A new evolutionary approach for neural spike detection based on genetic algorithm

•Independently adaptive neural spike detection implementing genetic algorithm.•Improved spike detection offers lower transmission power consumption.•Potential for self-programming hardware implementation. Identification of the epileptic features in nervous signals is one of the main goals of neurosc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 42; číslo 1; s. 462 - 467
Hlavní autoři: Zarifia, Mohammad Hossein, Ghalehjogh, Negar Karimi, Baradaran-nia, Mehdi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Ltd 01.01.2015
Elsevier
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Independently adaptive neural spike detection implementing genetic algorithm.•Improved spike detection offers lower transmission power consumption.•Potential for self-programming hardware implementation. Identification of the epileptic features in nervous signals is one of the main goals of neuroscientists and biomedical engineers since it provides valuable information about the current and future health status of a patient. Implantable wireless neural signal recording is a powerful, newly emerging technique that has been suggested for neural signal tracking and recording. One of the main issues with this technique is the transmission of enormous amounts of data, which requires high bandwidth and high power consumption for the implanted device. Neural spike detection and spike sorting can be used to reduce the power consumption and the amount of data transmitted. Neural spike detection is a challenging technique because of the large amount of background noise that exists in the body known as low potential field signals (LPF). Existing signal processing methods make use of amplitude thresholding and artificial neural networks to recognize spike signals, but are very vulnerable to noise and require a large amount of pre-training before being useful. Nonlinear energy operators (NEO) are also used to filter spike signals from this background noise. This method requires precise selection of a particular coefficient that is currently chosen by human intervention, which is time consuming and open to human error. In this work a novel approach utilizing a genetic algorithm (GA) based on a nonlinear energy operator (NEO) is proposed. The proposed expert system uses a GA to automatically adjust the threshold level in the NEO technique to detect the spike within a noisy signal in real time. The method is able to recognize the number and the location of spike-events in a neural signal in real time. Preliminary simulations show that the genetic algorithm gives superior results to the manual selection method, and that the improvement is more pronounced in noisier signals.
AbstractList Identification of the epileptic features in nervous signals is one of the main goals of neuroscientists and biomedical engineers since it provides valuable information about the current and future health status of a patient. Implantable wireless neural signal recording is a powerful, newly emerging technique that has been suggested for neural signal tracking and recording. Neural spike detection and spike sorting can be used to reduce the power consumption and the amount of data transmitted. Neural spike detection is a challenging technique because of the large amount of background noise that exists in the body known as low potential field signals (LPF). In this work a novel approach utilizing a genetic algorithm (GA) based on a nonlinear energy operator (NEO) is proposed. Preliminary simulations show that the genetic algorithm gives superior results to the manual selection method, and that the improvement is more pronounced in noisier signals.
•Independently adaptive neural spike detection implementing genetic algorithm.•Improved spike detection offers lower transmission power consumption.•Potential for self-programming hardware implementation. Identification of the epileptic features in nervous signals is one of the main goals of neuroscientists and biomedical engineers since it provides valuable information about the current and future health status of a patient. Implantable wireless neural signal recording is a powerful, newly emerging technique that has been suggested for neural signal tracking and recording. One of the main issues with this technique is the transmission of enormous amounts of data, which requires high bandwidth and high power consumption for the implanted device. Neural spike detection and spike sorting can be used to reduce the power consumption and the amount of data transmitted. Neural spike detection is a challenging technique because of the large amount of background noise that exists in the body known as low potential field signals (LPF). Existing signal processing methods make use of amplitude thresholding and artificial neural networks to recognize spike signals, but are very vulnerable to noise and require a large amount of pre-training before being useful. Nonlinear energy operators (NEO) are also used to filter spike signals from this background noise. This method requires precise selection of a particular coefficient that is currently chosen by human intervention, which is time consuming and open to human error. In this work a novel approach utilizing a genetic algorithm (GA) based on a nonlinear energy operator (NEO) is proposed. The proposed expert system uses a GA to automatically adjust the threshold level in the NEO technique to detect the spike within a noisy signal in real time. The method is able to recognize the number and the location of spike-events in a neural signal in real time. Preliminary simulations show that the genetic algorithm gives superior results to the manual selection method, and that the improvement is more pronounced in noisier signals.
Author Zarifia, Mohammad Hossein
Ghalehjogh, Negar Karimi
Baradaran-nia, Mehdi
Author_xml – sequence: 1
  givenname: Mohammad Hossein
  surname: Zarifia
  fullname: Zarifia, Mohammad Hossein
  email: mohammad.h.zarifi@gmail.com
  organization: Department of Computer Engineering, East Azerbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran
– sequence: 2
  givenname: Negar Karimi
  surname: Ghalehjogh
  fullname: Ghalehjogh, Negar Karimi
  organization: Department of Computer Engineering, East Azerbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran
– sequence: 3
  givenname: Mehdi
  surname: Baradaran-nia
  fullname: Baradaran-nia, Mehdi
  organization: Control Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28843415$$DView record in Pascal Francis
BookMark eNp9kM9rFDEUx4NUcFv9BzzlIniZ6cskk2TASylWCwUR9Byyb17arLOTNZlt8b83w9aLh57yIN_P-_E5Z2dzmomx9wJaAUJf7loqT77tQKgWTAvSvmIbYY1stBnkGdvA0JtGCaPesPNSdgDCAJgN-37FZ3ri9Jim4xLT7PMf7g-HnDw-8JBy_T1mP_FyiL-Ij7QQrjG-9YVGXot7mmmJyP10n3JcHvZv2evgp0Lvnt8L9vPm84_rr83dty-311d3DUotlyaIgHrQgIpMgJ58N4CSatt7qYUwo1VhHDuB0FncBtBbaxH8QIMMg0G08oJ9PPWty_4-UlncPhakafIzpWNxQvdCSaG0qdEPz1Ff0E8h-xljcYcc9_Ve11lbJ4u-5uwphzmVkik4jItf712yj5MT4FbbbudW22617cC4arui3X_ov-4vQp9OEFVPj5GyKxhpRhpjrp7dmOJL-F-P8ZuO
CitedBy_id crossref_primary_10_2174_1874120701509010151
crossref_primary_10_1016_j_cmpb_2019_104986
crossref_primary_10_1016_j_dsp_2016_04_013
crossref_primary_10_1016_j_eswa_2015_04_064
crossref_primary_10_1007_s11432_020_3100_8
crossref_primary_10_1016_j_eswa_2015_06_005
crossref_primary_10_1051_matecconf_201817302017
Cites_doi 10.1016/j.jneumeth.2006.06.019
10.1109/ISCAS.2009.5118217
10.1016/j.jneumeth.2009.08.017
10.1109/ISDA.2009.140
10.1109/TBME.2011.2174992
10.1109/10.661266
10.1109/BIBMW.2011.6112443
10.1002/cta.643
10.1109/MECBME.2011.5752055
10.1016/j.compbiomed.2011.05.007
10.1109/TBME.2004.839800
10.1109/IEMBS.2003.1280856
10.1016/j.neucom.2011.10.016
10.1016/S1388-2457(02)00297-3
10.1109/10.568916
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.07.038
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 467
ExternalDocumentID 28843415
10_1016_j_eswa_2014_07_038
S095741741400445X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-f1fc6960c4e7f05ea290434b5a36117d84fdd21c028cbf06b88c0a9e93f97cc83
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344034300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Sep 27 18:16:40 EDT 2025
Wed Apr 02 07:24:48 EDT 2025
Sat Nov 29 04:44:40 EST 2025
Tue Nov 18 22:32:30 EST 2025
Fri Feb 23 02:29:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Neuronal signal
NEO
Neural spike detection
Genetic algorithm
Current information
Energy consumption
Tracking
Evolutionary algorithm
Epilepsy
Expert system
Central nervous system
Bandwidth
Selection criterion
Localization
Neurological disorder
Biomedical engineering
Threshold
Spike
Implant
Health
Neural network
Real time
Filter
Power device
Tracking(movable target)
Signal processing
Field potential
Wireless network
Signal to noise ratio
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-f1fc6960c4e7f05ea290434b5a36117d84fdd21c028cbf06b88c0a9e93f97cc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651431467
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1651431467
pascalfrancis_primary_28843415
crossref_citationtrail_10_1016_j_eswa_2014_07_038
crossref_primary_10_1016_j_eswa_2014_07_038
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_07_038
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
2015
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Haydari, Z., Zhang, Y., & Soltanian-Zadeh, H. (2011). Semi-automatic epilepsy spike detection from EEG signal using genetic algorithm and wavelet transform. In
Liu, Yang, Zheng (b0065) 2012; 79
Zarifi, T., Chung-Ching, P., & Zarifi, M. H. (2011). Low-power amplifier for in-vivo EEG signal recording. In
Yang, Hoang, Zhao, Keefer, Liu (b0005) 2011
Harrison, R. (2003). A low-power integrated circuit for adaptive detection of action potentials in noisy signals. In
(Vol. 4, pp. 3325–3328).
Martinez, Pedreira, Ison, Quian Quiroga (b0115) 2009; 184
Nia, Shogian, Zarifi (b0085) 2008; 8
Nenadic, Burdick (b0030) 2005; 52
Semmaoui, Drolet, Lakhssassi, Sawan (b0110) 2012; 59
Othman, Shaker, Abdullah (b0020) 2005; 9
b0120
Wilson, Emerson (b0060) 2002; 113
Nia, M. B., & Alipouri, Y. (2009). Speeding up the genetic algorithm convergence using sequential mutation and circular gene methods. In
Chandra, Optican (b0075) 1997; 44
Smith, Mtetwa (b0025) 2007; 159
Zarifi, Frounchi, Tinati, Farshchi, Judy (b0035) 2011; 39
Taipei, Taiwan.
.
(Vol. 20, No. 4, pp. 2070–2073).
Mukhopadhyay, Ray (b0045) 1998; 45
Peng, C., Sabharwal, P., & Bashirullah, R. (2009). An adaptive neural spike detector with threshold-lock loop. In
Swarnalatha, A., & Shanthi, A. P. (2010). Optimization of single variable functions using complete hardware evolution.
(pp. 19–22).
Keshri, A. K., Sinha, R. K., Singh, A., & Das, B. N. (2011). DFAspike: A new computational proposition for efficient recognition of epileptic spike in EEG. 41(7), 559–564.
Ko, C. -W., Lin, Y. -D., Chung, H. -W., & Jan, G. -J. (1998). An EEG spike detection algorithm using artificial neural networks with multi-channel correlation. In
10.1016/j.eswa.2014.07.038_b0105
Martinez (10.1016/j.eswa.2014.07.038_b0115) 2009; 184
10.1016/j.eswa.2014.07.038_b0015
Liu (10.1016/j.eswa.2014.07.038_b0065) 2012; 79
Yang (10.1016/j.eswa.2014.07.038_b0005) 2011
10.1016/j.eswa.2014.07.038_b0055
10.1016/j.eswa.2014.07.038_b0100
10.1016/j.eswa.2014.07.038_b0120
Mukhopadhyay (10.1016/j.eswa.2014.07.038_b0045) 1998; 45
10.1016/j.eswa.2014.07.038_b0010
10.1016/j.eswa.2014.07.038_b0040
10.1016/j.eswa.2014.07.038_b0050
Wilson (10.1016/j.eswa.2014.07.038_b0060) 2002; 113
Chandra (10.1016/j.eswa.2014.07.038_b0075) 1997; 44
10.1016/j.eswa.2014.07.038_b0070
Nenadic (10.1016/j.eswa.2014.07.038_b0030) 2005; 52
Semmaoui (10.1016/j.eswa.2014.07.038_b0110) 2012; 59
Nia (10.1016/j.eswa.2014.07.038_b0085) 2008; 8
Smith (10.1016/j.eswa.2014.07.038_b0025) 2007; 159
Zarifi (10.1016/j.eswa.2014.07.038_b0035) 2011; 39
Othman (10.1016/j.eswa.2014.07.038_b0020) 2005; 9
References_xml – volume: 9
  year: 2005
  ident: b0020
  article-title: EEG spikes detection, sorting, and localization
  publication-title: World Academy of Science, Engineering and Technology
– reference: , Taipei, Taiwan.
– reference: (pp. 19–22).
– reference: Nia, M. B., & Alipouri, Y. (2009). Speeding up the genetic algorithm convergence using sequential mutation and circular gene methods. In
– volume: 39
  start-page: 385
  year: 2011
  end-page: 395
  ident: b0035
  article-title: A low-power small-area 10-bit analog-to-digital converter for neural recording applications
  publication-title: International Journal of Circuit Theory and Applications
– volume: 159
  start-page: 170
  year: 2007
  end-page: 180
  ident: b0025
  article-title: A tool for synthesizing spike trains with realistic interference
  publication-title: Journal of Neuroscience Methods
– volume: 113
  start-page: 1873
  year: 2002
  end-page: 1881
  ident: b0060
  article-title: Spike detection: A review and comparison of algorithms
  publication-title: Clinical Neurophysiology
– volume: 79
  start-page: 132
  year: 2012
  end-page: 139
  ident: b0065
  article-title: Automatic extracellular spike detection with piecewise optimal morphological filter
  publication-title: Neurocomputing
– volume: 184
  start-page: 285
  year: 2009
  end-page: 293
  ident: b0115
  article-title: Realistic simulation of extracellular recordings
  publication-title: Journal of Neuroscience Methods
– volume: 44
  start-page: 403
  year: 1997
  end-page: 412
  ident: b0075
  article-title: Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: Haydari, Z., Zhang, Y., & Soltanian-Zadeh, H. (2011). Semi-automatic epilepsy spike detection from EEG signal using genetic algorithm and wavelet transform. In
– reference: Peng, C., Sabharwal, P., & Bashirullah, R. (2009). An adaptive neural spike detector with threshold-lock loop. In
– reference: Zarifi, T., Chung-Ching, P., & Zarifi, M. H. (2011). Low-power amplifier for in-vivo EEG signal recording. In
– ident: b0120
– reference: (Vol. 4, pp. 3325–3328).
– reference: .
– year: 2011
  ident: b0005
  article-title: A study on neural noise and neural signal feature extraction
  publication-title: Annals of Biomedical Engineering
– volume: 8
  year: 2008
  ident: b0085
  article-title: Cancer diagnosis using artificial neural networks
  publication-title: International Journal of Computer Science and Network Security
– reference: Swarnalatha, A., & Shanthi, A. P. (2010). Optimization of single variable functions using complete hardware evolution.
– reference: Ko, C. -W., Lin, Y. -D., Chung, H. -W., & Jan, G. -J. (1998). An EEG spike detection algorithm using artificial neural networks with multi-channel correlation. In
– volume: 59
  year: 2012
  ident: b0110
  article-title: Setting adaptive spike detection threshold for smoothed TEO based on robust statistics theory
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: Harrison, R. (2003). A low-power integrated circuit for adaptive detection of action potentials in noisy signals. In
– reference: Keshri, A. K., Sinha, R. K., Singh, A., & Das, B. N. (2011). DFAspike: A new computational proposition for efficient recognition of epileptic spike in EEG. 41(7), 559–564.
– volume: 45
  start-page: 180
  year: 1998
  end-page: 187
  ident: b0045
  article-title: A new interpretation of nonlinear energy operator and its efficacy in spike detection
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: (Vol. 20, No. 4, pp. 2070–2073).
– volume: 52
  start-page: 74
  year: 2005
  end-page: 87
  ident: b0030
  article-title: Spike detection using continuous wavelet transforms
  publication-title: IEEE Transactions on Biomedical Engineering
– ident: 10.1016/j.eswa.2014.07.038_b0120
– volume: 159
  start-page: 170
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2014.07.038_b0025
  article-title: A tool for synthesizing spike trains with realistic interference
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2006.06.019
– ident: 10.1016/j.eswa.2014.07.038_b0040
  doi: 10.1109/ISCAS.2009.5118217
– volume: 9
  year: 2005
  ident: 10.1016/j.eswa.2014.07.038_b0020
  article-title: EEG spikes detection, sorting, and localization
  publication-title: World Academy of Science, Engineering and Technology
– volume: 184
  start-page: 285
  year: 2009
  ident: 10.1016/j.eswa.2014.07.038_b0115
  article-title: Realistic simulation of extracellular recordings
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2009.08.017
– ident: 10.1016/j.eswa.2014.07.038_b0105
  doi: 10.1109/ISDA.2009.140
– volume: 59
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2014.07.038_b0110
  article-title: Setting adaptive spike detection threshold for smoothed TEO based on robust statistics theory
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2174992
– year: 2011
  ident: 10.1016/j.eswa.2014.07.038_b0005
  article-title: A study on neural noise and neural signal feature extraction
  publication-title: Annals of Biomedical Engineering
– volume: 45
  start-page: 180
  year: 1998
  ident: 10.1016/j.eswa.2014.07.038_b0045
  article-title: A new interpretation of nonlinear energy operator and its efficacy in spike detection
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.661266
– ident: 10.1016/j.eswa.2014.07.038_b0100
– volume: 8
  issue: 7
  year: 2008
  ident: 10.1016/j.eswa.2014.07.038_b0085
  article-title: Cancer diagnosis using artificial neural networks
  publication-title: International Journal of Computer Science and Network Security
– ident: 10.1016/j.eswa.2014.07.038_b0055
  doi: 10.1109/BIBMW.2011.6112443
– volume: 39
  start-page: 385
  year: 2011
  ident: 10.1016/j.eswa.2014.07.038_b0035
  article-title: A low-power small-area 10-bit analog-to-digital converter for neural recording applications
  publication-title: International Journal of Circuit Theory and Applications
  doi: 10.1002/cta.643
– ident: 10.1016/j.eswa.2014.07.038_b0010
  doi: 10.1109/MECBME.2011.5752055
– ident: 10.1016/j.eswa.2014.07.038_b0015
  doi: 10.1016/j.compbiomed.2011.05.007
– ident: 10.1016/j.eswa.2014.07.038_b0050
– volume: 52
  start-page: 74
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2014.07.038_b0030
  article-title: Spike detection using continuous wavelet transforms
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2004.839800
– ident: 10.1016/j.eswa.2014.07.038_b0070
  doi: 10.1109/IEMBS.2003.1280856
– volume: 79
  start-page: 132
  year: 2012
  ident: 10.1016/j.eswa.2014.07.038_b0065
  article-title: Automatic extracellular spike detection with piecewise optimal morphological filter
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.016
– volume: 113
  start-page: 1873
  issue: 12
  year: 2002
  ident: 10.1016/j.eswa.2014.07.038_b0060
  article-title: Spike detection: A review and comparison of algorithms
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(02)00297-3
– volume: 44
  start-page: 403
  issue: 5
  year: 1997
  ident: 10.1016/j.eswa.2014.07.038_b0075
  article-title: Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.568916
SSID ssj0017007
Score 2.1883223
Snippet •Independently adaptive neural spike detection implementing genetic algorithm.•Improved spike detection offers lower transmission power consumption.•Potential...
Identification of the epileptic features in nervous signals is one of the main goals of neuroscientists and biomedical engineers since it provides valuable...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 462
SubjectTerms Applied sciences
Background noise
Biological and medical sciences
Central nervous system
Computer science; control theory; systems
Computer simulation
Computer systems and distributed systems. User interface
Data processing. List processing. Character string processing
Electrophysiology
Evolutionary
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Genetic algorithm
Genetic algorithms
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Manuals
Medical sciences
Memory organisation. Data processing
NEO
Nervous system (semeiology, syndromes)
Neural spike detection
Neurology
Neuronal signal
Patients
Recording
Software
Spikes
Vertebrates: nervous system and sense organs
Title A new evolutionary approach for neural spike detection based on genetic algorithm
URI https://dx.doi.org/10.1016/j.eswa.2014.07.038
https://www.proquest.com/docview/1651431467
Volume 42
WOSCitedRecordID wos000344034300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqjgckxDda-ZiMxFsUlDRunDwG1rUZNIVuSBUvkeM4rKOkVZuV_QP835xjO2o3GPDAQ6PUauwqv5_Pd2ffHUKvOM8C1gUEMkZCmxQks4MwYHbPKQgPGcwoxupiEzRJguk0_NBq_TCxMJs5Lcvg8jJc_leooQ3AlqGz_wB30yk0wD2ADleAHa5_BXwkq4RbYqMHkafiTOLw-kyhzGApg0SWs68yZqoSqli4XM5yuXUAHYs6i-v8y2I1q86-7TjvZWbkSud_NpFxW3vgDX7jYTQaRYfWcHxy0o8T63M0iY_ihi5JfxBNrHfQOIqtwTB63x8ejwfNttWbaBIdwiexkziqfbbiLJ9teyhUdKZymOnVfcfrSG3iqsI8RgCT7jWiKWlKtKAW-hv9pcxX7ofz12L9XSaSckmdjVXljNlNsH1l4WuOIwJXiVenKtjrUrCw2mgvivvT42Y7ijoq7t78ex19pQ4KXh33dxrOnSVbw7wrVMGUa2t_rdCc3kd3tSWCI8WgB6glyofonrZKsJb5a2gyhT9M2yP0McLAMbzNMWw4hoFjWHEM1xzDDcdwzTEMN5pjuOHYY_TpqH_6dmjr2hw293yvsgu34D5Yv5wIWjg9wbqhA-8w6zHPd12aB6TI867LQX3lWeH4WRBwh4Ui9IqQch54T1C7XJRiH2GWO8ITDvepywgFi9UHmz8gjshDnjkh6SDXvM-U68T1sn7KPDUnFM9TiUEqMUgdmgIGHWQ1zyxV2pYbf90zMKVa8VQKZQocu_G5gx1Mm6EMoTropQE5BbEt9-JYKRYX69T1paUi1ZSnf-rkGbotZ5Xy-z1H7Wp1IV6gW3xTzdarA03VnzrMuSY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+evolutionary+approach+for+neural+spike+detection+based+on+genetic+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=MOHAMMAD+HOSSEIN+ZARIFIA&rft.au=NEGAR+KARIMI+GHALEHJOGH&rft.au=BARADARAN-NIA%2C+Mehdi&rft.date=2015&rft.pub=Elsevier&rft.issn=0957-4174&rft.volume=42&rft.issue=1&rft.spage=462&rft.epage=467&rft_id=info:doi/10.1016%2Fj.eswa.2014.07.038&rft.externalDBID=n%2Fa&rft.externalDocID=28843415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon