Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers
We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra “helper” modules (“musketeers”) suffice to reconfigure the remaining n modules between any t...
Saved in:
| Published in: | Algorithmica Vol. 83; no. 5; pp. 1316 - 1351 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.05.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0178-4617, 1432-0541 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra “helper” modules (“musketeers”) suffice to reconfigure the remaining
n
modules between any two given configurations. Our algorithm uses
O
(
n
2
)
pivot moves, which is worst-case optimal. Previous reconfiguration algorithms either require less restrictive “sliding” moves, do not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that they can have an exponential number of connected components. But forbidding the local pattern throughout the configuration is far from necessary, as we show that just a constant number of added modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify three different models of natural pivot moves that preserve facet-connectivity, and show separations between these models. |
|---|---|
| AbstractList | We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra “helper” modules (“musketeers”) suffice to reconfigure the remaining
n
modules between any two given configurations. Our algorithm uses
O
(
n
2
)
pivot moves, which is worst-case optimal. Previous reconfiguration algorithms either require less restrictive “sliding” moves, do not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that they can have an exponential number of connected components. But forbidding the local pattern throughout the configuration is far from necessary, as we show that just a constant number of added modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify three different models of natural pivot moves that preserve facet-connectivity, and show separations between these models. We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra “helper” modules (“musketeers”) suffice to reconfigure the remaining n modules between any two given configurations. Our algorithm uses O(n2) pivot moves, which is worst-case optimal. Previous reconfiguration algorithms either require less restrictive “sliding” moves, do not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that they can have an exponential number of connected components. But forbidding the local pattern throughout the configuration is far from necessary, as we show that just a constant number of added modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify three different models of natural pivot moves that preserve facet-connectivity, and show separations between these models. |
| Author | Akitaya, Hugo A. Parada, Irene Sacristán, Vera Korman, Matias Arkin, Esther M. Damian, Mirela Flatland, Robin Palop, Belen Renssen, André van Demaine, Erik D. Dujmović, Vida |
| Author_xml | – sequence: 1 givenname: Hugo A. surname: Akitaya fullname: Akitaya, Hugo A. organization: Carleton University – sequence: 2 givenname: Esther M. surname: Arkin fullname: Arkin, Esther M. organization: State University of New York at Stony Brook – sequence: 3 givenname: Mirela surname: Damian fullname: Damian, Mirela organization: Villanova University – sequence: 4 givenname: Erik D. surname: Demaine fullname: Demaine, Erik D. organization: Massachusetts Institute of Technology – sequence: 5 givenname: Vida surname: Dujmović fullname: Dujmović, Vida organization: University of Ottawa – sequence: 6 givenname: Robin surname: Flatland fullname: Flatland, Robin organization: Siena College – sequence: 7 givenname: Matias surname: Korman fullname: Korman, Matias organization: Tufts University – sequence: 8 givenname: Belen surname: Palop fullname: Palop, Belen organization: Universidad de Valladolid – sequence: 9 givenname: Irene orcidid: 0000-0003-3147-0083 surname: Parada fullname: Parada, Irene email: i.m.de.parada.munoz@tue.nl organization: TU Eindhoven – sequence: 10 givenname: André van surname: Renssen fullname: Renssen, André van organization: The University of Sydney – sequence: 11 givenname: Vera surname: Sacristán fullname: Sacristán, Vera organization: Universitat Politècnica de Catalunya |
| BookMark | eNp9kE9LJDEQxcOisOPoF_AU8KKHaOVPd9J7k2HdFRRFnIuXkE5Xj-3OJpqkBb-9vTMLggdPVQXv96rq7ZGdEAMScsjhlAPoswygKslAAJtGo1j9jcy4koJBpfgOmQHXhqma6-9kL-cnAC50U8_IwzIMr5iyW9M79DH0w2pMrgwx0NjTC-exsEUMAX3Bjl7Hbly7RO9iG0um7Ru9HV6n7ge9f0R6c8xP6PWY_2DByXKf7PZunfHgf52T5cXP-8VvdnXz63JxfsW8rGVhvVY9tG3bgzFNC1o4hV6qzqPXnXIoqqoGzr2pXdUKiY3xyJ3uKqNMrRsp5-Ro6_uc4suIudinOKYwrbSi4iCaShkxqcxW5VPMOWFv_VA2j5bkhrXlYP8labdJ2ilJu0nS1hMqPqHPafjr0tvXkNxCeRKHFaaPq76g3gHlZode |
| CitedBy_id | crossref_primary_10_1109_TIE_2024_3370976 crossref_primary_10_1007_s00446_021_00415_5 crossref_primary_10_1007_s10458_024_09668_3 crossref_primary_10_1007_s10514_025_10204_9 crossref_primary_10_1016_j_tcs_2022_09_016 crossref_primary_10_1016_j_jcss_2024_103618 crossref_primary_10_1016_j_tcs_2022_11_029 crossref_primary_10_1109_LRA_2023_3261705 crossref_primary_10_1007_s10458_023_09626_5 crossref_primary_10_1016_j_tcs_2025_115439 crossref_primary_10_1016_j_tcs_2023_114324 crossref_primary_10_1016_j_tcs_2025_115521 crossref_primary_10_1177_00368504241260176 |
| Cites_doi | 10.1109/TMECH.2002.806220 10.1109/MRA.2007.339623 10.1109/IROS.1998.727308 10.1109/IROS.2006.281719 10.1117/12.360346 10.1109/IROS.2003.1249239 10.1115/DETC2008-49535 10.1109/ROBOT.2000.844845 10.1007/s10514-006-8546-1 10.1109/ICRA.2015.7139451 10.1017/S0263574710000718 10.1007/s00373-005-0640-1 10.1007/978-3-322-94560-0 10.1016/j.jcss.2018.12.001 10.1109/TRA.2004.824936 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00453-020-00784-6 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 1351 |
| ExternalDocumentID | 10_1007_s00453_020_00784_6 |
| GrantInformation_xml | – fundername: Austrian Science Fund grantid: W1230 funderid: http://dx.doi.org/10.13039/501100002428 – fundername: Generalitat de Catalunya grantid: DGR 2017SGR1640 funderid: http://dx.doi.org/10.13039/501100002809 – fundername: National Science Foundation grantid: EFRI-1240383; CCF-1138967 funderid: http://dx.doi.org/10.13039/100000001 – fundername: National Science Foundation (US) grantid: CCF-1422311 – fundername: National Science Foundation grantid: CCF-1423615; CCF-1526406 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Japan Science and Technology Agency grantid: JPMJER1201 – fundername: Ministerio de Economía y Competitividad grantid: MTM2015-63791-R funderid: http://dx.doi.org/10.13039/501100003329 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c363t-f74f0bbbf0889b072a4ec34dcec7d4ae2556011c86a5b23e98ce1a7d584867933 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604186100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Sun Nov 09 07:46:17 EST 2025 Tue Nov 18 22:41:12 EST 2025 Sat Nov 29 02:20:30 EST 2025 Fri Feb 21 02:48:37 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Pivoting squares Geometric algorithms Modular robots Reconfiguration |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-f74f0bbbf0889b072a4ec34dcec7d4ae2556011c86a5b23e98ce1a7d584867933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3147-0083 |
| OpenAccessLink | https://drops.dagstuhl.de/storage/00lipics/lipics-vol144-esa2019/LIPIcs.ESA.2019.3/LIPIcs.ESA.2019.3.pdf |
| PQID | 2510295482 |
| PQPubID | 2043795 |
| PageCount | 36 |
| ParticipantIDs | proquest_journals_2510295482 crossref_citationtrail_10_1007_s00453_020_00784_6 crossref_primary_10_1007_s00453_020_00784_6 springer_journals_10_1007_s00453_020_00784_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | HemmerlingALabyrinth Problems: Labyrinth-Searching Abilities of Automata, Teubner-Texte zur Mathematik (TTZM)1989BerlinSpringer10.1007/978-3-322-94560-0 ØstergaardEHKassowKBeckRLundHHDesign of the ATRON lattice-based self-reconfigurable robotAuton. Robots200621216518310.1007/s10514-006-8546-1 Nguyen, A., Guibas, L.J., Yim, M.: Controlled module density helps reconfiguration planning. In: Proceedings of 4th International Workshop on Algorithmic Foundations of Robotics (WAFR), pp. 23–36 (2000) StoyKBrandtDChristensenDJSelf-Reconfigurable Robots: An Introduction2010CambridgeMIT Press MurataSYoshidaEKamimuraAKurokawaHTomitaKKokajiSM-TRAN: self-reconfigurable modular robotic systemIEEE/ASME Trans. Mechatron.20027443144110.1109/TMECH.2002.806220 Sung, C., Bern, J., Romanishin, J., Rus, D.: Reconfiguration planning for pivoting cube modular robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1933–1940 (2015) ChennareddySAgrawalAKaruppiahAModular self-reconfigurable robotic systems: a survey on hardware architecturesJ. Robot.201720175013532 An, B.K.: EM-Cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 3149–3155 (2008) Ayanian, N., White, P.J., Hálász, Á., Yim, M., Kumar, V.: Stochastic control for self-assembly of XBots. In: Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE) (2008) Benbernou, N.M.: Geometric algorithms for reconfigurable structures. Ph.D. Thesis, Massachusetts Institute of Technology (2011) YimMShenWSalemiBRusDMollMLipsonHKlavinsEChirikjianGSModular self-reconfigurable robot systemsIEEE Robot. Autom. Mag.2007141435210.1109/MRA.2007.339623 Fitch, R., Butler, Z., Rus, D.: Reconfiguration planning for heterogeneous self-reconfiguring robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2460–2467 (2003) Unsal, C., Kiliccote, H., Khosla, P.: I(CES)-Cubes: a modular self-reconfigurable bipartite robotic system. In: Proceedings of SPIE Conference on Mobile Robots and Autonomous Systems, vol. 3839, pp. 258–269 (1999) Kurokawa, H., Murata, S., Yoshida, E., Tomita, K., Kokaji, S.: A 3-D self-reconfigurable structure and experiments. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 860–865 (1998) LarkworthyTRamamoorthySA characterization of the reconfiguration space of self-reconfiguring robotic systemsRobotica2011291738510.1017/S0263574710000718 DumitrescuAPachJPushing squares aroundGraphs Comb.20062213750222100710.1007/s00373-005-0640-1 Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 441–448 (1994) Abel, Z., Kominers, S.D.: Pushing hypercubes around. CoRR abs/0802.3414 (2008) Chirikjian, G.S.: Kinematics of a metamorphic robotic system. In: Proceedings of IEEE international conference on robotics and automation (ICRA), vol. 1, pp. 449–455 (1994) Rus, D., Vona, M.: A physical implementation of the self-reconfiguring crystalline robot. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1726–1733 (2000) DumitrescuASuzukiIYamashitaMMotion planning for metamorphic systems: feasibility, decidability, and distributed reconfigurationIEEE Trans. Robot.200420340941810.1109/TRA.2004.824936 Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3636–3641 (2006) MichailOSkretasGSpirakisPGOn the transformation capability of feasible mechanisms for programmable matterJ. Comput. Syst. Sci.20191021839392606110.1016/j.jcss.2018.12.001 Zykov, V., Chan, A., Lipson, H.: Molecubes: an open-source modular robotic kit. In: IROS-2007 Self-Reconfigurable Robotics Workshop (2007) T Larkworthy (784_CR12) 2011; 29 EH Østergaard (784_CR17) 2006; 21 784_CR24 O Michail (784_CR13) 2019; 102 784_CR14 784_CR21 784_CR11 784_CR22 S Chennareddy (784_CR5) 2017; 2017 784_CR9 K Stoy (784_CR20) 2010 M Yim (784_CR23) 2007; 14 784_CR6 784_CR16 784_CR4 S Murata (784_CR15) 2002; 7 784_CR18 784_CR3 784_CR19 784_CR2 784_CR1 A Dumitrescu (784_CR8) 2004; 20 A Hemmerling (784_CR10) 1989 A Dumitrescu (784_CR7) 2006; 22 |
| References_xml | – reference: Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 441–448 (1994) – reference: MurataSYoshidaEKamimuraAKurokawaHTomitaKKokajiSM-TRAN: self-reconfigurable modular robotic systemIEEE/ASME Trans. Mechatron.20027443144110.1109/TMECH.2002.806220 – reference: DumitrescuASuzukiIYamashitaMMotion planning for metamorphic systems: feasibility, decidability, and distributed reconfigurationIEEE Trans. Robot.200420340941810.1109/TRA.2004.824936 – reference: Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3636–3641 (2006) – reference: Benbernou, N.M.: Geometric algorithms for reconfigurable structures. Ph.D. Thesis, Massachusetts Institute of Technology (2011) – reference: Zykov, V., Chan, A., Lipson, H.: Molecubes: an open-source modular robotic kit. In: IROS-2007 Self-Reconfigurable Robotics Workshop (2007) – reference: MichailOSkretasGSpirakisPGOn the transformation capability of feasible mechanisms for programmable matterJ. Comput. Syst. Sci.20191021839392606110.1016/j.jcss.2018.12.001 – reference: HemmerlingALabyrinth Problems: Labyrinth-Searching Abilities of Automata, Teubner-Texte zur Mathematik (TTZM)1989BerlinSpringer10.1007/978-3-322-94560-0 – reference: Sung, C., Bern, J., Romanishin, J., Rus, D.: Reconfiguration planning for pivoting cube modular robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1933–1940 (2015) – reference: Abel, Z., Kominers, S.D.: Pushing hypercubes around. CoRR abs/0802.3414 (2008) – reference: Kurokawa, H., Murata, S., Yoshida, E., Tomita, K., Kokaji, S.: A 3-D self-reconfigurable structure and experiments. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 860–865 (1998) – reference: Rus, D., Vona, M.: A physical implementation of the self-reconfiguring crystalline robot. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1726–1733 (2000) – reference: Ayanian, N., White, P.J., Hálász, Á., Yim, M., Kumar, V.: Stochastic control for self-assembly of XBots. In: Proceedings of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE) (2008) – reference: DumitrescuAPachJPushing squares aroundGraphs Comb.20062213750222100710.1007/s00373-005-0640-1 – reference: LarkworthyTRamamoorthySA characterization of the reconfiguration space of self-reconfiguring robotic systemsRobotica2011291738510.1017/S0263574710000718 – reference: ØstergaardEHKassowKBeckRLundHHDesign of the ATRON lattice-based self-reconfigurable robotAuton. Robots200621216518310.1007/s10514-006-8546-1 – reference: An, B.K.: EM-Cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 3149–3155 (2008) – reference: Fitch, R., Butler, Z., Rus, D.: Reconfiguration planning for heterogeneous self-reconfiguring robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2460–2467 (2003) – reference: ChennareddySAgrawalAKaruppiahAModular self-reconfigurable robotic systems: a survey on hardware architecturesJ. Robot.201720175013532 – reference: StoyKBrandtDChristensenDJSelf-Reconfigurable Robots: An Introduction2010CambridgeMIT Press – reference: Nguyen, A., Guibas, L.J., Yim, M.: Controlled module density helps reconfiguration planning. In: Proceedings of 4th International Workshop on Algorithmic Foundations of Robotics (WAFR), pp. 23–36 (2000) – reference: Unsal, C., Kiliccote, H., Khosla, P.: I(CES)-Cubes: a modular self-reconfigurable bipartite robotic system. In: Proceedings of SPIE Conference on Mobile Robots and Autonomous Systems, vol. 3839, pp. 258–269 (1999) – reference: YimMShenWSalemiBRusDMollMLipsonHKlavinsEChirikjianGSModular self-reconfigurable robot systemsIEEE Robot. Autom. Mag.2007141435210.1109/MRA.2007.339623 – reference: Chirikjian, G.S.: Kinematics of a metamorphic robotic system. In: Proceedings of IEEE international conference on robotics and automation (ICRA), vol. 1, pp. 449–455 (1994) – volume: 7 start-page: 431 issue: 4 year: 2002 ident: 784_CR15 publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2002.806220 – volume: 14 start-page: 43 issue: 1 year: 2007 ident: 784_CR23 publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2007.339623 – ident: 784_CR11 doi: 10.1109/IROS.1998.727308 – ident: 784_CR14 – ident: 784_CR16 – ident: 784_CR19 doi: 10.1109/IROS.2006.281719 – ident: 784_CR22 doi: 10.1117/12.360346 – ident: 784_CR9 doi: 10.1109/IROS.2003.1249239 – ident: 784_CR3 doi: 10.1115/DETC2008-49535 – ident: 784_CR24 – ident: 784_CR18 doi: 10.1109/ROBOT.2000.844845 – volume: 2017 start-page: 5013532 year: 2017 ident: 784_CR5 publication-title: J. Robot. – volume: 21 start-page: 165 issue: 2 year: 2006 ident: 784_CR17 publication-title: Auton. Robots doi: 10.1007/s10514-006-8546-1 – ident: 784_CR21 doi: 10.1109/ICRA.2015.7139451 – volume: 29 start-page: 73 issue: 1 year: 2011 ident: 784_CR12 publication-title: Robotica doi: 10.1017/S0263574710000718 – volume-title: Self-Reconfigurable Robots: An Introduction year: 2010 ident: 784_CR20 – ident: 784_CR6 – volume: 22 start-page: 37 issue: 1 year: 2006 ident: 784_CR7 publication-title: Graphs Comb. doi: 10.1007/s00373-005-0640-1 – volume-title: Labyrinth Problems: Labyrinth-Searching Abilities of Automata, Teubner-Texte zur Mathematik (TTZM) year: 1989 ident: 784_CR10 doi: 10.1007/978-3-322-94560-0 – volume: 102 start-page: 18 year: 2019 ident: 784_CR13 publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2018.12.001 – volume: 20 start-page: 409 issue: 3 year: 2004 ident: 784_CR8 publication-title: IEEE Trans. Robot. doi: 10.1109/TRA.2004.824936 – ident: 784_CR1 – ident: 784_CR4 – ident: 784_CR2 |
| SSID | ssj0012796 |
| Score | 2.481211 |
| Snippet | We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1316 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Computer Science Computer Systems Organization and Communication Networks Configurations Data Structures and Information Theory Mathematics of Computing Modules Reconfiguration Robots Theory of Computation |
| Title | Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers |
| URI | https://link.springer.com/article/10.1007/s00453-020-00784-6 https://www.proquest.com/docview/2510295482 |
| Volume | 83 |
| WOSCitedRecordID | wos000604186100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg4eFA10Tdqk3kQcXjbH_GB4KUmaylBaWbuB_71JlnYoKuitkORRXl7yfuH93nsAHJOAh9zjAepgxRFRCiOT76hfKWFCIykjT0jbbIL2-2w0igYuKayo2O5VSNLe1HWym0EfJuZoMqEpIyhcBiva3TFzHId3j3XswKe2K5fpO4-IdtAuVeZ7GZ_d0QJjfgmLWm_Tbf7vPzfAukOX8HJuDptgSWVboFl1boDuIG-DJ8fH0HPN-zNLx8_TuSnAPIVdLlWJLAVGakAKe3liyKpwmIu8LKB4h4PxTH9dQG1k8Pakcwp70-JFw28tcgc8dK_vr26Q67KAJA5xiVJKUk8IkRrCk_Coz4mSmCRSSZoQrkyNMn0JSBbyQPhYRUyqDqeJRi6mWB_Gu6CR5ZnaA1DvbhJSqpdrIVL4kRBSJUkaRAFj0qMt0KmUHUtXgtx0wniN6-LJVnmxVl5slReHLXBWr3mbF-D4dXa72sPYHcYi1hDOM-FM5rfAebVni-Gfpe3_bfoBWPMN48XSIdugUU6m6hCsylk5LiZH1kg_ALDw318 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqXnwQdFA16ZN65uIY-I2x5wyfClJmspQVlm7gf-9SdZuKCroWyHJUS6X3BfuuzuAY-Iyj1nMxTVHMkykdLDOd1SvFC-igRCBxYVpNkHbbb_fDzp5UlhasN2LkKS5qWfJbhp96JijzoSmPsHeIiwR5bE0ka97_ziLHdjUdOXSfecxUQ46T5X5XsZndzTHmF_Cosbb1Mv_-891WMvRJbqcmsMGLMjhJpSLzg0oP8hb8JTzMdRc_f4cxoPn8dQUUBKjOhMyw4YCIxQgRa0k0mRV1E14kqWIv6POYKK-LpAyMnR3UjtFrXH6ouC3ErkND_Xr3lUD510WsHA8J8MxJbHFOY814Ylb1GZECodEQgoaESZ1jTJ1CQjfYy63HRn4QtYYjRRy0cX6HGcHSsNkKHcBqd2NPErVciVEcDvgXMgoit3A9X1h0QrUCmWHIi9BrjthvIaz4slGeaFSXmiUF3oVOJuteZsW4Ph1drXYwzA_jGmoIJylw5m-XYHzYs_mwz9L2_vb9CNYafRazbB5077dh1Vbs18MNbIKpWw0lgewLCbZIB0dGoP9ADIc4kM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q3zxLs5rHnxQNKxr06b1TdSh6ObwhvhScqsMpR1bJ_jvTbJ2U1FBfCs0OZSTk-YL5zvnA9ghPguYw3xc8xTDRCkPm3pHfUsJJI2EiBwurNgEbTbDh4eo9aGK37Ldy5TkoKbBdGlK82pHJtVh4ZtBIib_aKqiaUhwMA6TxIgGmfv6zf0wj-BSq9BlNOgx0Yd1UTbzvY3PR9MIb35JkdqTpz73_2-eh9kCdaKjQZgswJhKF2GuVHRAxQZfgseCp6HHmntpmrSf-oMQQVmC6kyoHFtqjNBAFTUyaUis6DrjWd5D_A212q_66RDp4ENXu7U91Oj3njUs1yaX4a5-ent8hgv1BSy8wMtxQknicM4TQ4TiDnUZUcIjUihBJWHK9C7TPwcRBsznrqeiUKgao1IjGtPEz_NWYCLNUrUKSK-6DCjV07URwd2Ic6GkTPzID0Ph0ArUSsfHomhNbhQyXuJhU2XrvFg7L7bOi4MK7A_ndAaNOX4dvVGuZ1xs0l6soZ1j0pyhW4GDcv1Gr3-2tva34dsw3Tqpx5fnzYt1mHENKcYyJjdgIu_21SZMide83etu2dh9B_Z36yc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+Reconfiguration+of+Facet-Connected+Modular+Robots+by+Pivots%3A+The+O%281%29+Musketeers&rft.jtitle=Algorithmica&rft.au=Akitaya%2C+Hugo+A.&rft.au=Arkin%2C+Esther+M.&rft.au=Damian%2C+Mirela&rft.au=Demaine%2C+Erik+D.&rft.date=2021-05-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=83&rft.issue=5&rft.spage=1316&rft.epage=1351&rft_id=info:doi/10.1007%2Fs00453-020-00784-6&rft.externalDocID=10_1007_s00453_020_00784_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |