, (2022)
– reference: Gupta, A., Johnson, E., Payan, J., Roy, A.K., Kobren, A., Panda, S., Tristan, J.B., Wick, M.: Online post-processing in rankings for fair utility maximization. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, WSDM ’21, pp. 454–462, (2021)
– reference: FriedlerSAScheideggerCVenkatasubramanianSThe (im)possibility of fairness: different value systems require different mechanisms for fair decision makingCommun. ACM202164413614310.1145/3433949
– reference: MillerTExplanation in artificial intelligence: Insights from the social sciencesArtif. Intell.2019267138387451110.1016/j.artint.2018.07.007
– reference: Koprinska, I., Yacef, K.: People-to-people reciprocal recommenders. In: Recommender Systems Handbook, Springer, pp. 545–567, (2015)
– reference: Schelenz, L.: Diversity-aware Recommendations for Social Justice? Exploring User Diversity and Fairness in Recommender Systems. In: Adjunct Publication of the 29th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2021, pp 404–410, (2021)
– reference: Zhao, Z., Chen, J., Zhou, S., He, X., Cao, X., Zhang, F., Wu, W.: Popularity bias is not always evil: Disentangling benign and harmful bias for recommendation. IEEE Transactions on Knowledge & Data Engineering (01):1–13, (2022)
– reference: Zhu, Z., Hu, X., Caverlee, J.: Fairness-aware tensor-based recommendation. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, pp 1153–1162, (2018b)
– reference: Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B.: The connection between popularity bias, calibration, and fairness in recommendation. In: Fourteenth ACM Conference on Recommender Systems, pp. 726–731, (2020b)
– reference: JugovacMJannachDLercheLEfficient optimization of multiple recommendation quality factors according to individual user tendenciesExpert Syst. Appl.20178132133110.1016/j.eswa.2017.03.055
– reference: Riederer, C., Chaintreau, A.: The price of fairness in location based advertising. In: FATREC’17, (2017)
– reference: Stratigi, M., Kondylakis, H., Stefanidis, K.: Fairness in group recommendations in the health domain. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017, pp 1481–1488, (2017)
– reference: Deldjoo, Y., Anelli, V.W., Zamani, H., Bellogin, A., Di Noia, T.: A flexible framework for evaluating user and item fairness in recommender systems. User Modeling and User-Adapted Interaction pp. 1–47, (2021a)
– reference: Sonboli, N., Smith, J.J., Cabral Berenfus, F., Burke, R., Fiesler, C.: Fairness and transparency in recommendation: The users’ perspective. In: Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, p 274–279, (2021)
– reference: Rahmani, H.A., Naghiaei, M., Tourani, A., Deldjoo, Y.: Exploring the impact of temporal bias in point-of-interest recommendation. In: Proceedings of the 16th ACM Conference on Recommender Systems, (2022d)
– reference: AmigóEDeldjooYMizzaroSBellogínAA unifying and general account of fairness measurement in recommender systemsInf. Process. Manag.202360110.1016/j.ipm.2022.103115
– reference: CremonesiPJannachDProgress in recommender systems research: crisis? What crisis?AI Mag.20214234354
– reference: Fu, Z., Xian, Y., Gao, R., Zhao, J., Huang, Q., Ge, Y., Xu, S., Geng, S., Shah, C., Zhang, Y., de Melo, G.: Fairness-aware explainable recommendation over knowledge graphs. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, pp. 69–78, (2020)
– reference: Steck, H.: Calibrated recommendations. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp 154–162, (2018)
– reference: Weydemann, L., Sacharidis, D., Werthner, H.: Defining and measuring fairness in location recommendations. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising, LocalRec@SIGSPATIAL 2019, pp 6:1–6:8, (2019)
– reference: Mehrotra, R., McInerney, J., Bouchard, H., Lalmas, M., Diaz, F.: Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, pp 2243–2251, (2018)
– reference: Seymen, S., Abdollahpouri, H., Malthouse, E.C.: A unified optimization toolbox for solving popularity bias, fairness, and diversity in recommender systems. In: Proceedings of the 1st Workshop on Multi-Objective Recommender Systems (MORS 2021) co-located with 15th ACM Conference on Recommender Systems (RecSys 2021), CEUR Workshop Proceedings, vol 2959, (2021)
– reference: ShresthaYRYangYFairness in algorithmic decision-making: Applications in multi-winner voting, machine learning, and recommender systemsAlgorithms2019129199401675410.3390/a12090199
– reference: Yadav, H., Du, Z., Joachims, T.: Policy-gradient training of fair and unbiased ranking functions. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 1044–1053, (2021)
– reference: Burke, R., Sonboli, N., Ordonez-Gauger, A.: Balanced neighborhoods for multi-sided fairness in recommendation. In: Conference on Fairness, Accountability and Transparency, FAT 2018, Proceedings of Machine Learning Research, vol. 81, pp. 202–214, (2018)
– reference: Liu, W., Liu, F., Tang, R., Liao, B., Chen, G., Heng, P.: Balancing between accuracy and fairness for interactive recommendation with reinforcement learning. In: Advances in Knowledge Discovery and Data Mining-24th Pacific-Asia Conference, PAKDD 2020, vol. 12084, pp. 155–167, (2020)
– reference: Grgic-Hlaca, N., Zafar, M.B., Gummadi, K.P., Weller, A.: The case for process fairness in learning: Feature selection for fair decision making. In: NIPS Symposium on Machine Learning and the Law, Barcelona, Spain, vol. 1, pp. 2, (2016)
– reference: Zhu, Z., Wang, J., Caverlee, J.: Measuring and mitigating item under-recommendation bias in personalized ranking systems. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, p 449–458, (2020b)
– reference: Naghiaei, M., Rahmani, H.A., Deldjoo, Y.: CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems. In: SIGIR ’22SIGIR ’22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, (2022)
– reference: Ghosh, A., Dutt, R., Wilson, C.: When fair ranking meets uncertain inference. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1033–1043, (2021a)
– reference: MasthoffJDelicARokachLShapiraBKantorPRicciFGroup recommender systems: beyond preference aggregationRecommender Systems Handbook2022BerlinSpringer
– reference: Rastegarpanah, B., Gummadi, K.P., Crovella, M.: Fighting fire with fire: Using antidote data to improve polarization and fairness of recommender systems. In: Proceedings of the twelfth ACM International Conference on Web Search and Data Mining, pp 231–239, (2019)
– reference: Koutsopoulos, I., Halkidi, M.: Efficient and fair item coverage in recommender systems. In: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), IEEE, pp. 912–918, (2018)
– reference: Krafft, T.D., Hauer, M.P., Zweig, K.A.: Why do we need to be bots? what prevents society from detecting biases in recommendation systems. In: Bias and Social Aspects in Search and Recommendation - First International Workshop, BIAS 2020, vol 1245, pp. 27–34, (2020)
– reference: Cooper, A.F.: Where is the normative proof? assumptions and contradictions in ML fairness research. (2020), CoRR arXiv:2010.10407
– reference: OlteanuACastilloCDiazFKicimanESocial data: Biases, methodological pitfalls, and ethical boundariesFrontiers Big Data201921310.3389/fdata.2019.00013
– reference: Zehlike, M., Yang, K., Stoyanovich, J.: Fairness in ranking, part ii: Learning-to-rank and recommender systems. ACM Comput Surv forthcoming, (2022b)
– reference: Jannach, D., Zanker, M., Ge, M., Gröning, M.: Recommender systems in computer science and information systems-a landscape of research. In: 13th International Conference on Electronic Commerce and Web Technologies (EC-Web 2012), pp. 76–87, (2012)
– reference: Ferraro, A.: Music cold-start and long-tail recommendation: bias in deep representations. In: Bogers T, Said A, Brusilovsky P, Tikk D (eds) Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, pp. 586–590, (2019)
– reference: Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput Surv 54(6), (2021)
– reference: Rahmani, H.A., Deldjoo, Y., di Noia, T.: The role of context fusion on accuracy, beyond-accuracy, and fairness of point-of-interest recommendation systems. Expert Systems with Applications p 117700, (2022a)
– reference: Rohde, D., Bonner, S., Dunlop, T., Vasile, F., Karatzoglou, A.: Recogym: A reinforcement learning environment for the problem of product recommendation in online advertising. arXiv preprint arXiv:1808.00720, (2018)
– reference: Ferwerda, B., Ingesson, E., Berndl, M., Schedl, M.: I Don’t Care How Popular You Are! Investigating Popularity Bias From a User’s Perspective. In: Proceedings of the 8th ACM SIGIR Conference on Human Information Interaction and Retrieval (CHIIR 2023), ACM, Austin, USA, (2023)
– reference: Misztal-RadeckaJIndurkhyaBBias-aware hierarchical clustering for detecting the discriminated groups of users in recommendation systemsInformation Processing & Management202158310.1016/j.ipm.2021.102519
– reference: Srivastava, M., Heidari, H., Krause, A.: Mathematical notions vs. human perception of fairness: A descriptive approach to fairness for machine learning. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp 2459–2468, (2019)
– reference: Adomavicius, G., Jannach, D., Leitner, S., Zhang, J.: Understanding longitudinal dynamics of recommender systems with agent-based modeling and simulation. In: SimuRec Workshop at ACM RecSys 2021, (2021)
– reference: Corbett-Davies, S., Goel, S.: The measure and mismeasure of fairness: a critical review of fair machine learning. (2018), CoRR arXiv:1808.00023
– reference: ZhuQSunQLiZWangSFARM: A fairness-aware recommendation method for high visibility and low visibility mobile appsIEEE Access2020812274712275610.1109/ACCESS.2020.3007617
– reference: Malecek, L., Peska, L.: Fairness-preserving group recommendations with user weighting. In: Adjunct Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, pp. 4–9, (2021)
– reference: EdizelBBonchiFHajianSPanissonATassaTFairecsys: mitigating algorithmic bias in recommender systemsInt. J. Data Sci. Anal.20209219721310.1007/s41060-019-00181-5
– reference: Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: Goldwasser S (ed) Innovations in Theoretical Computer Science 2012, pp. 214–226, (2012)
– reference: Stratigi, M., Nummenmaa, J., Pitoura, E., Stefanidis, K.: Fair sequential group recommendations. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp 1443–1452, (2020)
– reference: da SilvaDCManzatoMGDurãoFAExploiting personalized calibration and metrics for fairness recommendationExpert Syst. Appl.202118110.1016/j.eswa.2021.115112
– reference: Kleinberg, J.M., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair determination of risk scores. In: 8th Innovations in Theoretical Computer Science Conference, ITCS, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, LIPIcs, vol. 67, pp. 43:1–43:23, (2017)
– reference: Dash, A., Chakraborty, A., Ghosh, S., Mukherjee, A., Gummadi, K.P.: When the umpire is also a player: Bias in private label product recommendations on e-commerce marketplaces. In: FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 873–884, (2021)
– reference: Gorantla, S., Deshpande, A., Louis, A.: On the problem of underranking in group-fair ranking. In: Proceedings of the 38th International Conference on Machine Learning, ICML 2021, Proceedings of Machine Learning Research, vol. 139, pp. 3777–3787, (2021)
– reference: Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. In: Proceedings of the 26th International Conference on World Wide Web, pp 1171–1180, (2017)
– reference: DeldjooYBelloginADi NoiaTExplaining recommender systems fairness and accuracy through the lens of data characteristicsInf. Process. Manag.202158510.1016/j.ipm.2021.102662
– reference: Lin, K., Sonboli, N., Mobasher, B., Burke, R.: Crank up the volume: Preference bias amplification in collaborative recommendation. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), CEUR Workshop Proceedings, vol. 2440, (2019)
– reference: Cornacchia, G., Narducci, F., Ragone, A.: A general model for fair and explainable recommendation in the loan domain. In: Joint Workshop Proceedings of the 3rd Edition of Knowledge-aware and Conversational Recommender Systems (KaRS) and the 5th Edition of Recommendation in Complex Environments (ComplexRec) co-located with 15th ACM Conference on Recommender Systems (RecSys 2021), (2021)
– reference: Chakraborty, A., Patro, G.K., Ganguly, N., Gummadi, K.P., Loiseau, P.: Equality of voice: Towards fair representation in crowdsourced top-k recommendations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* 2019, pp. 129–138, (2019)
– reference: Qiu, R., Wang, S., Chen, Z., Yin, H., Huang, Z.: CausalRec: Causal Inference for Visual Debiasing in Visually-Aware Recommendation. In: MM ’21: ACM Multimedia Conference, pp 3844–3852, (2021)
– reference: Li, Y., Chen, H., Xu, S., Ge, Y., Zhang, Y.: Towards personalized fairness based on causal notion. In: 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, pp. 1054–1063, (2021b)
– reference: Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-Kurlanda, K., Wagner, C., Karimi, F., Fernández, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., Broelemann, K., Kasneci, G., Tiropanis, T., Staab, S.: Bias in data-driven artificial intelligence systems - an introductory survey. WIREs Data Mining Knowl Discov 10(3), (2020)
– reference: Verma, S., Gao, R., Shah, C.: Facets of fairness in search and recommendation. In: Bias and Social Aspects in Search and Recommendation - First International Workshop, BIAS 2020, Communications in Computer and Information Science, vol 1245, pp 1–11, (2020)
– reference: Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact Intell. Syst. 5(4), (2015)
– reference: Wu, Y., Cao, J., Xu, G., Tan, Y.: TFROM: A two-sided fairness-aware recommendation model for both customers and providers. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, pp 1013–1022, (2021b)
– reference: Shen, T., Li, J., Bouadjenek, M.R., Mai, Z., Sanner, S.: Towards understanding and mitigating unintended biases in language model-driven conversational recommendation. Information Processing and Management In press, (2023)
– reference: Jannach, D., Adomavicius, G.: Price and profit awareness in recommender systems. In: Proceedings of the ACM RecSys 2017 Workshop on Value-Aware and Multi-Stakeholder Recommendation, (2017)
– reference: Lin, K., Sonboli, N., Mobasher, B., Burke, R.: Calibration in collaborative filtering recommender systems: a user-centered analysis. In: HT ’20: 31st ACM Conference on Hypertext and Social Media, pp. 197–206, (2020)
– reference: Beutel, A., Chen, J., Doshi, T., Qian, H., Wei, L., Wu, Y., Heldt, L., Zhao, Z., Hong, L., Chi, E.H., Goodrow, C.: Fairness in recommendation ranking through pairwise comparisons. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2212–2220, (2019)
– reference: Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances in Neural Information Processing Systems, vol. 30, (2017)
– reference: Kirnap, Ö., Diaz, F., Biega, A., Ekstrand, M.D., Carterette, B., Yilmaz, E.: Estimation of fair ranking metrics with incomplete judgments. In: WWW ’21: The Web Conference 2021, pp. 1065–1075, (2021)
– reference: CouncilNRMeasuring Racial Discrimination2004LondonNational Academies Press
– reference: Wang, X., Thain, N., Sinha, A., Prost, F., Chi, E.H., Chen, J., Beutel, A.: Practical compositional fairness: Understanding fairness in multi-component recommender systems. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp 436–444, (2021)
– reference: Borges, R., Stefanidis, K.: On mitigating popularity bias in recommendations via variational autoencoders. In: SAC ’21: The 36th ACM/SIGAPP Symposium on Applied Computing, pp. 1383–1389, (2021)
– reference: JannachDResnickPTuzhilinAZankerMRecommender systems-beyond matrix completionCommun. ACM201659119410210.1145/2891406
– reference: KoshiyamaASKazimETreleavenPCAlgorithm auditing: Managing the legal, ethical, and technological risks of artificial intelligence, machine learning, and associated algorithmsComputer2022554405010.1109/MC.2021.3067225
– reference: Deldjoo, Y., Anelli, V.W., Zamani, H., Kouki, A.B., Noia, T.D.: Recommender systems fairness evaluation via generalized cross entropy. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), Copenhagen, Denmark, September 20, 2019, (2019)
– reference: Deldjoo, Y., Nazary, F., Ramisa, A., McAuley, J., Pellegrini, G., Bellogin, A., Di Noia, T.: A review of modern fashion recommender systems. ACM Comput. Surv. (2023)
– reference: WundervaldBDCluster-based quotas for fairness improvements in music recommendation systemsInt J Multim Inf Retr2021101253210.1007/s13735-020-00203-0
– reference: Burke, R.: Multisided fairness for recommendation. In: 4th Workshop on Fairness, Accountability, and Transparency in Machine Learning (FAT/ML 2017), (2017)
– reference: Xia, B., Yin, J., Xu, J., Li, Y.: We-rec: A fairness-aware reciprocal recommendation based on walrasian equilibrium. Knowl Based Syst 182, (2019)
– reference: FelfernigABorattoLStettingerMTkaliMGroup Recommender Systems: An Introduction2018BerlinSpringer10.1007/978-3-319-75067-5
– reference: SlokomMHanjalicALarsonMTowards user-oriented privacy for recommender system data: A personalization-based approach to gender obfuscation for user profilesInformation Processing & Management202158610.1016/j.ipm.2021.102722
– reference: Baeza-YatesRBias on the webCommun. ACM2018616546110.1145/3209581
– reference: Tsintzou, V., Pitoura, E., Tsaparas, P.: Bias disparity in recommendation systems. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), vol 2440, (2019)
– reference: Morina, G., Oliinyk, V., Waton, J., Marusic, I., Georgatzis, K.: Auditing and achieving intersectional fairness in classification problems. (2019), arXiv preprint arXiv:1911.01468
– reference: Gundersen, O.E., Kjensmo, S.: State of the art: Reproducibility in artificial intelligence. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), pp. 1644–1651, (2018)
– reference: AshokanAHaasCFairness metrics and bias mitigation strategies for rating predictionsInf. Process. Manag.202158510.1016/j.ipm.2021.102646
– reference: Binns, R.: On the apparent conflict between individual and group fairness. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20, pp. 514–524, (2020)
– reference: Zhang, J., Bareinboim, E.: Fairness in decision-making—the causal explanation formula. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32, (2018)
– reference: Wang, Y., Ma, W., Zhang, M., Liu, Y., Ma, S.: A survey on the fairness of recommender systems. ACM TOIS forthcoming, (2022b)
– reference: Zheng, Y., Dave, T., Mishra, N., Kumar, H.: Fairness in reciprocal recommendations: A speed-dating study. In: Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization, UMAP 2018, pp 29–34, (2018)
– reference: Gómez, E., Zhang, C.S., Boratto, L., Salamó, M., Marras, M.: The winner takes it all: Geographic imbalance and provider (un)fairness in educational recommender systems. In: SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1808–1812, (2021)
– reference: JannachDZankerMFelfernigAFriedrichGRecommender Systems-An Introduction2010CambridgeCambridge University Press10.1017/CBO9780511763113
– reference: Chakraborty, A., Messias, J., Benevenuto, F., Ghosh, S., Ganguly, N., Gummadi, K.P.: Who Makes Trends? Understanding Demographic Biases in Crowdsourced Recommendations. In: Proceedings of the Eleventh International Conference on Web and Social Media, ICWSM 2017, pp. 22–31 (2017)
– reference: Kaya, M., Bridge, D., Tintarev, N.: Ensuring Fairness in Group Recommendations by Rank-Sensitive Balancing of Relevance, pp. 101–110, (2020)
– reference: Zehlike, M., Yang, K., Stoyanovich, J.: Fairness in ranking, part i: Score-based ranking. ACM Comput Surv Just Accepted, (2022a)
– reference: FriedmanBNissenbaumHBias in computer systemsACM Trans. Inf. Syst.199614333034710.1145/230538.230561
– reference: Barocas, S., Hardt, M., Narayanan, A.: Fairness and Machine Learning. fairmlbook.org, (2019), http://www.fairmlbook.org
– reference: JannachDBauerCEscaping the McNamara fallacy: towards more impactful recommender systems researchAI Mag.20204147995
– reference: Sonboli, N., Burke, R., Mattei, N., Eskandanian, F., Gao, T.: “and the winner is...”: Dynamic lotteries for multi-group fairness-aware recommendation. In: FAccTRec Workshop: Responsible Recommendation (RecSys ’20), (2020)
– reference: Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B., Malthouse, E.C.: User-centered evaluation of popularity bias in recommender systems. In: Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2021, ACM, pp. 119–129, (2021)
– reference: Verma, S., Rubin, J.: Fairness definitions explained. In: Brun Y, Johnson B, Meliou A (eds) Proceedings of the International Workshop on Software Fairness, FairWare@ICSE 2018, pp 1–7, (2018)
– reference: Chaudhari, H.A., Lin, S., Linda, O.: A general framework for fairness in multistakeholder recommendations. (2020), arXiv:2009.02423
– reference: JannachDJugovacMMeasuring the business value of recommender systemsACM TMIS201910412310.1145/3370082
– reference: JannachDPuPRicciFZankerMRecommender systems: past, present, futureAI Mag.202142336
– reference: Deldjoo, Y., Schedl, M., Knees, P.: Content-driven music recommendation: evolution, state of the art, and challenges. (2021d), arXiv preprint arXiv:2107.11803
– reference: Tintarev, N., Masthoff, J.: Beyond explaining single item recommendations. In: Recommender Systems Handbook, Springer, pp 711–756, (2022)
– reference: Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci F, Rokach L, Shapira B (eds) Recommender Systems Handbook, pp. 191–226, (2015)
– reference: Htun, N.N., Lecluse, E., Verbert, K.: Perception of fairness in group music recommender systems. In: 26th International Conference on Intelligent User Interfaces, pp. 302–306, (2021)
– reference: BobadillaJLara-CabreraRGonzález-PrietoÁOrtegaFDeepfair: deep learning for improving fairness in recommender systemsInt. J. Interact Multim. Artif. Intell.2021668694
– reference: GharahighehiAVensCPliakosKFair multi-stakeholder news recommender system with hypergraph rankingInf. Process. Manag.202158510.1016/j.ipm.2021.102663
– reference: PessachDShmueliEA review on fairness in machine learningACM Computing Surveys (CSUR)202255314410.1145/3494672
– reference: Ge, Y., Liu, S., Gao, R., Xian, Y., Li, Y., Zhao, X., Pei, C., Sun, F., Ge, J., Ou, W., Zhang, Y.: Towards long-term fairness in recommendation. In: WSDM ’21, The Fourteenth ACM International Conference on Web Search and Data Mining, pp. 445–453, (2021)
– reference: Ghosh, A., Genuit, L., Reagan, M.: Characterizing intersectional group fairness with worst-case comparisons. In: Artificial Intelligence Diversity, Belonging, Equity, and Inclusion, PMLR, pp. 22–34, (2021b)
– reference: Sun, W., Khenissi, S., Nasraoui, O., Shafto, P.: Debiasing the human-recommender system feedback loop in collaborative filtering. In: Companion of The 2019 World Wide Web Conference, WWW 2019, ACM, pp 645–651, (2019)
– reference: Anelli, V.W., Belli, L., Deldjoo, Y., Di Noia, T., Ferrara, A., Narducci, F., Pomo, C.: Pursuing privacy in recommender systems: the view of users and researchers from regulations to applications. In: Fifteenth ACM Conference on Recommender Systems, pp. 838–841, (2021)
– reference: Rahmani, H.A., Naghiaei, M., Dehghan, M., Aliannejadi, M.: Experiments on generalizability of user-oriented fairness in recommender systems. In: SIGIR ’22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 2755–2764, (2022c)
– reference: Yao, S., Huang, B.: Beyond parity: Fairness objectives for collaborative filtering. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS ’17, p 2925–2934, (2017)
– reference: Geyik, S.C., Ambler, S., Kenthapadi, K., Karypis, G.: Fairness-aware ranking in search & recommendation systems with application to linkedin talent search. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2221–2231, (2019)
– reference: Mladenov, M., Hsu, C., Jain, V., Ie, E., Colby, C., Mayoraz, N., Pham, H., Tran, D., Vendrov, I., Boutilier, C.: RecSim NG: toward principled uncertainty modeling for recommender ecosystems. (2021), CoRR arXiv:2103.08057
– reference: Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B.: The unfairness of popularity bias in recommendation. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), vol. 2440, (2019b)
– reference: BorattoLFenuGMarrasMInterplay between upsampling and regularization for provider fairness in recommender systemsUser Model User Adapt Interact202131342145510.1007/s11257-021-09294-8
– reference: MulliganDKKrollJAKohliNWongRYThis thing called fairness: Disciplinary confusion realizing a value in technologyProc ACM Hum Comput Interact20193CSCW119:1119:3610.1145/3359221
– reference: ChouldechovaAFair prediction with disparate impact: a study of bias in recidivism prediction instrumentsBig Data2017521531632863243810.1089/big.2016.0047
– reference: DeldjooYNoiaTDMerraFAA survey on adversarial recommender systems: from attack/defense strategies to generative adversarial networksACM Comput. Surv.202154213810.1145/3439729
– reference: Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. In: Ethics of Data and Analytics, Auerbach Publications, pp. 254–264, (2016)
– reference: Rawls, J.: Justice as fairness: A restatement. Harvard University Press (2001)
– reference: Wang, C., Wang, K., Bian, A., Islam, R., Keya, K.N., Foulds, J.R., Pan, S.: Do humans prefer debiased AI algorithms? A case study in career recommendation. In: IUI 2022: 27th International Conference on Intelligent User Interfaces, pp 134–147, (2022a)
– reference: Li, Y., Ge, Y., Zhang, Y.: Tutorial on fairness of machine learning in recommender systems. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2654–2657, (2021c)
– reference: Sühr, T., Hilgard, S., Lakkaraju, H.: Does Fair Ranking Improve Minority Outcomes? Understanding the Interplay of Human and Algorithmic Biases in Online Hiring, p 989–999, (2021)
– reference: Abdollahpouri, H., Burke, R.: Multi-stakeholder recommendation and its connection to multi-sided fairness. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), CEUR Workshop Proceedings, vol. 2440, (2019)
– reference: Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, pp. 77–91. Accountability and Transparency, PMLR (2018)
– reference: Burke, R., Sonboli, N., Mansoury, M., Ordoñez-Gauger, A.: Balanced neighborhoods for fairness-aware collaborative recommendation, (2017)
– reference: KitchenhamBABreretonPBudgenDTurnerMBaileyJLinkmanSGSystematic literature reviews in software engineering-a systematic literature reviewInf. Softw. Technol.200951171510.1016/j.infsof.2008.09.009
– reference: Wan, M., Ni, J., Misra, R., McAuley, J.: Addressing marketing bias in product recommendations. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp 618–626, (2020)
– reference: Zhu, Q., Zhou, A., Sun, Q., Wang, S., Yang, F.: FMSR: A fairness-aware mobile service recommendation method. In: 2018 IEEE International Conference on Web Services, ICWS 2018, San Francisco, CA, USA, July 2-7, 2018, IEEE, pp 171–178, (2018a)
– reference: TrattnerCJannachDMottaEMeijerICDiakopoulosNElahiMOpdahlALTessemBBorchNFjeldMØvrelidLSmedtKDMoeHResponsible Media Technology and AI: Challenges and Research DirectionsAI and Ethics2022258559410.1007/s43681-021-00126-4
– reference: Di NoiaTTintarevNFatourouPSchedlMRecommender systems under European AI regulationsCommun. ACM2022654697310.1145/3512728
– reference: Selbst, A.D., Boyd, D., Friedler, S.A., Venkatasubramanian, S., Vertesi, J.: Fairness and abstraction in sociotechnical systems. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* ’19, p 59–68, (2019)
– reference: Hao, Q., Xu, Q., Yang, Z., Huang, Q.: Pareto optimality for fairness-constrained collaborative filtering. In: MM ’21: ACM Multimedia Conference, ACM, pp. 5619–5627, (2021)
– reference: BellogínASaidAImproving accountability in recommender systems research through reproducibilityUser Model User Adapt Interact202131594197710.1007/s11257-021-09302-x
– reference: Abdollahpouri, H., Burke, R., Mobasher, B.: Managing popularity bias in recommender systems with personalized re-ranking. In: Proceedings of the Thirty-Second International Florida Artificial Intelligence Research Society Conference, pp. 413–418, (2019a)
– reference: Mansoury, M., Mobasher, B., Burke, R., Pechenizkiy, M.: Bias disparity in collaborative recommendation: Algorithmic evaluation and comparison. In: Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), (2019)
– reference: Shakespeare, D., Porcaro, L., Gómez, E., Castillo, C.: Exploring artist gender bias in music recommendation. In: Proceedings of the Workshops on Recommendation in Complex Scenarios and the Impact of Recommender Systems co-located with 14th ACM Conference on Recommender Systems (RecSys 2020), CEUR Workshop Proceedings, vol 2697, (2020)
– reference: Anelli, V.W., Deldjoo, Y., Di Noia, T., Malitesta, D., Paparella, V., Pomo, C.: Auditing consumer- and producer-fairness in graph collaborative filtering. In: Proceedings ECIR ’23, (2023)
– reference: DongQXieSLiWUser-item matching for recommendation fairnessIEEE Access2021913038913039810.1109/ACCESS.2021.3113975
– reference: Narayanan, A.: 21 definitions of fairness and their politics. Tutorial at FAT* 2018, (2018)
– reference: GunawardanaAShaniGYogevSRokachLShapiraBRicciFEvaluating recommender systemsRecommender Systems Handbook2022BerlinSpringer54760110.1007/978-1-0716-2197-4_15
– reference: XiaoBBenbasatIE-commerce product recommendation agents: Use, characteristics, and impactMIS Q.200731113720910.2307/25148784
– reference: Patro, G.K., Biswas, A., Ganguly, N., Gummadi, K.P., Chakraborty, A.: Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms. In: WWW ’20: The Web Conference 2020, pp 1194–1204, (2020)
– reference: Zhou, M., Zhang, J., Adomavicius, G.: Longitudinal impact of preference biases on recommender systems’ performance. Kelley School of Business (2021-10), (2021)
– ident: 9364_CR63
  doi: 10.1016/j.elerap.2022.101195
– ident: 9364_CR98
– ident: 9364_CR23
– ident: 9364_CR69
– ident: 9364_CR139
  doi: 10.1016/j.ipm.2022.103139
– volume-title: Measuring Racial Discrimination
  year: 2004
  ident: 9364_CR35
– ident: 9364_CR65
  doi: 10.1145/3404835.3462850
– ident: 9364_CR156
  doi: 10.1145/3490099.3511108
– ident: 9364_CR6
  doi: 10.1145/3450613.3456821
– ident: 9364_CR104
– ident: 9364_CR168
  doi: 10.1145/3038912.3052660
– volume: 41
  start-page: 79
  issue: 4
  year: 2020
  ident: 9364_CR78
  publication-title: AI Mag.
– ident: 9364_CR154
  doi: 10.1007/978-3-030-52485-2_1
– ident: 9364_CR87
  doi: 10.1145/3442381.3450080
– ident: 9364_CR125
  doi: 10.1145/3474085.3475266
– ident: 9364_CR160
  doi: 10.1609/aaai.v35i5.16573
– volume: 55
  start-page: 1
  issue: 3
  year: 2022
  ident: 9364_CR123
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3494672
– ident: 9364_CR60
  doi: 10.1145/3397271.3401051
– volume: 27
  start-page: 393
  issue: 3–5
  year: 2017
  ident: 9364_CR118
  publication-title: User-Modeling and User-Adapted Interaction
  doi: 10.1007/s11257-017-9195-0
– volume: 6
  start-page: 86
  issue: 6
  year: 2021
  ident: 9364_CR19
  publication-title: Int. J. Interact Multim. Artif. Intell.
– ident: 9364_CR133
– volume: 2
  start-page: 13
  year: 2019
  ident: 9364_CR120
  publication-title: Frontiers Big Data
  doi: 10.3389/fdata.2019.00013
– ident: 9364_CR138
– ident: 9364_CR26
– ident: 9364_CR121
  doi: 10.1145/3366423.3380196
– ident: 9364_CR72
– ident: 9364_CR130
  doi: 10.1145/3289600.3291002
– ident: 9364_CR119
  doi: 10.1109/ICDM.2011.110
– ident: 9364_CR89
– volume: 9
  start-page: 197
  issue: 2
  year: 2020
  ident: 9364_CR50
  publication-title: Int. J. Data Sci. Anal.
  doi: 10.1007/s41060-019-00181-5
– volume: 55
  start-page: 40
  issue: 4
  year: 2022
  ident: 9364_CR91
  publication-title: Computer
  doi: 10.1109/MC.2021.3067225
– ident: 9364_CR101
  doi: 10.1145/3372923.3404793
– volume: 58
  issue: 5
  year: 2021
  ident: 9364_CR64
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102663
– ident: 9364_CR40
  doi: 10.1145/3336191.3371877
– ident: 9364_CR3
– ident: 9364_CR86
  doi: 10.1145/3383313.3412232
– ident: 9364_CR7
  doi: 10.1007/978-1-4899-7637-6_6
– ident: 9364_CR74
  doi: 10.1145/3474085.3475706
– volume: 3
  start-page: 119:1
  issue: CSCW
  year: 2019
  ident: 9364_CR114
  publication-title: Proc ACM Hum Comput Interact
  doi: 10.1145/3359221
– ident: 9364_CR103
  doi: 10.1145/3450614.3461679
– ident: 9364_CR144
  doi: 10.1145/3292500.3330664
– ident: 9364_CR173
  doi: 10.1145/3213586.3226207
– volume: 60
  issue: 1
  year: 2023
  ident: 9364_CR9
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2022.103115
– ident: 9364_CR28
  doi: 10.1145/3287560.3287570
– ident: 9364_CR45
  doi: 10.1145/3624733
– volume-title: Recommender Systems-An Introduction
  year: 2010
  ident: 9364_CR80
  doi: 10.1017/CBO9780511763113
– volume: 2
  start-page: 103
  year: 2022
  ident: 9364_CR52
  publication-title: AI Ethics
  doi: 10.1007/s43681-021-00107-7
– ident: 9364_CR112
– ident: 9364_CR92
  doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-9
– ident: 9364_CR44
– volume: 31
  start-page: 421
  issue: 3
  year: 2021
  ident: 9364_CR21
  publication-title: User Model User Adapt Interact
  doi: 10.1007/s11257-021-09294-8
– volume: 58
  issue: 5
  year: 2021
  ident: 9364_CR42
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102662
– ident: 9364_CR15
– ident: 9364_CR8
– ident: 9364_CR113
  doi: 10.1145/3511808.3557656
– volume: 10
  start-page: 1
  issue: 4
  year: 2019
  ident: 9364_CR79
  publication-title: ACM TMIS
  doi: 10.1145/3370082
– volume: 58
  issue: 5
  year: 2021
  ident: 9364_CR13
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102646
– volume: 65
  start-page: 69
  issue: 4
  year: 2022
  ident: 9364_CR47
  publication-title: Commun. ACM
  doi: 10.1145/3512728
– volume: 12
  start-page: 199
  issue: 9
  year: 2019
  ident: 9364_CR140
  publication-title: Algorithms
  doi: 10.3390/a12090199
– ident: 9364_CR107
  doi: 10.1145/3269206.3272027
– volume: 58
  issue: 3
  year: 2021
  ident: 9364_CR110
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2021.102519
– ident: 9364_CR137
  doi: 10.1145/3460231.3470936
– ident: 9364_CR95
  doi: 10.1145/3442381.3449866
– ident: 9364_CR163
  doi: 10.1016/j.knosys.2019.07.028
– ident: 9364_CR12
  doi: 10.1201/9781003278290-37
– ident: 9364_CR117
  doi: 10.1002/widm.1356
– ident: 9364_CR171
  doi: 10.1609/aaai.v32i1.11564
– ident: 9364_CR24
– ident: 9364_CR102
  doi: 10.1007/978-3-030-47426-3_13
– ident: 9364_CR175
  doi: 10.1109/ICWS.2018.00029
– ident: 9364_CR66
– volume: 181
  year: 2021
  ident: 9364_CR37
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115112
– ident: 9364_CR32
– ident: 9364_CR96
  doi: 10.1145/3404835.3462966
– volume-title: Recommender Systems Handbook
  year: 2022
  ident: 9364_CR105
– ident: 9364_CR148
  doi: 10.1145/3461702.3462602
– ident: 9364_CR143
  doi: 10.1145/3450613.3456835
– ident: 9364_CR61
  doi: 10.1145/3437963.3441824
– ident: 9364_CR174
  doi: 10.2139/ssrn.3799525
– volume: 19
  start-page: 87
  issue: 1–4
  year: 2018
  ident: 9364_CR46
  publication-title: J. Inf. Technol. Tour.
  doi: 10.1007/s40558-018-0106-y
– ident: 9364_CR29
– ident: 9364_CR17
  doi: 10.1145/3292500.3330745
– ident: 9364_CR77
– ident: 9364_CR11
  doi: 10.1007/978-3-031-28244-7_3
– volume: 9
  start-page: 130389
  year: 2021
  ident: 9364_CR48
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3113975
– ident: 9364_CR132
– volume: 8
  start-page: 122747
  year: 2020
  ident: 9364_CR176
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007617
– ident: 9364_CR75
  doi: 10.1145/2827872
– ident: 9364_CR94
– ident: 9364_CR170
  doi: 10.1145/3533380
– volume: 61
  start-page: 54
  issue: 6
  year: 2018
  ident: 9364_CR14
  publication-title: Commun. ACM
  doi: 10.1145/3209581
– ident: 9364_CR76
  doi: 10.1145/3397481.3450642
– ident: 9364_CR177
  doi: 10.1145/3269206.3271795
– volume: 267
  start-page: 1
  year: 2019
  ident: 9364_CR109
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2018.07.007
– ident: 9364_CR161
  doi: 10.1145/3404835.3462882
– volume: 58
  issue: 6
  year: 2021
  ident: 9364_CR141
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2021.102722
– ident: 9364_CR5
  doi: 10.1145/3383313.3418487
– ident: 9364_CR18
  doi: 10.1145/3351095.3372864
– ident: 9364_CR106
  doi: 10.1145/3457607
– ident: 9364_CR38
  doi: 10.1145/3442188.3445944
– volume: 81
  start-page: 321
  year: 2017
  ident: 9364_CR85
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.03.055
– ident: 9364_CR2
– ident: 9364_CR97
  doi: 10.1145/3404835.3462814
– ident: 9364_CR100
– ident: 9364_CR90
  doi: 10.1007/978-1-4899-7637-6_16
– ident: 9364_CR159
  doi: 10.1145/3356994.3365497
– ident: 9364_CR169
  doi: 10.1145/3533379
– ident: 9364_CR179
  doi: 10.1145/3397271.3401177
– ident: 9364_CR152
– ident: 9364_CR150
  doi: 10.1007/978-1-0716-2197-4_19
– ident: 9364_CR157
  doi: 10.1145/3437963.3441732
– ident: 9364_CR55
  doi: 10.1145/3298689.3347052
– ident: 9364_CR129
  doi: 10.1145/3523227.3551481
– ident: 9364_CR122
  doi: 10.1145/1401890.1401959
– ident: 9364_CR49
  doi: 10.1145/2090236.2090255
– ident: 9364_CR62
  doi: 10.1145/3292500.3330691
– volume: 31
  start-page: 137
  issue: 1
  year: 2007
  ident: 9364_CR164
  publication-title: MIS Q.
  doi: 10.2307/25148784
– start-page: 547
  volume-title: Recommender Systems Handbook
  year: 2022
  ident: 9364_CR71
  doi: 10.1007/978-1-0716-2197-4_15
– ident: 9364_CR172
– ident: 9364_CR22
  doi: 10.1145/3412841.3442123
– ident: 9364_CR128
  doi: 10.1145/3477495.3531718
– ident: 9364_CR149
  doi: 10.1145/3308560.3317303
– ident: 9364_CR33
– ident: 9364_CR166
  doi: 10.1145/3404835.3462953
– ident: 9364_CR73
  doi: 10.1145/3437963.3441724
– ident: 9364_CR111
  doi: 10.1145/3383313.3411527
– ident: 9364_CR126
  doi: 10.1016/j.eswa.2022.117700
– ident: 9364_CR93
  doi: 10.1007/978-3-030-52485-2_3
– volume: 31
  start-page: 431
  issue: 3
  year: 2022
  ident: 9364_CR124
  publication-title: VLDB J.
  doi: 10.1007/s00778-021-00697-y
– ident: 9364_CR41
  doi: 10.1007/s11257-020-09285-1
– ident: 9364_CR67
  doi: 10.1109/WoWMoM51794.2021.00020
– ident: 9364_CR180
  doi: 10.1145/3404835.3462948
– ident: 9364_CR135
  doi: 10.1145/3287560.3287598
– volume: 25
  start-page: 427
  issue: 5
  year: 2015
  ident: 9364_CR82
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-015-9165-3
– ident: 9364_CR25
– volume: 5
  start-page: 153
  issue: 2
  year: 2017
  ident: 9364_CR31
  publication-title: Big Data
  doi: 10.1089/big.2016.0047
– ident: 9364_CR158
– ident: 9364_CR56
  doi: 10.1145/3576840.3578287
– ident: 9364_CR134
  doi: 10.1145/3450614.3463293
– ident: 9364_CR136
  doi: 10.1145/3038912.3052612
– ident: 9364_CR153
  doi: 10.1145/3194770.3194776
– ident: 9364_CR131
  doi: 10.2307/j.ctv31xf5v0
– ident: 9364_CR27
  doi: 10.1609/icwsm.v11i1.14894
– volume: 51
  start-page: 7
  issue: 1
  year: 2009
  ident: 9364_CR88
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2008.09.009
– ident: 9364_CR34
– volume-title: Group Recommender Systems: An Introduction
  year: 2018
  ident: 9364_CR54
  doi: 10.1007/978-3-319-75067-5
– ident: 9364_CR145
  doi: 10.1145/3240323.3240372
– ident: 9364_CR115
  doi: 10.1145/3477495.3531959
– ident: 9364_CR58
  doi: 10.1007/978-1-4899-7637-6_19
– volume: 58
  issue: 5
  year: 2021
  ident: 9364_CR108
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102666
– volume: 54
  start-page: 1
  issue: 2
  year: 2021
  ident: 9364_CR43
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3439729
– volume: 16
  start-page: 1
  issue: 1–2
  year: 2022
  ident: 9364_CR51
  publication-title: Found. Trends Inf. Retr.
  doi: 10.1561/1500000079
– ident: 9364_CR116
– ident: 9364_CR10
  doi: 10.1145/3460231.3473326
– volume: 30
  start-page: 127
  year: 2020
  ident: 9364_CR4
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-019-09256-1
– ident: 9364_CR30
  doi: 10.1145/3564284
– ident: 9364_CR70
– ident: 9364_CR127
  doi: 10.1007/978-3-031-09316-6_6
– ident: 9364_CR155
  doi: 10.1145/3336191.3371855
– ident: 9364_CR167
– ident: 9364_CR53
– ident: 9364_CR68
  doi: 10.1145/3404835.3463235
– volume: 42
  start-page: 3
  issue: 3
  year: 2021
  ident: 9364_CR84
  publication-title: AI Mag.
– volume: 156
  year: 2020
  ident: 9364_CR165
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102579
– ident: 9364_CR142
– volume: 42
  start-page: 43
  issue: 3
  year: 2021
  ident: 9364_CR36
  publication-title: AI Mag.
– volume: 14
  start-page: 330
  issue: 3
  year: 1996
  ident: 9364_CR59
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/230538.230561
– ident: 9364_CR99
  doi: 10.1145/3404835.3462943
– ident: 9364_CR1
– volume: 59
  start-page: 94
  issue: 11
  year: 2016
  ident: 9364_CR83
  publication-title: Commun. ACM
  doi: 10.1145/2891406
– ident: 9364_CR81
  doi: 10.1007/978-3-642-32273-0_7
– ident: 9364_CR39
– volume: 58
  issue: 1
  year: 2021
  ident: 9364_CR20
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2020.102387
– ident: 9364_CR147
  doi: 10.1145/3341105.3375766
– ident: 9364_CR178
– volume: 31
  start-page: 941
  issue: 5
  year: 2021
  ident: 9364_CR16
  publication-title: User Model User Adapt Interact
  doi: 10.1007/s11257-021-09302-x
– volume: 64
  start-page: 136
  issue: 4
  year: 2021
  ident: 9364_CR57
  publication-title: Commun. ACM
  doi: 10.1145/3433949
– volume: 2
  start-page: 585
  year: 2022
  ident: 9364_CR151
  publication-title: AI and Ethics
  doi: 10.1007/s43681-021-00126-4
– ident: 9364_CR146
  doi: 10.1109/ICDE.2017.217
– volume: 10
  start-page: 25
  issue: 1
  year: 2021
  ident: 9364_CR162
  publication-title: Int J Multim Inf Retr
  doi: 10.1007/s13735-020-00203-0
SSID ssj0007679
Score 2.5960064
SecondaryResourceType review_article
Snippet Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms Computer Science
Interdisciplinary studies
Management of Computing and Information Systems
Multimedia Information Systems
Questions
Recommender systems
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o9ODF6fw1nZKDeNFg06aN8SIiDsUxPCjsVpI0xYHr5jo97K83adMVBXfxVmgaCu_lfS_Je98HcBokgfC0CDGnoT2tYgJLA5xYEKE8SZindVqITbB-_2ow4M_uwC13ZZVVTCwCdTJW9oz80sCSwS7bInQz-cBWNcrerjoJjVVYI75PrJ8_MbyIxCxyXHs-xZYW3jXNlK1zBtkZNoiFzZ4-onj-E5jqbPPXBWmBO93mf_94CzZdxoluSxfZhhWdtaBZqTkgt7hbVr_Z1Xq0YL_njjFzdIZ6C-blfAceu2I4teERDTNkd9OjUSFGh0pK6PwaOfqgN1R0Edv6KmQeUElegkoItb6-C6_d-5e7B-zkGLAKomCGU5kGnEaJyem8hMjQpJqaciY0EYwImiRM8YALGmpulrWUgvsilCFTHmchlSLYg0Y2zvQBIJNmmrxIqUhJM55GUhEVER1xLkmaSN4GUtkiVo6r3EpmvMc1y7K1X2zsFxf2i-dtOF98MymZOpaO7lRGi92qzePaYm24qMxev_57tsPlsx3Bhm9yobJ0rQON2fRTH8O6-poN8-lJ4bPfpN3xmw
  priority: 102
  providerName: ProQuest
Title Fairness in recommender systems: research landscape and future directions
URI https://link.springer.com/article/10.1007/s11257-023-09364-z
https://www.proquest.com/docview/2931908335
Volume 34
WOSCitedRecordID wos000972922200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link
  customDbUrl:
  eissn: 1573-1391
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007679
  issn: 0924-1868
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHbiwlK0slQ-IC1iKGyfG3ABRgYCqYodLZDuuqEQLagoHvp5x4rQCARJcrERxosj2-D3bM28ANsM0VIFVEZU8crtVQlGNwEkVUybQTATWtvNkE6LZ3L27ky0fFJaV3u7lkWQ-U4-C3RCLBUWMobgKjzl9H4dJhLtdZ44XlzfD-VfEXmGvzqkTg_ehMt9_4zMcjTjml2PRHG0as__7zzmY8eyS7BfDYR7GbK8Cs2XmBuINueJyNXu_jgosn_kty4xskbOhynK2ACcN1em7qZB0esStnLvdPPEcKeSfsz3ipYIeSR4x7HypCF6QQqiEFHDpxvUiXDeOrg6PqU-9QE0YhwPa1u1Q8jhF_hakTEdIKy2XQlmmBFM8TYWRoVQ8shJNWGsl6yrSkTCBFBHXKlyCid5zz64AQUqJHMiY2Gisz2NtmImZjaXUrJ1qWQVW9kBivC65S4_xlIwUlV2LJtiiSd6iyXsVtofvvBSqHL_WXi87NvEWmiVIc5ALuZCzKuyUHTl6_PPXVv9WfQ2m68iDCre1dZgY9F_tBkyZt0En69dgXNze12Dy4KjZusC7U0GxPA8OXVk_x7IVPdTy8f0B67ru-w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0qBWl7oVDGViibH2AvYBEnTjwjIYTYqlb90B6KtLdgO65Waeu6poDoj9pv5DpxWoHE3vrAW6QklhIf33v8cc8BeB1lkQqsiqnksVutEopqTJxUMWUCzURg7aQwmxCj0cnFhTyvwV1VC-OOVVYxsQjU2Y1xa-TvMS1h7nIlQp_mt9S5Rrnd1cpCo4RF3_76iVO2_GPvFPv3TRh2zsZfutS7ClATJdGSTvQkkjzJkJoEGdMxMibLpVCWKcEUzzJhZCQVj61EdGqtZKhiHQsTSBFzrSJs9wE85DgTclYRw3C4jvwi8dp-IadOht4X6ZSlesgkBMUMSQMZJZyu_kyEG3b714Zskec6jf_tDz2Bx55Rk8_lEHgKNTtrQqNyqyA-eDWdP7U_y9KE_YFfps3JMRmslaXzZ9DrqOnChX8ynRG3WnB9XZjtkVLyOv9AvDzSJSmqpN35MYIXpBRnISVFcGN5D75u5bOfQ312M7MHQJBGI-8zJjEan-eJNswkzCZSajbJtGwBq_o-NV6L3VmCXKUbFWmHlxTxkhZ4SVcteLt-Z14qkdz7dLsCSeqjUp5uENKCdxXMNrf_3dqL-1s7gp3ueDhIB71R_yXshsj7ymN6bagvF9_tK3hkfiyn-eKwGC8Evm0bfr8B6vpOiQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4qG0Jc6FYYK2zDB-AC1uLEifGkCU0b0apW1Q4g9RZsx9EqbdnWlE30p_HreE6cViCx2w7cIiWxlOR7_r7Y730P4G2URyqwKqaSx261SiiqkTipYsoEmonA2qJuNiHG40-TiTzrwK-2FsalVbZzYj1R51fGrZHvIy0hd7kSof3Cp0WcnaSfr2-o6yDldlrbdhoNRIb25x3-vlWHgxP81u_CMP3y9fiU-g4D1ERJNKeFLiLJkxxlSpAzHaN6slwKZZkSTPE8F0ZGUvHYSkSq1kqGKtaxMIEUMdcqwnEfwTqycOxibCjokgVE4n3-Qk6dJb0v2GnK9lBVCIpsSQMZJZwu_iTFldL9a3O25ry0-z-_rQ145pU2OWpCYxM6tuxBt-1iQfyk1nN9q32OSw9ejvzybUXek9HScbp6DoNUTWeOFsi0JG4V4fKybsJHGivs6oB426RzUldPu7wyggekMW0hjXRwMf4Cvj3IY2_BWnlV2m0gKK9RDxqTGI3X80QbZhJmEyk1K3It-8BaHGTGe7S7ViEX2cpd2mEnQ-xkNXayRR8-LO-5bhxK7r16pwVM5merKluhpQ8fW8itTv97tFf3j_YGniDqstFgPHwNT0OUg0323g6szWc_7C48NrfzaTXbq0OHwPeHRt9vdIVXFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fairness+in+recommender+systems%3A+research+landscape+and+future+directions&rft.jtitle=User+modeling+and+user-adapted+interaction&rft.au=Deldjoo%2C+Yashar&rft.au=Jannach%2C+Dietmar&rft.au=Bellogin%2C+Alejandro&rft.au=Difonzo%2C+Alessandro&rft.date=2024-03-01&rft.pub=Springer+Netherlands&rft.issn=0924-1868&rft.eissn=1573-1391&rft.volume=34&rft.issue=1&rft.spage=59&rft.epage=108&rft_id=info:doi/10.1007%2Fs11257-023-09364-z&rft.externalDocID=10_1007_s11257_023_09364_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-1868&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-1868&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-1868&client=summon