Enhanced Graph Autoencoder for Graph Anomaly Detection Using Subgraph Information

Graph anomaly detection aims at identifying rare, unusual entities in attributed networks with respect to their patterns or structures that deviate significantly from the majority within a graph. Over the years, extensive efforts in this field have been dedicated to the powerful capability of attrib...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 15; číslo 15; s. 8691
Hlavní autori: Zhang, Chi, Jung, Jin-Woo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.08.2025
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Graph anomaly detection aims at identifying rare, unusual entities in attributed networks with respect to their patterns or structures that deviate significantly from the majority within a graph. Over the years, extensive efforts in this field have been dedicated to the powerful capability of attributed networks to model real-world systems. Given the scarcity of labeled anomalies, current research primarily emphasizes model design via unsupervised learning. Graph autoencoders have been widely utilized for such purposes, leveraging the outstanding capabilities of Graph Neural Networks to model graph structured data. However, most existing graph autoencoder-based anomaly detectors do not exploit the nodes’ local subgraph information, limiting their ability to comprehensively understand the network for better representation learning. Moreover, these methods place greater emphasis on the attribute reconstruction process while neglecting the structure reconstruction aspect. This paper proposes an enhanced graph autoencoder framework for graph anomaly detection tasks that incorporates a subgraph extraction and aggregation preprocessing stage to utilize the nodes’ local topological information for enhanced embedding generation and to induce an additional node–subgraph view through model learning. A graph structure learning-based decoder is introduced as the structure decoder for better relationship learning. Finally, during the anomaly scoring stage, a node neighborhood selection technique is applied to enhance the detection performance. The effectiveness of the proposed framework is demonstrated through comprehensive experiments conducted on six commonly used real-world datasets.
AbstractList Graph anomaly detection aims at identifying rare, unusual entities in attributed networks with respect to their patterns or structures that deviate significantly from the majority within a graph. Over the years, extensive efforts in this field have been dedicated to the powerful capability of attributed networks to model real-world systems. Given the scarcity of labeled anomalies, current research primarily emphasizes model design via unsupervised learning. Graph autoencoders have been widely utilized for such purposes, leveraging the outstanding capabilities of Graph Neural Networks to model graph structured data. However, most existing graph autoencoder-based anomaly detectors do not exploit the nodes’ local subgraph information, limiting their ability to comprehensively understand the network for better representation learning. Moreover, these methods place greater emphasis on the attribute reconstruction process while neglecting the structure reconstruction aspect. This paper proposes an enhanced graph autoencoder framework for graph anomaly detection tasks that incorporates a subgraph extraction and aggregation preprocessing stage to utilize the nodes’ local topological information for enhanced embedding generation and to induce an additional node–subgraph view through model learning. A graph structure learning-based decoder is introduced as the structure decoder for better relationship learning. Finally, during the anomaly scoring stage, a node neighborhood selection technique is applied to enhance the detection performance. The effectiveness of the proposed framework is demonstrated through comprehensive experiments conducted on six commonly used real-world datasets.
Audience Academic
Author Zhang, Chi
Jung, Jin-Woo
Author_xml – sequence: 1
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
– sequence: 2
  givenname: Jin-Woo
  surname: Jung
  fullname: Jung, Jin-Woo
BookMark eNpNkU1PAyEQhonRxM-Tf2ATj6Z1gF2WPTZ-NjExRj2TWRjqNi2s7Pbgv5daNTIHyMvLkxneY7YfYiDGzjlMpWzgCvueV7zSquF77EhArSay5PX-v_MhOxuGJeTVcKk5HLHn2_COwZIr7hP278VsM0YKNjpKhY_pVw1xjavP4oZGsmMXQ_E2dGFRvGzaxbdhHrJ5jdurU3bgcTXQ2c9-wt7ubl-vHyaPT_fz69njxEolxwl512LpVCUIgWxJztWqbhorCAiEInDgRKta6UHwRvuyrVC7ttQSLJKTJ2y-47qIS9Onbo3p00TszLcQ08JgGju7IuNL6SVKVyllSy6wUd5VIIUArW3j6sy62LH6FD82NIxmGTcp5PaNFPlvBYcasmu6cy0wQ7s88pjQ5nK07mwOw3dZn-lKSKG03mIvdw9sisOQyP-1ycFsMzP_MpNfZsWKhQ
Cites_doi 10.24963/ijcai.2017/299
10.24963/ijcai.2018/488
10.4028/www.scientific.net/AMM.320.226
10.1145/3437963.3441735
10.1145/3308558.3313488
10.1145/3442381.3449989
10.1145/3394486.3403062
10.20944/preprints202410.1354.v1
10.1145/3340531.3411903
10.2172/1592845
10.1145/3394486.3403118
10.1109/TNNLS.2021.3068344
10.1007/s00521-021-05924-9
10.1145/1401890.1402008
10.1007/978-3-031-05936-0_35
10.1145/3459637.3482057
10.1109/ICASSP40776.2020.9053387
10.1016/j.drudis.2021.02.011
10.1145/3488560.3498389
10.1007/s10115-006-0020-z
10.1145/3572403
10.1609/aaai.v34i01.5393
10.1137/1.9781611977653.ch79
10.1137/1.9781611975673.67
10.1109/DSAA53316.2021.9564233
10.1145/3488560.3498408
10.1109/ICCISci.2019.8716389
10.1162/089976601750264965
10.1145/3459637.3482195
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app15158691
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_f43f3a3d566c412a96fd50322088c9d7
A852326887
10_3390_app15158691
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c363t-efdba4d652ea0ec4edd76799c2e0e026e0d0d2b6b3f02198f4b5a8db4830caed3
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001548983600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 10 04:30:53 EST 2025
Wed Aug 13 11:40:47 EDT 2025
Tue Nov 04 18:10:56 EST 2025
Sat Nov 29 07:11:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-efdba4d652ea0ec4edd76799c2e0e026e0d0d2b6b3f02198f4b5a8db4830caed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3239021070?pq-origsite=%requestingapplication%
PQID 3239021070
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_f43f3a3d566c412a96fd50322088c9d7
proquest_journals_3239021070
gale_infotracacademiconefile_A852326887
crossref_primary_10_3390_app15158691
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_14
Xiong (ref_3) 2021; 26
ref_13
ref_12
ref_11
ref_10
Ma (ref_17) 2013; 249
Liu (ref_26) 2021; 33
ref_18
ref_16
Zhang (ref_20) 2006; 10
ref_25
ref_24
ref_23
Sen (ref_45) 2008; 29
ref_22
ref_21
ref_29
ref_27
ref_36
ref_35
ref_32
ref_31
ref_30
Wang (ref_28) 2021; 33
Platt (ref_19) 2001; 13
ref_39
Yang (ref_15) 2023; 17
Deng (ref_33) 2021; 35
Chen (ref_34) 2020; 33
ref_47
Zhang (ref_37) 2021; 34
ref_46
ref_44
Alsentzer (ref_38) 2020; 33
ref_43
ref_42
ref_41
ref_40
ref_1
ref_2
ref_49
ref_48
ref_9
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_22
  doi: 10.24963/ijcai.2017/299
– ident: ref_9
– ident: ref_21
  doi: 10.24963/ijcai.2018/488
– ident: ref_5
– volume: 249
  start-page: 226
  year: 2013
  ident: ref_17
  article-title: Density-based distributed elliptical anomaly detection in wireless sensor networks
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.320.226
– ident: ref_44
  doi: 10.1145/3437963.3441735
– ident: ref_2
  doi: 10.1145/3308558.3313488
– ident: ref_14
  doi: 10.1145/3442381.3449989
– volume: 34
  start-page: 15734
  year: 2021
  ident: ref_37
  article-title: Nested graph neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_39
– ident: ref_48
  doi: 10.1145/3394486.3403062
– ident: ref_42
– ident: ref_35
– volume: 29
  start-page: 93
  year: 2008
  ident: ref_45
  article-title: Collective classification in network data
  publication-title: AI Mag.
– ident: ref_8
– ident: ref_40
  doi: 10.20944/preprints202410.1354.v1
– ident: ref_12
  doi: 10.1145/3340531.3411903
– ident: ref_31
  doi: 10.2172/1592845
– volume: 35
  start-page: 4027
  year: 2021
  ident: ref_33
  article-title: Graph neural network-based anomaly detection in multivariate time series
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: ref_4
  doi: 10.1145/3394486.3403118
– volume: 33
  start-page: 2378
  year: 2021
  ident: ref_26
  article-title: Anomaly detection on attributed networks via contrastive self-supervised learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3068344
– volume: 33
  start-page: 12073
  year: 2021
  ident: ref_28
  article-title: One-class graph neural networks for anomaly detection in attributed networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05924-9
– ident: ref_47
  doi: 10.1145/1401890.1402008
– ident: ref_10
– ident: ref_49
  doi: 10.1007/978-3-031-05936-0_35
– ident: ref_41
– ident: ref_27
  doi: 10.1145/3459637.3482057
– ident: ref_25
  doi: 10.1109/ICASSP40776.2020.9053387
– volume: 26
  start-page: 1382
  year: 2021
  ident: ref_3
  article-title: Graph neural networks for automated de novo drug design
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2021.02.011
– ident: ref_1
  doi: 10.1145/3488560.3498389
– volume: 10
  start-page: 333
  year: 2006
  ident: ref_20
  article-title: Detecting outlying subspaces for high-dimensional data: The new task, algorithms, and performance
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-006-0020-z
– ident: ref_7
– ident: ref_30
– volume: 17
  start-page: 1
  year: 2023
  ident: ref_15
  article-title: RoSGAS: Adaptive social bot detection with reinforced self-supervised GNN architecture search
  publication-title: ACM Trans. Web
  doi: 10.1145/3572403
– ident: ref_11
– ident: ref_13
  doi: 10.1609/aaai.v34i01.5393
– ident: ref_36
  doi: 10.1137/1.9781611977653.ch79
– ident: ref_18
– ident: ref_24
  doi: 10.1137/1.9781611975673.67
– ident: ref_23
  doi: 10.1109/DSAA53316.2021.9564233
– volume: 33
  start-page: 19314
  year: 2020
  ident: ref_34
  article-title: Iterative deep graph learning for graph neural networks: Better and robust node embeddings
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_6
– ident: ref_32
  doi: 10.1145/3488560.3498408
– ident: ref_50
– ident: ref_46
– volume: 33
  start-page: 8017
  year: 2020
  ident: ref_38
  article-title: Subgraph neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_16
  doi: 10.1109/ICCISci.2019.8716389
– volume: 13
  start-page: 1443
  year: 2001
  ident: ref_19
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– ident: ref_43
– ident: ref_29
  doi: 10.1145/3459637.3482195
SSID ssj0000913810
Score 2.3262482
Snippet Graph anomaly detection aims at identifying rare, unusual entities in attributed networks with respect to their patterns or structures that deviate...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 8691
SubjectTerms Analysis
Datasets
Deep learning
Design
Detectors
Euclidean space
graph anomaly detection
graph autoencoders
graph neural networks
graph structure learning
Neighborhoods
Neural networks
Social network analysis
Social networks
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KyKE5lDzpNg90CKQ5mMiWVraOm2S3PYUWWshNjF4kkHrLrhPIv89I9obtIeTSq23MMKN5fGjmG4BTxMhFFK4oYySAIrQsEAMvrHXKN94JFJiXTdQ3N83trf6xtuor9YT19MC94i6ipF-h8FR2OFlWqFX0Y07HkNzDaZ_nyHmt18BUjsG6TNRV_UCeIFyf7oNT7m6ULv9JQZmp_614nJPMbBs-DdUhm_RS7cCH0O7C1hpn4C7sDN64ZF8HyujzPfg5be_yVT77lgio2eSxmyeGSh8WjKrS1dN2_gcfntl16HIDVstywwCj4JF5q9kwm5Re7cPv2fTX1fdiWJZQOKFEV4ToLUqvxlVAHpwM3teq1tpVgQcCWoF77iurrIiU1nUTpR1j461sBHcYvDiAjXbehs_AUJKfYioU4lgqm4a4VUWGK5u6ttzWIzhd6c_87TkxDGGJpGazpuYRXCbdvn6SiKzzAzKvGcxr3jPvCM6SZUxyt26BDoepAZI0EVeZSUNIulIUKkdwtDKeGfxwaURFQhGqrfmX_yHNIXys0v7f3AB4BBvd4jEcw6Z76u6Xi5N8BF8A9UTgRA
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhanced Graph Autoencoder for Graph Anomaly Detection Using Subgraph Information
URI https://www.proquest.com/docview/3239021070
https://doaj.org/article/f43f3a3d566c412a96fd50322088c9d7
Volume 15
WOSCitedRecordID wos001548983600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKywEO0BZQF0rlQyXgEOHEXsc5VVvYthxYLQikcrL8LEg0KdkUiX_fGa-3lAO99Bg7ykPz8Hz2zDeE7BsTGY_cFWWMAFB4IwpjAiusddIr77jhJjWbqGczdXrazPOG2yKnVa58YnLUvnO4R_6WV4DOAZ_U7ODiV4Fdo_B0NbfQuEc2kKkM9HzjcDqbf77eZUHWS1WyZWEehyfguTCu4Uo25T9LUWLs_59fTovN0eO7fuYmeZTDTDpZ6sUWWQvtNnl4g3xwm2xls17Q15l7-s0T8mnafk85AfQYmazp5HLokOrSh55CeLsabbtz8_MPfR-GlMnV0pR5QMELJQJsmouccOop-Xo0_fLupMhdFwrHJR-KEL01wstxFQwLTgTva1k3jasCC4DYAvPMV1ZaHuFHGxWFHRvlrVCcORM8f0bW264NO4QaAQZvMOKIYyEtVoPLCjSgVHVtma1HZH8lAH2xJNfQAEpQTvqGnEbkEIVzfQsyYqeBrj_T2cB0FKByhnsIT50oK9PI6McM3BW4Udd4eNcrFK1Gux1640wuP4AvRQYsPVEAySsJPndEdlei1dmgF_qvXJ_fPv2CPKiwRXDKEdwl60N_GV6S--738GPR72X93EvQH67mHz7Ov10BRbLyvQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwAFpALBTwoQg4RDix4yQHhBba0lXb1SIVqZyMPwEJkpJNQf1T_EbG3qSUA9x64OpEiZO8vJmxZ94AbCrlKfPMJKn3GKCwiidKOZpobYQtrWGKqdhsopjNyqOjar4CP4damJBWOXBiJGrbmLBG_pxlGJ1jfFLQl8ffktA1KuyuDi00lrDYc6c_MGRbvJhu4fd9nGU724evd5O-q0BimGBd4rzViluRZ05RZ7izthBFVZnMUYcRiaOW2kwLzTzeryo917kqreYlo0Y5y_C6l2CVB7CPYHU-PZi_P1vVCSqbZUqXhYAMZxz2oYPPUIoq_cP0xQ4Bf7MD0bjt3PjfXstNuN670WSyxP0arLh6Ha6dE1dch7Wethbkaa-t_ewWvN2uP8WcB_ImKHWTyUnXBClP61qC7vswWjdf1ZdTsuW6mKlWk5hZQZBlo8A36Yu4wqHb8O5CHvQOjOqmdneBKI6EpoJH5XMudKh2FxkiPC2LQlNdjGFz-ODyeCkeIjHoCriQ53AxhlcBDGenBMXvONC0H2VPINJz_KUUs-h-G55mqhLe5hTpGM2EqSze60mAkgy81LXKqL68AmcaFL7kpMzReRZoU8awMUBJ9oS1kL9xdO_fhx_Bld3Dg325P53t3YerWWiHHPMhN2DUtSfuAVw237vPi_Zh_28Q-HDRuPsFiBZQtA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJwAFpALBTwoQg4RHVs5-uA0MJ2YVVYLRJI7cn4s0WCbMmmoP41fh1jb1LKAW49cE2iOImf38w4M28AtpXylHtuktR7DFB4JRKlHE20NrktreGKq9hsopjNyv39ar4GP_tamJBW2XNiJGq7MGGPfIczjM4xPinoju_SIubjyYvjb0noIBX-tPbtNFYQ2XOnPzB8Wz6fjnGuHzM22f3w6k3SdRhIDM95mzhvtRI2z5hT1BnhrC3yoqoMc9RhdOKopZbpXHOPY1elFzpTpdWi5NQoZzne9xKso0su2ADW59N384OzHZ6guFmmdFUUyPHpwz_p4D-UeZX-YQZjt4C_2YRo6CY3_udPdBOud-41Ga3WwwasuXoTrp0TXdyEjY7OluRpp7n97Ba8362PYi4EeR0UvMnopF0EiU_rGoJufX-0XnxVX07J2LUxg60mMeOCIPtG4W_SFXeFU7fh44W86B0Y1Iva3QWiBBKdCp6Wz0SuQxV8zhD5aVkUmupiCNv95MvjlaiIxGAsYESew8gQXgZgnF0SlMDjgUVzKDtikV7gUlPcoltuRMpUlXubUaRpNB-msjjWkwArGfiqbZRRXdkFPmlQ_pKjMkOnOkdbM4StHlayI7Kl_I2pe_8-_QiuINjk2-ls7z5cZaFLckyT3IJB25y4B3DZfG8_L5uH3TIh8OmiYfcLDOdZdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Graph+Autoencoder+for+Graph+Anomaly+Detection+Using+Subgraph+Information&rft.jtitle=Applied+sciences&rft.au=Zhang%2C+Chi&rft.au=Jung%2C+Jin-Woo&rft.date=2025-08-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=15&rft.spage=8691&rft_id=info:doi/10.3390%2Fapp15158691&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15158691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon