A new evolutionary approach for neural spike detection based on genetic algorithm
•Independently adaptive neural spike detection implementing genetic algorithm.•Improved spike detection offers lower transmission power consumption.•Potential for self-programming hardware implementation. Identification of the epileptic features in nervous signals is one of the main goals of neurosc...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 42; číslo 1; s. 462 - 467 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Ltd
01.01.2015
Elsevier |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Independently adaptive neural spike detection implementing genetic algorithm.•Improved spike detection offers lower transmission power consumption.•Potential for self-programming hardware implementation.
Identification of the epileptic features in nervous signals is one of the main goals of neuroscientists and biomedical engineers since it provides valuable information about the current and future health status of a patient. Implantable wireless neural signal recording is a powerful, newly emerging technique that has been suggested for neural signal tracking and recording. One of the main issues with this technique is the transmission of enormous amounts of data, which requires high bandwidth and high power consumption for the implanted device. Neural spike detection and spike sorting can be used to reduce the power consumption and the amount of data transmitted. Neural spike detection is a challenging technique because of the large amount of background noise that exists in the body known as low potential field signals (LPF). Existing signal processing methods make use of amplitude thresholding and artificial neural networks to recognize spike signals, but are very vulnerable to noise and require a large amount of pre-training before being useful. Nonlinear energy operators (NEO) are also used to filter spike signals from this background noise. This method requires precise selection of a particular coefficient that is currently chosen by human intervention, which is time consuming and open to human error. In this work a novel approach utilizing a genetic algorithm (GA) based on a nonlinear energy operator (NEO) is proposed. The proposed expert system uses a GA to automatically adjust the threshold level in the NEO technique to detect the spike within a noisy signal in real time. The method is able to recognize the number and the location of spike-events in a neural signal in real time. Preliminary simulations show that the genetic algorithm gives superior results to the manual selection method, and that the improvement is more pronounced in noisier signals. |
|---|---|
| AbstractList | Identification of the epileptic features in nervous signals is one of the main goals of neuroscientists and biomedical engineers since it provides valuable information about the current and future health status of a patient. Implantable wireless neural signal recording is a powerful, newly emerging technique that has been suggested for neural signal tracking and recording. Neural spike detection and spike sorting can be used to reduce the power consumption and the amount of data transmitted. Neural spike detection is a challenging technique because of the large amount of background noise that exists in the body known as low potential field signals (LPF). In this work a novel approach utilizing a genetic algorithm (GA) based on a nonlinear energy operator (NEO) is proposed. Preliminary simulations show that the genetic algorithm gives superior results to the manual selection method, and that the improvement is more pronounced in noisier signals. •Independently adaptive neural spike detection implementing genetic algorithm.•Improved spike detection offers lower transmission power consumption.•Potential for self-programming hardware implementation. Identification of the epileptic features in nervous signals is one of the main goals of neuroscientists and biomedical engineers since it provides valuable information about the current and future health status of a patient. Implantable wireless neural signal recording is a powerful, newly emerging technique that has been suggested for neural signal tracking and recording. One of the main issues with this technique is the transmission of enormous amounts of data, which requires high bandwidth and high power consumption for the implanted device. Neural spike detection and spike sorting can be used to reduce the power consumption and the amount of data transmitted. Neural spike detection is a challenging technique because of the large amount of background noise that exists in the body known as low potential field signals (LPF). Existing signal processing methods make use of amplitude thresholding and artificial neural networks to recognize spike signals, but are very vulnerable to noise and require a large amount of pre-training before being useful. Nonlinear energy operators (NEO) are also used to filter spike signals from this background noise. This method requires precise selection of a particular coefficient that is currently chosen by human intervention, which is time consuming and open to human error. In this work a novel approach utilizing a genetic algorithm (GA) based on a nonlinear energy operator (NEO) is proposed. The proposed expert system uses a GA to automatically adjust the threshold level in the NEO technique to detect the spike within a noisy signal in real time. The method is able to recognize the number and the location of spike-events in a neural signal in real time. Preliminary simulations show that the genetic algorithm gives superior results to the manual selection method, and that the improvement is more pronounced in noisier signals. |
| Author | Zarifia, Mohammad Hossein Ghalehjogh, Negar Karimi Baradaran-nia, Mehdi |
| Author_xml | – sequence: 1 givenname: Mohammad Hossein surname: Zarifia fullname: Zarifia, Mohammad Hossein email: mohammad.h.zarifi@gmail.com organization: Department of Computer Engineering, East Azerbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran – sequence: 2 givenname: Negar Karimi surname: Ghalehjogh fullname: Ghalehjogh, Negar Karimi organization: Department of Computer Engineering, East Azerbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran – sequence: 3 givenname: Mehdi surname: Baradaran-nia fullname: Baradaran-nia, Mehdi organization: Control Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28843415$$DView record in Pascal Francis |
| BookMark | eNp9kM9rFDEUx4NUcFv9BzzlIniZ6cskk2TASylWCwUR9Byyb17arLOTNZlt8b83w9aLh57yIN_P-_E5Z2dzmomx9wJaAUJf7loqT77tQKgWTAvSvmIbYY1stBnkGdvA0JtGCaPesPNSdgDCAJgN-37FZ3ri9Jim4xLT7PMf7g-HnDw-8JBy_T1mP_FyiL-Ij7QQrjG-9YVGXot7mmmJyP10n3JcHvZv2evgp0Lvnt8L9vPm84_rr83dty-311d3DUotlyaIgHrQgIpMgJ58N4CSatt7qYUwo1VhHDuB0FncBtBbaxH8QIMMg0G08oJ9PPWty_4-UlncPhakafIzpWNxQvdCSaG0qdEPz1Ff0E8h-xljcYcc9_Ve11lbJ4u-5uwphzmVkik4jItf712yj5MT4FbbbudW22617cC4arui3X_ov-4vQp9OEFVPj5GyKxhpRhpjrp7dmOJL-F-P8ZuO |
| CitedBy_id | crossref_primary_10_2174_1874120701509010151 crossref_primary_10_1016_j_cmpb_2019_104986 crossref_primary_10_1016_j_dsp_2016_04_013 crossref_primary_10_1016_j_eswa_2015_04_064 crossref_primary_10_1007_s11432_020_3100_8 crossref_primary_10_1016_j_eswa_2015_06_005 crossref_primary_10_1051_matecconf_201817302017 |
| Cites_doi | 10.1016/j.jneumeth.2006.06.019 10.1109/ISCAS.2009.5118217 10.1016/j.jneumeth.2009.08.017 10.1109/ISDA.2009.140 10.1109/TBME.2011.2174992 10.1109/10.661266 10.1109/BIBMW.2011.6112443 10.1002/cta.643 10.1109/MECBME.2011.5752055 10.1016/j.compbiomed.2011.05.007 10.1109/TBME.2004.839800 10.1109/IEMBS.2003.1280856 10.1016/j.neucom.2011.10.016 10.1016/S1388-2457(02)00297-3 10.1109/10.568916 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2014.07.038 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-6793 |
| EndPage | 467 |
| ExternalDocumentID | 28843415 10_1016_j_eswa_2014_07_038 S095741741400445X |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c363t-f1fc6960c4e7f05ea290434b5a36117d84fdd21c028cbf06b88c0a9e93f97cc83 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344034300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Sep 27 18:16:40 EDT 2025 Wed Apr 02 07:24:48 EDT 2025 Sat Nov 29 04:44:40 EST 2025 Tue Nov 18 22:32:30 EST 2025 Fri Feb 23 02:29:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Neuronal signal NEO Neural spike detection Genetic algorithm Current information Energy consumption Tracking Evolutionary algorithm Epilepsy Expert system Central nervous system Bandwidth Selection criterion Localization Neurological disorder Biomedical engineering Threshold Spike Implant Health Neural network Real time Filter Power device Tracking(movable target) Signal processing Field potential Wireless network Signal to noise ratio |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-f1fc6960c4e7f05ea290434b5a36117d84fdd21c028cbf06b88c0a9e93f97cc83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1651431467 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1651431467 pascalfrancis_primary_28843415 crossref_citationtrail_10_1016_j_eswa_2014_07_038 crossref_primary_10_1016_j_eswa_2014_07_038 elsevier_sciencedirect_doi_10_1016_j_eswa_2014_07_038 |
| PublicationCentury | 2000 |
| PublicationDate | January 2015 2015-01-00 2015 20150101 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Haydari, Z., Zhang, Y., & Soltanian-Zadeh, H. (2011). Semi-automatic epilepsy spike detection from EEG signal using genetic algorithm and wavelet transform. In Liu, Yang, Zheng (b0065) 2012; 79 Zarifi, T., Chung-Ching, P., & Zarifi, M. H. (2011). Low-power amplifier for in-vivo EEG signal recording. In Yang, Hoang, Zhao, Keefer, Liu (b0005) 2011 Harrison, R. (2003). A low-power integrated circuit for adaptive detection of action potentials in noisy signals. In (Vol. 4, pp. 3325–3328). Martinez, Pedreira, Ison, Quian Quiroga (b0115) 2009; 184 Nia, Shogian, Zarifi (b0085) 2008; 8 Nenadic, Burdick (b0030) 2005; 52 Semmaoui, Drolet, Lakhssassi, Sawan (b0110) 2012; 59 Othman, Shaker, Abdullah (b0020) 2005; 9 b0120 Wilson, Emerson (b0060) 2002; 113 Nia, M. B., & Alipouri, Y. (2009). Speeding up the genetic algorithm convergence using sequential mutation and circular gene methods. In Chandra, Optican (b0075) 1997; 44 Smith, Mtetwa (b0025) 2007; 159 Zarifi, Frounchi, Tinati, Farshchi, Judy (b0035) 2011; 39 Taipei, Taiwan. . (Vol. 20, No. 4, pp. 2070–2073). Mukhopadhyay, Ray (b0045) 1998; 45 Peng, C., Sabharwal, P., & Bashirullah, R. (2009). An adaptive neural spike detector with threshold-lock loop. In Swarnalatha, A., & Shanthi, A. P. (2010). Optimization of single variable functions using complete hardware evolution. (pp. 19–22). Keshri, A. K., Sinha, R. K., Singh, A., & Das, B. N. (2011). DFAspike: A new computational proposition for efficient recognition of epileptic spike in EEG. 41(7), 559–564. Ko, C. -W., Lin, Y. -D., Chung, H. -W., & Jan, G. -J. (1998). An EEG spike detection algorithm using artificial neural networks with multi-channel correlation. In 10.1016/j.eswa.2014.07.038_b0105 Martinez (10.1016/j.eswa.2014.07.038_b0115) 2009; 184 10.1016/j.eswa.2014.07.038_b0015 Liu (10.1016/j.eswa.2014.07.038_b0065) 2012; 79 Yang (10.1016/j.eswa.2014.07.038_b0005) 2011 10.1016/j.eswa.2014.07.038_b0055 10.1016/j.eswa.2014.07.038_b0100 10.1016/j.eswa.2014.07.038_b0120 Mukhopadhyay (10.1016/j.eswa.2014.07.038_b0045) 1998; 45 10.1016/j.eswa.2014.07.038_b0010 10.1016/j.eswa.2014.07.038_b0040 10.1016/j.eswa.2014.07.038_b0050 Wilson (10.1016/j.eswa.2014.07.038_b0060) 2002; 113 Chandra (10.1016/j.eswa.2014.07.038_b0075) 1997; 44 10.1016/j.eswa.2014.07.038_b0070 Nenadic (10.1016/j.eswa.2014.07.038_b0030) 2005; 52 Semmaoui (10.1016/j.eswa.2014.07.038_b0110) 2012; 59 Nia (10.1016/j.eswa.2014.07.038_b0085) 2008; 8 Smith (10.1016/j.eswa.2014.07.038_b0025) 2007; 159 Zarifi (10.1016/j.eswa.2014.07.038_b0035) 2011; 39 Othman (10.1016/j.eswa.2014.07.038_b0020) 2005; 9 |
| References_xml | – volume: 9 year: 2005 ident: b0020 article-title: EEG spikes detection, sorting, and localization publication-title: World Academy of Science, Engineering and Technology – reference: , Taipei, Taiwan. – reference: (pp. 19–22). – reference: Nia, M. B., & Alipouri, Y. (2009). Speeding up the genetic algorithm convergence using sequential mutation and circular gene methods. In – volume: 39 start-page: 385 year: 2011 end-page: 395 ident: b0035 article-title: A low-power small-area 10-bit analog-to-digital converter for neural recording applications publication-title: International Journal of Circuit Theory and Applications – volume: 159 start-page: 170 year: 2007 end-page: 180 ident: b0025 article-title: A tool for synthesizing spike trains with realistic interference publication-title: Journal of Neuroscience Methods – volume: 113 start-page: 1873 year: 2002 end-page: 1881 ident: b0060 article-title: Spike detection: A review and comparison of algorithms publication-title: Clinical Neurophysiology – volume: 79 start-page: 132 year: 2012 end-page: 139 ident: b0065 article-title: Automatic extracellular spike detection with piecewise optimal morphological filter publication-title: Neurocomputing – volume: 184 start-page: 285 year: 2009 end-page: 293 ident: b0115 article-title: Realistic simulation of extracellular recordings publication-title: Journal of Neuroscience Methods – volume: 44 start-page: 403 year: 1997 end-page: 412 ident: b0075 article-title: Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network publication-title: IEEE Transactions on Biomedical Engineering – reference: Haydari, Z., Zhang, Y., & Soltanian-Zadeh, H. (2011). Semi-automatic epilepsy spike detection from EEG signal using genetic algorithm and wavelet transform. In – reference: Peng, C., Sabharwal, P., & Bashirullah, R. (2009). An adaptive neural spike detector with threshold-lock loop. In – reference: Zarifi, T., Chung-Ching, P., & Zarifi, M. H. (2011). Low-power amplifier for in-vivo EEG signal recording. In – ident: b0120 – reference: (Vol. 4, pp. 3325–3328). – reference: . – year: 2011 ident: b0005 article-title: A study on neural noise and neural signal feature extraction publication-title: Annals of Biomedical Engineering – volume: 8 year: 2008 ident: b0085 article-title: Cancer diagnosis using artificial neural networks publication-title: International Journal of Computer Science and Network Security – reference: Swarnalatha, A., & Shanthi, A. P. (2010). Optimization of single variable functions using complete hardware evolution. – reference: Ko, C. -W., Lin, Y. -D., Chung, H. -W., & Jan, G. -J. (1998). An EEG spike detection algorithm using artificial neural networks with multi-channel correlation. In – volume: 59 year: 2012 ident: b0110 article-title: Setting adaptive spike detection threshold for smoothed TEO based on robust statistics theory publication-title: IEEE Transactions on Biomedical Engineering – reference: Harrison, R. (2003). A low-power integrated circuit for adaptive detection of action potentials in noisy signals. In – reference: Keshri, A. K., Sinha, R. K., Singh, A., & Das, B. N. (2011). DFAspike: A new computational proposition for efficient recognition of epileptic spike in EEG. 41(7), 559–564. – volume: 45 start-page: 180 year: 1998 end-page: 187 ident: b0045 article-title: A new interpretation of nonlinear energy operator and its efficacy in spike detection publication-title: IEEE Transactions on Biomedical Engineering – reference: (Vol. 20, No. 4, pp. 2070–2073). – volume: 52 start-page: 74 year: 2005 end-page: 87 ident: b0030 article-title: Spike detection using continuous wavelet transforms publication-title: IEEE Transactions on Biomedical Engineering – ident: 10.1016/j.eswa.2014.07.038_b0120 – volume: 159 start-page: 170 issue: 1 year: 2007 ident: 10.1016/j.eswa.2014.07.038_b0025 article-title: A tool for synthesizing spike trains with realistic interference publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2006.06.019 – ident: 10.1016/j.eswa.2014.07.038_b0040 doi: 10.1109/ISCAS.2009.5118217 – volume: 9 year: 2005 ident: 10.1016/j.eswa.2014.07.038_b0020 article-title: EEG spikes detection, sorting, and localization publication-title: World Academy of Science, Engineering and Technology – volume: 184 start-page: 285 year: 2009 ident: 10.1016/j.eswa.2014.07.038_b0115 article-title: Realistic simulation of extracellular recordings publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2009.08.017 – ident: 10.1016/j.eswa.2014.07.038_b0105 doi: 10.1109/ISDA.2009.140 – volume: 59 issue: 2 year: 2012 ident: 10.1016/j.eswa.2014.07.038_b0110 article-title: Setting adaptive spike detection threshold for smoothed TEO based on robust statistics theory publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2011.2174992 – year: 2011 ident: 10.1016/j.eswa.2014.07.038_b0005 article-title: A study on neural noise and neural signal feature extraction publication-title: Annals of Biomedical Engineering – volume: 45 start-page: 180 year: 1998 ident: 10.1016/j.eswa.2014.07.038_b0045 article-title: A new interpretation of nonlinear energy operator and its efficacy in spike detection publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.661266 – ident: 10.1016/j.eswa.2014.07.038_b0100 – volume: 8 issue: 7 year: 2008 ident: 10.1016/j.eswa.2014.07.038_b0085 article-title: Cancer diagnosis using artificial neural networks publication-title: International Journal of Computer Science and Network Security – ident: 10.1016/j.eswa.2014.07.038_b0055 doi: 10.1109/BIBMW.2011.6112443 – volume: 39 start-page: 385 year: 2011 ident: 10.1016/j.eswa.2014.07.038_b0035 article-title: A low-power small-area 10-bit analog-to-digital converter for neural recording applications publication-title: International Journal of Circuit Theory and Applications doi: 10.1002/cta.643 – ident: 10.1016/j.eswa.2014.07.038_b0010 doi: 10.1109/MECBME.2011.5752055 – ident: 10.1016/j.eswa.2014.07.038_b0015 doi: 10.1016/j.compbiomed.2011.05.007 – ident: 10.1016/j.eswa.2014.07.038_b0050 – volume: 52 start-page: 74 issue: 1 year: 2005 ident: 10.1016/j.eswa.2014.07.038_b0030 article-title: Spike detection using continuous wavelet transforms publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2004.839800 – ident: 10.1016/j.eswa.2014.07.038_b0070 doi: 10.1109/IEMBS.2003.1280856 – volume: 79 start-page: 132 year: 2012 ident: 10.1016/j.eswa.2014.07.038_b0065 article-title: Automatic extracellular spike detection with piecewise optimal morphological filter publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.10.016 – volume: 113 start-page: 1873 issue: 12 year: 2002 ident: 10.1016/j.eswa.2014.07.038_b0060 article-title: Spike detection: A review and comparison of algorithms publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(02)00297-3 – volume: 44 start-page: 403 issue: 5 year: 1997 ident: 10.1016/j.eswa.2014.07.038_b0075 article-title: Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.568916 |
| SSID | ssj0017007 |
| Score | 2.1883223 |
| Snippet | •Independently adaptive neural spike detection implementing genetic algorithm.•Improved spike detection offers lower transmission power consumption.•Potential... Identification of the epileptic features in nervous signals is one of the main goals of neuroscientists and biomedical engineers since it provides valuable... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 462 |
| SubjectTerms | Applied sciences Background noise Biological and medical sciences Central nervous system Computer science; control theory; systems Computer simulation Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Electrophysiology Evolutionary Exact sciences and technology Fundamental and applied biological sciences. Psychology Genetic algorithm Genetic algorithms Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Manuals Medical sciences Memory organisation. Data processing NEO Nervous system (semeiology, syndromes) Neural spike detection Neurology Neuronal signal Patients Recording Software Spikes Vertebrates: nervous system and sense organs |
| Title | A new evolutionary approach for neural spike detection based on genetic algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2014.07.038 https://www.proquest.com/docview/1651431467 |
| Volume | 42 |
| WOSCitedRecordID | wos000344034300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqjgckxB2tXCYj8VYF5dbYeQysazNoCt2QKl4ix3FYR0mrNiv7A_xvjmM7ajcY8MBDo9RqnCrfF_ucY5_vIPTK9nMGs5Kw7DwDB4UVucUKN7QEY8SmzGd2popNkCSh02n4odX6YXJhNnNSlvTyMlz-V6ihDcCWqbP_AHfTKTTAOYAOR4Adjn8FfCSrhHfFRt9E7oozwuH1nkKpYCmTRJazrzJnqhKqWLicznK5dAAdi1rFdf5lsZpVZ992gvdSGbnS-s8mM25rDbzBbzyMRqPosDscn5z046T7OZrER3FDl6Q_iCbdd9A4iruDYfS-PzweD5plqzfRJDqET2IlcVTHbMVZPtuOUKjsTBUw07P7TtSRWL6jCvOYAdh3rxFNjaa-HqiF_kZ-Oear8MP5a7H-LoWkHL9WY1WaMbsC21cmvmY7okup79VSBXsuAQ-rjfaiuD89bpajiK3y7s2_19lXaqPg1fv-zsK5s2RreO8KVTDl2txfGzSn99Fd7YngSDHoAWqJ8iG6p70SrMf8NTSZwh-m7RH6GGHgGN7mGDYcw8AxrDiGa47hhmO45hiGE80x3HDsMfp01D99O7R0bQ6Le4FXWYVT8AC8X-4LUtg9wdzQhmeY9ZgXOA7JqV_kuetwMF95VthBRim3WShCrwgJ59R7gtrlohT7CBeUsZzlHHpkvpe7IXfDghIaZCQTjnA7yDHPM-VauF7WT5mnZofieSoxSCUGqU1SwKCDus01SyXbcuOvewamVBueyqBMgWM3Xnewg2lzK0OoDnppQE5h2JZrcawUi4t16gTSU5FmytM_dfIM3ZZvlYr7PUftanUhXqBbfFPN1qsDTdWfMU66Mw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+evolutionary+approach+for+neural+spike+detection+based+on+genetic+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=MOHAMMAD+HOSSEIN+ZARIFIA&rft.au=NEGAR+KARIMI+GHALEHJOGH&rft.au=BARADARAN-NIA%2C+Mehdi&rft.date=2015&rft.pub=Elsevier&rft.issn=0957-4174&rft.volume=42&rft.issue=1&rft.spage=462&rft.epage=467&rft_id=info:doi/10.1016%2Fj.eswa.2014.07.038&rft.externalDBID=n%2Fa&rft.externalDocID=28843415 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |