Transfer learning and subword sampling for asymmetric-resource one-to-many neural translation

There are several approaches for improving neural machine translation for low-resource languages: monolingual data can be exploited via pretraining or data augmentation; parallel corpora on related language pairs can be used via parameter sharing or transfer learning in multilingual models; subword...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine translation Ročník 34; číslo 4; s. 251 - 286
Hlavní autoři: Grönroos, Stig-Arne, Virpioja, Sami, Kurimo, Mikko
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2020
Springer Nature B.V
Témata:
ISSN:0922-6567, 1573-0573
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:There are several approaches for improving neural machine translation for low-resource languages: monolingual data can be exploited via pretraining or data augmentation; parallel corpora on related language pairs can be used via parameter sharing or transfer learning in multilingual models; subword segmentation and regularization techniques can be applied to ensure high coverage of the vocabulary. We review these approaches in the context of an asymmetric-resource one-to-many translation task, in which the pair of target languages are related, with one being a very low-resource and the other a higher-resource language. We test various methods on three artificially restricted translation tasks—English to Estonian (low-resource) and Finnish (high-resource), English to Slovak and Czech, English to Danish and Swedish—and one real-world task, Norwegian to North Sámi and Finnish. The experiments show positive effects especially for scheduled multi-task learning, denoising autoencoder, and subword sampling.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0922-6567
1573-0573
DOI:10.1007/s10590-020-09253-x