Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals

•Classification of normal and MI ECG beats.•With and without noise ECG beats are considered.•Convolutional neural network is employed.•R peak detection is not performed.•Accuracy of 93.53% and 95.22% obtained for with and without noise respectively The electrocardiogram (ECG) is a useful diagnostic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 415-416; s. 190 - 198
Hlavní autoři: Acharya, U. Rajendra, Fujita, Hamido, Oh, Shu Lih, Hagiwara, Yuki, Tan, Jen Hong, Adam, Muhammad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.11.2017
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Classification of normal and MI ECG beats.•With and without noise ECG beats are considered.•Convolutional neural network is employed.•R peak detection is not performed.•Accuracy of 93.53% and 95.22% obtained for with and without noise respectively The electrocardiogram (ECG) is a useful diagnostic tool to diagnose various cardiovascular diseases (CVDs) such as myocardial infarction (MI). The ECG records the heart's electrical activity and these signals are able to reflect the abnormal activity of the heart. However, it is challenging to visually interpret the ECG signals due to its small amplitude and duration. Therefore, we propose a novel approach to automatically detect the MI using ECG signals. In this study, we implemented a convolutional neural network (CNN) algorithm for the automated detection of a normal and MI ECG beats (with noise and without noise). We achieved an average accuracy of 93.53% and 95.22% using ECG beats with noise and without noise removal respectively. Further, no feature extraction or selection is performed in this work. Hence, our proposed algorithm can accurately detect the unknown ECG signals even with noise. So, this system can be introduced in clinical settings to aid the clinicians in the diagnosis of MI.
AbstractList •Classification of normal and MI ECG beats.•With and without noise ECG beats are considered.•Convolutional neural network is employed.•R peak detection is not performed.•Accuracy of 93.53% and 95.22% obtained for with and without noise respectively The electrocardiogram (ECG) is a useful diagnostic tool to diagnose various cardiovascular diseases (CVDs) such as myocardial infarction (MI). The ECG records the heart's electrical activity and these signals are able to reflect the abnormal activity of the heart. However, it is challenging to visually interpret the ECG signals due to its small amplitude and duration. Therefore, we propose a novel approach to automatically detect the MI using ECG signals. In this study, we implemented a convolutional neural network (CNN) algorithm for the automated detection of a normal and MI ECG beats (with noise and without noise). We achieved an average accuracy of 93.53% and 95.22% using ECG beats with noise and without noise removal respectively. Further, no feature extraction or selection is performed in this work. Hence, our proposed algorithm can accurately detect the unknown ECG signals even with noise. So, this system can be introduced in clinical settings to aid the clinicians in the diagnosis of MI.
Author Oh, Shu Lih
Hagiwara, Yuki
Acharya, U. Rajendra
Tan, Jen Hong
Fujita, Hamido
Adam, Muhammad
Author_xml – sequence: 1
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 2
  givenname: Hamido
  surname: Fujita
  fullname: Fujita, Hamido
  email: HFujita-799@acm.org
  organization: Iwate Prefectural University (IPU), Faculty of Software and Information Science, Iwate 020-0693, Japan
– sequence: 3
  givenname: Shu Lih
  surname: Oh
  fullname: Oh, Shu Lih
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 4
  givenname: Yuki
  surname: Hagiwara
  fullname: Hagiwara, Yuki
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 5
  givenname: Jen Hong
  surname: Tan
  fullname: Tan, Jen Hong
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 6
  givenname: Muhammad
  surname: Adam
  fullname: Adam, Muhammad
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
BookMark eNp9kEFOwzAQRS1UJNrCAdjlAgljJ3USsaqqUpAqsYG15diTyiW1Izst6u1xW9iw6OpLM_-NNG9CRtZZJOSRQkaB8qdtZmzIGNAyA54BK2_ImFYlSzmr6YiMARikwGazOzIJYQsARcn5mIR533dGycE4m7g20Yh9opw9uG5_mskusbj35xi-nf9KWucTuR_cTg6oY39A9Qfvjk5Jr01sG9tKf1nsg7GbZLlYJcFs4sFwT27bGPjwm1Py-bL8WLym6_fV22K-TlXO8yHFWuq6nBVMNRyRV6hAK07LqsgV1YWqQFdK6RzLJm-ANTnlddEgY0XR1Lwt8imhl7vKuxA8tqL3Zif9UVAQJ2tiK6I1cbImgItoLTLlP0aZ4Wxn8NJ0V8nnC4nxpYNBL4IyaBVq46MioZ25Qv8ATWiMwA
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2918792
crossref_primary_10_1016_j_artmed_2021_102192
crossref_primary_10_1016_j_cmpb_2019_05_002
crossref_primary_10_1109_ACCESS_2022_3165966
crossref_primary_10_1016_j_compbiomed_2018_03_016
crossref_primary_10_3389_fcvm_2022_1001982
crossref_primary_10_1016_j_bspc_2023_105766
crossref_primary_10_1016_j_compbiomed_2021_104457
crossref_primary_10_1016_j_cmpb_2019_05_004
crossref_primary_10_1016_j_procs_2020_03_322
crossref_primary_10_3390_s23062993
crossref_primary_10_3389_fmed_2021_714811
crossref_primary_10_1109_JIOT_2021_3097946
crossref_primary_10_1016_j_knosys_2018_06_026
crossref_primary_10_1186_s12911_022_02035_w
crossref_primary_10_3390_app15105489
crossref_primary_10_3389_fncom_2020_564015
crossref_primary_10_1016_j_artmed_2021_102181
crossref_primary_10_1109_ACCESS_2022_3220670
crossref_primary_10_1016_j_bspc_2022_104041
crossref_primary_10_3390_s23208573
crossref_primary_10_1007_s11042_022_14305_w
crossref_primary_10_1080_23311916_2020_1723198
crossref_primary_10_2196_15931
crossref_primary_10_1007_s00521_018_03980_2
crossref_primary_10_1016_j_cmpb_2020_105596
crossref_primary_10_1088_1741_2552_aadc1f
crossref_primary_10_1007_s12652_022_03868_z
crossref_primary_10_1016_j_neucom_2021_04_063
crossref_primary_10_1038_s41598_018_33424_9
crossref_primary_10_1109_ACCESS_2023_3236506
crossref_primary_10_1016_j_bspc_2023_105506
crossref_primary_10_1016_j_cmpb_2025_108918
crossref_primary_10_1016_j_artmed_2021_102179
crossref_primary_10_1038_s44325_024_00040_8
crossref_primary_10_1007_s40995_018_0549_1
crossref_primary_10_1155_2021_6455053
crossref_primary_10_1007_s00500_022_06878_3
crossref_primary_10_1016_j_ins_2017_12_045
crossref_primary_10_1109_JSEN_2022_3221779
crossref_primary_10_3390_s23187756
crossref_primary_10_1109_TIM_2024_3449956
crossref_primary_10_14801_jkiit_2025_23_8_19
crossref_primary_10_3390_app10051609
crossref_primary_10_1088_1361_6579_ad46e1
crossref_primary_10_1371_journal_pone_0327108
crossref_primary_10_1063_5_0046582
crossref_primary_10_3390_s20174777
crossref_primary_10_1145_3534580
crossref_primary_10_1007_s11042_024_19558_1
crossref_primary_10_1371_journal_pone_0220294
crossref_primary_10_1007_s11042_021_10517_8
crossref_primary_10_1016_j_eswa_2024_125482
crossref_primary_10_3390_s20216318
crossref_primary_10_3390_s18041229
crossref_primary_10_1109_JIOT_2022_3188771
crossref_primary_10_1016_j_asoc_2023_110919
crossref_primary_10_1109_ACCESS_2020_3038210
crossref_primary_10_1007_s12652_018_0867_3
crossref_primary_10_1016_j_bspc_2020_101997
crossref_primary_10_1109_TCE_2021_3085888
crossref_primary_10_1016_j_compbiomed_2018_04_025
crossref_primary_10_1016_j_bbe_2017_11_003
crossref_primary_10_1016_j_eswa_2020_113202
crossref_primary_10_1109_TIM_2023_3301047
crossref_primary_10_1016_j_bspc_2023_105683
crossref_primary_10_1186_s12911_019_1012_8
crossref_primary_10_1016_j_patrec_2019_02_016
crossref_primary_10_1016_j_bspc_2022_104105
crossref_primary_10_1109_ACCESS_2024_3392965
crossref_primary_10_1038_s41746_024_01193_7
crossref_primary_10_1007_s42452_020_1992_0
crossref_primary_10_1016_j_bbe_2018_05_005
crossref_primary_10_1049_sil2_12072
crossref_primary_10_1016_j_bbe_2023_01_006
crossref_primary_10_1111_nyas_15288
crossref_primary_10_1016_j_eswa_2020_113697
crossref_primary_10_1109_JBHI_2019_2910082
crossref_primary_10_1016_j_cmpb_2024_108452
crossref_primary_10_1016_j_compbiomed_2017_08_022
crossref_primary_10_3390_sym14030571
crossref_primary_10_1002_ima_22965
crossref_primary_10_1109_ACCESS_2020_2975258
crossref_primary_10_1007_s11042_024_19740_5
crossref_primary_10_1016_j_bspc_2022_104238
crossref_primary_10_1016_j_compbiomed_2018_09_008
crossref_primary_10_1016_j_compbiomed_2018_09_009
crossref_primary_10_1016_j_eswa_2023_121523
crossref_primary_10_1049_htl_2020_0015
crossref_primary_10_3390_mti2030047
crossref_primary_10_1016_j_irbm_2019_12_001
crossref_primary_10_1007_s11042_020_09938_8
crossref_primary_10_1016_j_bbe_2020_04_004
crossref_primary_10_1016_j_bdr_2021_100271
crossref_primary_10_1016_j_future_2018_10_005
crossref_primary_10_1088_1361_6579_ac10aa
crossref_primary_10_1109_TAI_2022_3159505
crossref_primary_10_1016_j_procs_2020_03_340
crossref_primary_10_1016_j_knosys_2021_107187
crossref_primary_10_1007_s13369_024_09420_9
crossref_primary_10_1016_j_ijmedinf_2024_105476
crossref_primary_10_1177_09544119211029745
crossref_primary_10_1016_j_neunet_2018_08_023
crossref_primary_10_1080_0952813X_2018_1518999
crossref_primary_10_1007_s11280_019_00776_9
crossref_primary_10_1007_s40747_024_01419_x
crossref_primary_10_1016_j_asoc_2022_109552
crossref_primary_10_1016_j_bspc_2021_102906
crossref_primary_10_1016_j_jksuci_2023_101763
crossref_primary_10_1016_j_future_2017_08_039
crossref_primary_10_1007_s10489_023_04549_w
crossref_primary_10_1109_JSEN_2024_3523035
crossref_primary_10_1016_j_envsoft_2024_106261
crossref_primary_10_1007_s12652_021_03456_7
crossref_primary_10_1007_s11042_022_14302_z
crossref_primary_10_1007_s11760_019_01617_y
crossref_primary_10_1016_j_imu_2020_100479
crossref_primary_10_1016_j_ins_2021_04_036
crossref_primary_10_1109_JSEN_2021_3079241
crossref_primary_10_3390_s22166140
crossref_primary_10_1016_j_artmed_2020_101848
crossref_primary_10_1007_s11042_021_11176_5
crossref_primary_10_1016_j_eswa_2022_118398
crossref_primary_10_1073_pnas_2020620118
crossref_primary_10_1016_j_engstruct_2022_114172
crossref_primary_10_1109_TBME_2018_2877649
crossref_primary_10_1007_s11709_024_1125_8
crossref_primary_10_1109_ACCESS_2019_2946932
crossref_primary_10_1002_ett_4443
crossref_primary_10_1007_s00521_025_11319_x
crossref_primary_10_1016_j_bspc_2025_108630
crossref_primary_10_1016_j_inffus_2019_06_024
crossref_primary_10_3390_buildings14061635
crossref_primary_10_1016_j_procs_2018_05_034
crossref_primary_10_3390_bios9010017
crossref_primary_10_3390_mi14061155
crossref_primary_10_1016_j_bspc_2019_101700
crossref_primary_10_1016_j_procs_2022_09_342
crossref_primary_10_1007_s11042_020_08769_x
crossref_primary_10_26599_TST_2022_9010008
crossref_primary_10_1016_j_bspc_2023_104701
crossref_primary_10_1259_bjr_20201101
crossref_primary_10_3390_bioengineering9090430
crossref_primary_10_1007_s13755_023_00237_8
crossref_primary_10_1016_j_eswa_2023_122402
crossref_primary_10_38124_ijisrt_25may175
crossref_primary_10_1016_j_microc_2025_113083
crossref_primary_10_1088_2632_2153_abcf89
crossref_primary_10_1038_s41598_021_94363_6
crossref_primary_10_3390_s20030911
crossref_primary_10_1109_ACCESS_2020_3040166
crossref_primary_10_3389_fphys_2023_1118360
crossref_primary_10_1016_j_artmed_2024_102865
crossref_primary_10_3389_fphys_2022_961724
crossref_primary_10_1016_j_compbiomed_2018_08_003
crossref_primary_10_3390_ma15196757
crossref_primary_10_1088_1361_665X_abdd00
crossref_primary_10_1155_2021_4123471
crossref_primary_10_1109_JSEN_2024_3351918
crossref_primary_10_1177_14759217241263955
crossref_primary_10_1016_j_mri_2021_01_005
crossref_primary_10_1109_ACCESS_2024_3385787
crossref_primary_10_1109_JSEN_2019_2935552
crossref_primary_10_1371_journal_pone_0279305
crossref_primary_10_3390_app9163328
crossref_primary_10_1016_j_measurement_2019_06_023
crossref_primary_10_1088_1361_6579_aaf34d
crossref_primary_10_1109_JSEN_2019_2896308
crossref_primary_10_1016_j_ijcip_2019_100306
crossref_primary_10_3390_jpm12030336
crossref_primary_10_1016_j_cmpb_2022_107124
crossref_primary_10_3390_app9091879
crossref_primary_10_1007_s13246_019_00815_9
crossref_primary_10_1007_s10489_020_02167_4
crossref_primary_10_1109_JBHI_2018_2871510
crossref_primary_10_1016_j_future_2019_10_043
crossref_primary_10_1007_s13042_022_01718_0
crossref_primary_10_1155_2024_5822653
crossref_primary_10_1016_j_future_2020_10_024
crossref_primary_10_1007_s42114_024_00906_6
crossref_primary_10_1016_j_engappai_2020_104092
crossref_primary_10_1016_j_procs_2018_05_041
crossref_primary_10_1155_2022_9288452
crossref_primary_10_3390_e24040471
crossref_primary_10_1007_s40031_024_01167_z
crossref_primary_10_1016_j_bspc_2022_103493
crossref_primary_10_1016_j_cmpb_2019_104992
crossref_primary_10_1016_j_knosys_2020_105596
crossref_primary_10_1080_1448837X_2025_2457802
crossref_primary_10_3390_s18082497
crossref_primary_10_1016_j_compbiomed_2022_105550
crossref_primary_10_1016_j_bbe_2018_03_001
crossref_primary_10_1088_1757_899X_1022_1_012072
crossref_primary_10_1007_s13534_022_00246_8
crossref_primary_10_1016_j_bbe_2019_05_010
crossref_primary_10_1177_1475921720976989
crossref_primary_10_1109_TIM_2024_3418105
crossref_primary_10_3389_fphys_2022_840011
crossref_primary_10_1016_j_measurement_2025_116969
crossref_primary_10_1016_j_cmpb_2022_107062
crossref_primary_10_1016_j_compbiomed_2017_12_023
crossref_primary_10_1155_2022_6852845
crossref_primary_10_7717_peerj_cs_825
crossref_primary_10_1038_s41598_020_73126_9
crossref_primary_10_46604_aiti_2024_14034
crossref_primary_10_1109_TMC_2020_3012681
crossref_primary_10_1209_0295_5075_127_60004
crossref_primary_10_3389_fphys_2021_672875
crossref_primary_10_1016_j_compbiomed_2018_07_001
crossref_primary_10_1109_TCSII_2024_3355016
crossref_primary_10_1016_j_compbiomed_2018_07_005
crossref_primary_10_1109_TIM_2025_3552859
crossref_primary_10_1109_JBHI_2019_2952285
crossref_primary_10_1080_07388551_2020_1808582
crossref_primary_10_3390_s25175542
crossref_primary_10_1016_j_compbiomed_2018_12_012
crossref_primary_10_3390_s24030828
crossref_primary_10_1038_s41746_024_01410_3
crossref_primary_10_1109_TBCAS_2020_2974154
crossref_primary_10_1016_j_cmpb_2018_04_005
crossref_primary_10_1109_ACCESS_2025_3604728
crossref_primary_10_1007_s10916_018_1107_2
crossref_primary_10_1016_j_ins_2018_07_063
crossref_primary_10_3390_su15031862
crossref_primary_10_1007_s11760_022_02300_5
crossref_primary_10_1007_s10489_020_01906_x
crossref_primary_10_1109_JIOT_2022_3231862
crossref_primary_10_1016_j_compbiomed_2018_06_011
crossref_primary_10_1002_mp_16534
crossref_primary_10_1016_j_ins_2022_05_070
crossref_primary_10_1016_j_cmpb_2018_04_012
crossref_primary_10_1016_j_knosys_2019_105460
crossref_primary_10_1016_j_compbiomed_2018_06_002
crossref_primary_10_1109_ACCESS_2019_2930770
crossref_primary_10_1109_RBME_2018_2885714
crossref_primary_10_1109_ACCESS_2019_2959033
crossref_primary_10_1016_j_cmpb_2019_06_021
crossref_primary_10_1002_acm2_14298
crossref_primary_10_3389_fphys_2019_00809
crossref_primary_10_3390_s21051887
crossref_primary_10_1080_10255842_2023_2270101
crossref_primary_10_1016_j_chaos_2022_112333
crossref_primary_10_1038_s41467_020_15432_4
crossref_primary_10_3390_s22134960
crossref_primary_10_1109_JBHI_2021_3060433
crossref_primary_10_3390_bioengineering9040152
crossref_primary_10_1016_j_knosys_2019_04_023
crossref_primary_10_1109_TCSI_2023_3294181
crossref_primary_10_3390_buildings12111916
crossref_primary_10_1080_13682199_2023_2178608
crossref_primary_10_1016_j_iswa_2022_200165
crossref_primary_10_1109_ACCESS_2023_3312948
crossref_primary_10_1109_JSEN_2022_3146576
crossref_primary_10_3390_electronics11091495
crossref_primary_10_1016_j_ymssp_2021_107955
crossref_primary_10_3390_diagnostics12112843
crossref_primary_10_1016_j_bspc_2024_106214
crossref_primary_10_1016_j_future_2018_05_001
crossref_primary_10_1088_1742_6596_2188_1_012009
crossref_primary_10_1007_s11042_022_14233_9
crossref_primary_10_1061__ASCE_BE_1943_5592_0001531
crossref_primary_10_1007_s12530_019_09312_6
crossref_primary_10_1016_j_knosys_2018_09_001
crossref_primary_10_3390_app112210765
crossref_primary_10_3390_app9081526
crossref_primary_10_3390_s21248174
crossref_primary_10_3389_fonc_2020_588990
crossref_primary_10_1007_s10489_020_01790_5
crossref_primary_10_1016_j_irbm_2020_11_002
crossref_primary_10_3390_medicina59081394
crossref_primary_10_1016_j_eswa_2022_118933
crossref_primary_10_1109_ACCESS_2023_3285596
crossref_primary_10_1145_3344258
crossref_primary_10_1186_s13634_024_01197_1
crossref_primary_10_1109_ACCESS_2019_2927726
crossref_primary_10_1016_j_inffus_2024_102698
crossref_primary_10_1088_1361_6579_ad3d25
crossref_primary_10_1007_s11571_022_09918_8
crossref_primary_10_3390_jcm14103339
crossref_primary_10_1080_0952813X_2018_1544283
crossref_primary_10_1109_ACCESS_2020_3026968
crossref_primary_10_1109_ACCESS_2021_3061477
crossref_primary_10_1007_s42979_021_00721_6
crossref_primary_10_1109_ACCESS_2021_3128134
crossref_primary_10_1016_j_bspc_2022_103753
crossref_primary_10_1016_j_cmpb_2019_105219
crossref_primary_10_1088_1361_6579_adfda9
crossref_primary_10_1016_j_cogsys_2018_07_010
crossref_primary_10_1186_s12911_024_02415_4
crossref_primary_10_1016_j_cogsys_2019_09_027
crossref_primary_10_1016_j_heliyon_2024_e26147
crossref_primary_10_1002_jbt_23160
crossref_primary_10_1109_ACCESS_2022_3215665
crossref_primary_10_1186_s12938_025_01349_w
crossref_primary_10_32604_cmes_2021_016485
crossref_primary_10_1088_1361_6579_aae304
crossref_primary_10_1038_s41598_020_63566_8
crossref_primary_10_1088_1361_6579_ad2217
crossref_primary_10_3389_frai_2024_1354742
crossref_primary_10_3390_e19090488
crossref_primary_10_1016_j_ins_2018_09_051
crossref_primary_10_1016_j_knosys_2020_106591
crossref_primary_10_1016_j_bspc_2024_106253
crossref_primary_10_1016_j_cmpb_2023_107627
crossref_primary_10_1088_1361_6579_ac7938
crossref_primary_10_1145_3768580
crossref_primary_10_1109_ACCESS_2020_3008000
crossref_primary_10_1016_j_cmpb_2021_106379
crossref_primary_10_3390_computation13060130
crossref_primary_10_1117_1_JEI_34_1_013050
crossref_primary_10_1186_s12938_018_0441_4
crossref_primary_10_3390_s22041521
crossref_primary_10_1016_j_bspc_2025_107621
crossref_primary_10_1016_j_biopha_2021_111621
crossref_primary_10_1016_j_bspc_2020_102170
crossref_primary_10_1016_j_ins_2021_12_083
crossref_primary_10_1109_LSP_2020_3036314
crossref_primary_10_1016_j_asoc_2020_106383
crossref_primary_10_1016_j_smhl_2021_100221
crossref_primary_10_1007_s10489_018_1179_1
crossref_primary_10_1016_j_bspc_2019_04_003
crossref_primary_10_1016_j_cogsys_2019_09_001
crossref_primary_10_1007_s00521_019_04400_9
crossref_primary_10_1007_s12652_020_02630_7
crossref_primary_10_3389_fcvm_2022_860032
crossref_primary_10_1111_mice_12602
crossref_primary_10_3390_bios8040101
crossref_primary_10_1007_s10921_023_01021_0
crossref_primary_10_3390_electronics11233976
crossref_primary_10_1016_j_bspc_2021_102683
crossref_primary_10_1016_j_cmpb_2021_106024
crossref_primary_10_1007_s11571_022_09870_7
crossref_primary_10_1016_j_bspc_2021_102674
crossref_primary_10_1016_j_jmapro_2019_06_023
crossref_primary_10_1109_ACCESS_2024_3491073
crossref_primary_10_1016_j_bspc_2021_102678
crossref_primary_10_3390_s20236722
crossref_primary_10_1007_s42979_024_03560_3
crossref_primary_10_3390_s21113760
crossref_primary_10_3390_s21051906
crossref_primary_10_7717_peerj_cs_1189
crossref_primary_10_3390_s22041660
crossref_primary_10_1016_j_jfca_2020_103566
crossref_primary_10_1016_j_cmpb_2019_03_012
crossref_primary_10_1016_j_cmpb_2019_105138
crossref_primary_10_1016_j_cmpb_2021_106035
crossref_primary_10_3390_e21030305
crossref_primary_10_1016_j_ins_2020_07_045
crossref_primary_10_3390_app13158699
crossref_primary_10_1109_ACCESS_2022_3143793
crossref_primary_10_1016_j_eswa_2023_123114
crossref_primary_10_1109_LSENS_2024_3450176
crossref_primary_10_1038_s41598_021_84374_8
crossref_primary_10_3390_bioengineering10050607
crossref_primary_10_1016_j_compbiomed_2021_104807
crossref_primary_10_1016_j_eswa_2020_113911
crossref_primary_10_1016_j_aap_2021_106514
crossref_primary_10_1007_s00500_021_06653_w
crossref_primary_10_1016_j_eswa_2018_04_021
crossref_primary_10_1016_j_transproceed_2022_12_005
crossref_primary_10_3390_ijerph191711136
crossref_primary_10_1016_j_asoc_2019_105740
crossref_primary_10_1093_jigpal_jzae102
crossref_primary_10_1007_s42600_021_00176_x
crossref_primary_10_3389_fcvm_2022_797207
crossref_primary_10_1016_j_knosys_2021_107508
crossref_primary_10_3390_diagnostics15111414
crossref_primary_10_1016_j_bbe_2020_09_005
crossref_primary_10_1109_JSEN_2020_2984493
crossref_primary_10_1002_acs_3926
crossref_primary_10_1016_j_ins_2023_119006
crossref_primary_10_1155_2022_5054641
crossref_primary_10_3390_s23084027
crossref_primary_10_1016_j_matpr_2020_07_088
crossref_primary_10_2478_jce_2023_0019
crossref_primary_10_1007_s11063_022_10949_9
crossref_primary_10_1016_j_bspc_2024_106968
crossref_primary_10_1016_j_compbiomed_2022_106199
crossref_primary_10_1016_j_irbm_2019_09_003
crossref_primary_10_1109_ACCESS_2019_2921568
crossref_primary_10_3390_bioengineering9070268
crossref_primary_10_1007_s11042_023_17619_5
crossref_primary_10_1016_j_knosys_2019_104923
crossref_primary_10_1109_TCSII_2019_2912906
crossref_primary_10_3389_fphys_2022_783184
crossref_primary_10_1016_j_compbiomed_2019_103346
crossref_primary_10_1109_ACCESS_2024_3387041
crossref_primary_10_1109_TIM_2023_3258521
crossref_primary_10_1007_s00530_020_00728_8
crossref_primary_10_1016_j_bspc_2020_102262
crossref_primary_10_3390_bios14040183
crossref_primary_10_1016_j_future_2018_08_044
crossref_primary_10_1016_j_artmed_2019_101789
crossref_primary_10_1515_bmt_2021_0146
crossref_primary_10_1007_s00521_018_3616_9
crossref_primary_10_1016_j_eswa_2025_126901
crossref_primary_10_1515_hsz_2020_0169
crossref_primary_10_1016_j_bspc_2018_05_013
crossref_primary_10_1007_s11042_020_10150_x
crossref_primary_10_1016_j_bspc_2023_105463
crossref_primary_10_1109_ACCESS_2019_2955555
crossref_primary_10_1016_j_imu_2018_08_002
crossref_primary_10_1109_TIM_2021_3132833
crossref_primary_10_1038_s41467_020_17804_2
crossref_primary_10_1016_j_patrec_2020_06_016
crossref_primary_10_1038_s41598_024_53142_9
crossref_primary_10_1016_j_cmpb_2019_105286
crossref_primary_10_1016_j_cmpb_2021_106487
crossref_primary_10_1016_j_neuri_2022_100087
crossref_primary_10_1016_j_asoc_2024_112031
crossref_primary_10_1016_j_cmpb_2021_106006
crossref_primary_10_1016_j_cmpb_2021_106483
crossref_primary_10_1109_TIM_2021_3104394
crossref_primary_10_1007_s10489_021_02368_5
crossref_primary_10_1016_j_asoc_2025_113655
crossref_primary_10_1016_j_neucom_2020_07_056
crossref_primary_10_3390_jcm11185408
crossref_primary_10_3390_s20041020
crossref_primary_10_3390_jsan13050052
crossref_primary_10_1016_j_compbiomed_2019_103394
crossref_primary_10_3390_app11177920
crossref_primary_10_1117_1_JMI_11_2_024003
crossref_primary_10_2174_1574893616666211108094205
crossref_primary_10_1007_s12206_024_0345_0
crossref_primary_10_1007_s13246_023_01293_w
crossref_primary_10_1080_14779072_2020_1732208
crossref_primary_10_1109_ACCESS_2023_3347610
crossref_primary_10_1007_s00500_022_07729_x
crossref_primary_10_1007_s11042_023_17101_2
crossref_primary_10_1155_2022_8559011
crossref_primary_10_1007_s00521_019_04061_8
crossref_primary_10_3390_computers13050109
crossref_primary_10_1007_s43926_025_00157_x
crossref_primary_10_1109_ACCESS_2021_3097614
crossref_primary_10_3390_s19133021
crossref_primary_10_1088_1361_6579_ac7fd9
crossref_primary_10_1016_j_saa_2024_124189
crossref_primary_10_1016_j_isci_2024_110167
crossref_primary_10_1007_s11042_020_10043_z
crossref_primary_10_1109_JBHI_2019_2919732
crossref_primary_10_1007_s10489_021_02696_6
crossref_primary_10_12688_f1000research_51049_1
crossref_primary_10_1155_2021_6046184
crossref_primary_10_1016_j_ins_2021_06_009
crossref_primary_10_1016_j_knosys_2018_07_019
crossref_primary_10_1007_s12652_020_02536_4
crossref_primary_10_3390_bios12010015
crossref_primary_10_1109_ACCESS_2019_2936516
crossref_primary_10_1109_ACCESS_2022_3206782
crossref_primary_10_3389_fcvm_2022_983543
crossref_primary_10_1007_s10479_021_04006_2
crossref_primary_10_1080_24725579_2019_1583703
crossref_primary_10_1016_j_enconman_2019_06_062
crossref_primary_10_3390_electronics9010142
crossref_primary_10_1109_ACCESS_2019_2919068
crossref_primary_10_1016_j_cmpb_2021_106312
crossref_primary_10_3390_jcm13041033
crossref_primary_10_1007_s11042_022_11957_6
crossref_primary_10_3390_electronics9060951
crossref_primary_10_1016_j_ijcard_2021_11_039
crossref_primary_10_1016_j_compbiomed_2017_09_017
crossref_primary_10_1088_2057_1976_abfd83
crossref_primary_10_1134_S1054661819040151
crossref_primary_10_1016_j_medengphy_2024_104196
crossref_primary_10_1016_j_trac_2022_116549
crossref_primary_10_1007_s42452_021_04162_x
crossref_primary_10_1016_j_imu_2023_101284
crossref_primary_10_1016_j_ins_2020_10_014
crossref_primary_10_1016_j_foodcont_2020_107572
crossref_primary_10_1109_TETCI_2019_2907718
crossref_primary_10_1016_j_ins_2024_121516
crossref_primary_10_1007_s11042_023_17246_0
crossref_primary_10_1016_j_knosys_2020_106083
crossref_primary_10_1016_j_bspc_2024_106882
crossref_primary_10_1016_j_bspc_2023_105498
crossref_primary_10_1007_s13246_024_01444_7
crossref_primary_10_1109_ACCESS_2021_3093487
crossref_primary_10_1007_s12065_020_00462_0
crossref_primary_10_1109_JSEN_2021_3056530
crossref_primary_10_1007_s11760_022_02155_w
crossref_primary_10_1016_j_ins_2021_06_022
crossref_primary_10_1007_s11633_018_1136_9
crossref_primary_10_3390_biomedicines10082013
Cites_doi 10.1016/j.ins.2016.10.013
10.1007/s12194-017-0394-5
10.1038/nature14539
10.1109/JBHI.2016.2636665
10.1109/TMI.2016.2553401
10.1109/TMI.2016.2526689
10.1016/j.jbmt.2004.04.001
10.1109/ICCV.2015.123
10.4236/jbise.2014.710081
10.1016/j.compbiomed.2014.02.012
10.1016/j.compbiomed.2014.08.010
10.1161/01.CIR.101.23.e215
10.1109/TBME.2015.2405134
10.1016/j.jocs.2017.02.006
10.1161/CIR.0000000000000366
10.1109/TMI.2016.2538465
10.1109/TBME.2012.2213597
10.1016/j.ins.2017.04.012
10.1007/s10916-009-9314-5
10.1109/TBME.1985.325532
10.1109/RBME.2012.2184750
10.1109/TMI.2016.2532122
10.1001/jama.2016.17216
10.1016/j.knosys.2016.01.040
10.1016/j.dsp.2005.12.003
10.1109/TMI.2016.2535302
10.1109/TMI.2016.2536809
10.1007/s10916-010-9474-3
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2017.06.027
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 198
ExternalDocumentID 10_1016_j_ins_2017_06_027
S0020025517308009
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-e9ad97542cb6ee68ec0dc617843c1d4c80d8ccd3e7b3b02b31694be2244b96f43
ISICitedReferencesCount 595
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409151300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 22:12:03 EST 2025
Sat Nov 29 06:25:03 EST 2025
Fri Feb 23 02:33:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Myocardial infarction
Electrocardiogram signals
Convolution neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-e9ad97542cb6ee68ec0dc617843c1d4c80d8ccd3e7b3b02b31694be2244b96f43
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_ins_2017_06_027
crossref_citationtrail_10_1016_j_ins_2017_06_027
elsevier_sciencedirect_doi_10_1016_j_ins_2017_06_027
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Acharya, Fujita, Oh, Hagiwara, Tan, Muhammad (bib0003) 2017; 405
Faust, Acharya, Tamura (bib0009) 2012; 5
(bib0027) 2015
Singh, Tiwari (bib0034) 2006; 16
LeCun, Bengio, Hinton (bib0023) 2015; 521
Acharya, Fujita, Muhammad, Oh, Sudarshan, Tan, Koh, Hagiwara, Chua, Chua, Tan (bib0001) 2017; 337
Goodfellow, Bengio, Courville (bib0012) 2016
Hatipoglu, Bilgin (bib0016) 2017
Tan, Acharya, Bhandary, Chua, Sivaprasad (bib0037) 2017
Arif, Malagore, Afsar (bib0005) 2012; 36
Sun, Lu, Yang, Li (bib0035) 2012; 59
Lahiri, Kumar, Mishra, Sarkar, Roy (bib0022) 2009; 68
J. Bouvrie, Notes on convolutional neural network, 2007.
Jayachandran, Joseph, Acharya (bib0018) 2010; 34
Mozaffarian, Benjamin, Go, Arnett, Blaha, Cushman, Das, de. Ferranti, Després, Fullerton, Howard, Huffman, Isasi, Jiménez, Judd, Kissela, Lichtman, Lisabeth, Liu, Mackey, Magid, McGuire, Mohler, Moy, Muntner, Mussolino, Nasir, Neumar, Nichol, Palaniappan, Pandey, Reeves, Rodriguez, Rosamond, Sorlie, Stein, Towfighi, Turan, Virani, Woo, Yeh, Turner (bib0026) 2016
Ginneken (bib0010) 2017; 10
Safdarian, Dabanloo, Attarodi (bib0031) 2014; 7
van. Grinsven, van Grinneken, Hoyng, Theelen, Sánchez (bib0014) 2016; 35
Sharma, Tripathy, Dandapat (bib0033) 2015; 62
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib0011) 2000; 101
Pereira, Pinto, Alves, Silva (bib0029) 2016; 35
Banerjee, Mitra (bib0006) 2012; 1
Krizhevsky, Sutskever, Hinton (bib0020) 2012; 25
Tuzlukov (bib0038) 2010
Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros, Kim, Raman, Nelson, Mega, Webster (bib0015) 2016; 16
Acharya, Fujita, Sudarshan, Oh, Adam, Koh, Tan, Ghista, Martis, Chua, Chua, Tan (bib0002) 2016; 99
Kallenberg, Petersen, Nielsen, Ng, Diao, Igel, Vachon, Holland, Winkel, Karssemeijer, Lillholm (bib0019) 2016; 35
Greenspan, Summers, van Ginneken (bib0013) 2016; 35
Tajbakhsh, Shin, Gurundu, Hurst, Kendall, Gotway, Liang (bib0036) 2016; 35
Setio, Ciompi, Litjens, Gerke, Jacobs, van Riel, Wille, Naqibullah, Sánchex, van Ginneken (bib0032) 2016; 35
Martis, Acharya, Adeli (bib0025) 2014; 48
Liu, Liu, Wang, Huang, Li, Zheng, Luo, Zhou (bib0024) 2015; 61
Pan, Tompkins (bib0028) 1985; 32
Duda, Hart, Stork (bib0008) 2001
Acharya, Kannathal, Lee, Leong (bib0004) 2005; 9
Ravi, Wong, Deligianni, Berthelot, Andreu-Perez, Lo, Yang (bib0030) 2017; 21
He.K. Zhang, X. Ren, S. Sun, Delving deep into rectifiers: surpassing human-level performance on image net classification, 1026–1034, 2015.
Kulick, Marks, Davis (bib0021) 2015
Mozaffarian (10.1016/j.ins.2017.06.027_bib0026) 2016
Jayachandran (10.1016/j.ins.2017.06.027_bib0018) 2010; 34
Gulshan (10.1016/j.ins.2017.06.027_bib0015) 2016; 16
Greenspan (10.1016/j.ins.2017.06.027_bib0013) 2016; 35
van. Grinsven (10.1016/j.ins.2017.06.027_bib0014) 2016; 35
Krizhevsky (10.1016/j.ins.2017.06.027_bib0020) 2012; 25
Pereira (10.1016/j.ins.2017.06.027_bib0029) 2016; 35
Faust (10.1016/j.ins.2017.06.027_bib0009) 2012; 5
Singh (10.1016/j.ins.2017.06.027_bib0034) 2006; 16
10.1016/j.ins.2017.06.027_bib0007
Setio (10.1016/j.ins.2017.06.027_bib0032) 2016; 35
Sharma (10.1016/j.ins.2017.06.027_bib0033) 2015; 62
Acharya (10.1016/j.ins.2017.06.027_bib0003) 2017; 405
Liu (10.1016/j.ins.2017.06.027_bib0024) 2015; 61
Acharya (10.1016/j.ins.2017.06.027_bib0001) 2017; 337
Kulick (10.1016/j.ins.2017.06.027_bib0021)
Safdarian (10.1016/j.ins.2017.06.027_bib0031) 2014; 7
Tajbakhsh (10.1016/j.ins.2017.06.027_bib0036) 2016; 35
Acharya (10.1016/j.ins.2017.06.027_bib0002) 2016; 99
Martis (10.1016/j.ins.2017.06.027_bib0025) 2014; 48
Banerjee (10.1016/j.ins.2017.06.027_bib0006) 2012; 1
Sun (10.1016/j.ins.2017.06.027_bib0035) 2012; 59
Hatipoglu (10.1016/j.ins.2017.06.027_bib0016) 2017
Tan (10.1016/j.ins.2017.06.027_bib0037) 2017
Tuzlukov (10.1016/j.ins.2017.06.027_bib0038) 2010
Kallenberg (10.1016/j.ins.2017.06.027_bib0019) 2016; 35
Arif (10.1016/j.ins.2017.06.027_bib0005) 2012; 36
Lahiri (10.1016/j.ins.2017.06.027_bib0022) 2009; 68
Acharya (10.1016/j.ins.2017.06.027_bib0004) 2005; 9
10.1016/j.ins.2017.06.027_bib0017
Pan (10.1016/j.ins.2017.06.027_bib0028) 1985; 32
Goldberger (10.1016/j.ins.2017.06.027_bib0011) 2000; 101
LeCun (10.1016/j.ins.2017.06.027_bib0023) 2015; 521
Ginneken (10.1016/j.ins.2017.06.027_bib0010) 2017; 10
Goodfellow (10.1016/j.ins.2017.06.027_bib0012) 2016
Duda (10.1016/j.ins.2017.06.027_bib0008) 2001
Ravi (10.1016/j.ins.2017.06.027_bib0030) 2017; 21
References_xml – volume: 35
  start-page: 1153
  year: 2016
  end-page: 1159
  ident: bib0013
  article-title: Deep learning in medical imaging: overview and future promise of an exciting new technique
  publication-title: IEEE Trans. Med. Imaging
– volume: 5
  start-page: 15
  year: 2012
  end-page: 28
  ident: bib0009
  article-title: Formal design methods for reliable computer-aided diagnosis: a review
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 10
  start-page: 23
  year: 2017
  end-page: 32
  ident: bib0010
  article-title: Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning
  publication-title: Radiol. Phys. Technol.
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib0011
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 16
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bib0015
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– year: 2001
  ident: bib0008
  article-title: Pattern Classification
– volume: 35
  start-page: 1160
  year: 2016
  end-page: 1169
  ident: bib0032
  article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
  publication-title: IEEE Trans. Med. Imaging
– year: 2015
  ident: bib0021
  article-title: Heart Attack (Myocardial Infarction)
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0023
  article-title: Deep learning
  publication-title: Nature
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  ident: bib0036
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning
  publication-title: IEEE Trans. Med. Imaging
– volume: 35
  start-page: 1322
  year: 2016
  end-page: 1331
  ident: bib0019
  article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
  publication-title: IEEE Trans. Med. Imaging
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: bib0003
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ecg segments with convolutional neural network
  publication-title: Inf. Sci.
– volume: 34
  start-page: 985
  year: 2010
  end-page: 992
  ident: bib0018
  article-title: Analysis of myocardial infarction using discrete wavelet transform
  publication-title: J. Med. Syst.
– year: 2016
  ident: bib0012
  article-title: Deep Learning
– volume: 7
  start-page: 818
  year: 2014
  end-page: 824
  ident: bib0031
  article-title: New pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ECG signal
  publication-title: J. Biomed. Sci. Eng.
– reference: J. Bouvrie, Notes on convolutional neural network, 2007.
– year: 2015
  ident: bib0027
  article-title: What is a Heart Attack
– volume: 16
  start-page: 275
  year: 2006
  end-page: 287
  ident: bib0034
  article-title: Optimal selection of wavelet basis function applied to ECG signal denoising
  publication-title: Digital Signal Process.
– year: 2017
  ident: bib0037
  article-title: Segmentation of optic disc, fovea, and retinal vasculature using a single convolutional neural network
  publication-title: J. Comput. Sci.
– volume: 337
  start-page: 17
  year: 2017
  end-page: 29
  ident: bib0001
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study
  publication-title: Inf. Sci.
– volume: 62
  start-page: 1827
  year: 2015
  end-page: 1837
  ident: bib0033
  article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 32
  start-page: 230
  year: 1985
  end-page: 236
  ident: bib0028
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1
  year: 2017
  end-page: 20
  ident: bib0016
  article-title: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships
  publication-title: Med. Biol. Eng. Comput.
– volume: 68
  start-page: 866
  year: 2009
  end-page: 870
  ident: bib0022
  article-title: Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction
  publication-title: J. Scient. Industr. Res.
– year: 2016
  ident: bib0026
  article-title: Heart disease and stroke statistics–2016 update
  publication-title: Circulation
– volume: 48
  start-page: 133
  year: 2014
  end-page: 149
  ident: bib0025
  article-title: Current methods in electrocardiogram characterization
  publication-title: Comput. Biol. Med.
– volume: 25
  year: 2012
  ident: bib0020
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Neural Information Processing Systems Conference
– volume: 9
  start-page: 134
  year: 2005
  end-page: 141
  ident: bib0004
  article-title: Study of heart rate variability signals at sitting and lying postures
  publication-title: J. Body Mov. Ther.
– reference: He.K. Zhang, X. Ren, S. Sun, Delving deep into rectifiers: surpassing human-level performance on image net classification, 1026–1034, 2015.
– year: 2010
  ident: bib0038
  article-title: Signal Processing Noise Electrical Engineering, and Applied Signal Processing Series
– volume: 1
  start-page: 88
  year: 2012
  end-page: 92
  ident: bib0006
  article-title: Cross wavelet transform based analysis of electrocardiogram signals
  publication-title: Int. J. Electr., Electron. Comput. Eng.
– volume: 35
  start-page: 1273
  year: 2016
  end-page: 1284
  ident: bib0014
  article-title: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images
  publication-title: IEEE Trans. Med. Imaging
– volume: 59
  start-page: 3348
  year: 2012
  end-page: 3356
  ident: bib0035
  article-title: ECG analysis using multiple instance learning for myocardial infarction detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 99
  start-page: 146
  year: 2016
  end-page: 156
  ident: bib0002
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
  publication-title: Knowl.-Based Syst.
– volume: 35
  start-page: 1240
  year: 2016
  end-page: 1251
  ident: bib0029
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imaging
– volume: 21
  start-page: 4
  year: 2017
  end-page: 21
  ident: bib0030
  article-title: Deep leaning for health informatics
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 61
  start-page: 178
  year: 2015
  end-page: 184
  ident: bib0024
  article-title: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection
  publication-title: Comput. Biol. Med.
– volume: 36
  start-page: 279
  year: 2012
  end-page: 289
  ident: bib0005
  article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier
  publication-title: J. Med. Syst.
– volume: 337
  start-page: 17
  year: 2017
  ident: 10.1016/j.ins.2017.06.027_bib0001
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.10.013
– volume: 10
  start-page: 23
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2017.06.027_bib0010
  article-title: Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning
  publication-title: Radiol. Phys. Technol.
  doi: 10.1007/s12194-017-0394-5
– year: 2010
  ident: 10.1016/j.ins.2017.06.027_bib0038
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.ins.2017.06.027_bib0023
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 21
  start-page: 4
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2017.06.027_bib0030
  article-title: Deep leaning for health informatics
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2636665
– volume: 35
  start-page: 1153
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2017.06.027_bib0013
  article-title: Deep learning in medical imaging: overview and future promise of an exciting new technique
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2553401
– volume: 35
  start-page: 1273
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2017.06.027_bib0014
  article-title: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2526689
– volume: 25
  year: 2012
  ident: 10.1016/j.ins.2017.06.027_bib0020
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 9
  start-page: 134
  year: 2005
  ident: 10.1016/j.ins.2017.06.027_bib0004
  article-title: Study of heart rate variability signals at sitting and lying postures
  publication-title: J. Body Mov. Ther.
  doi: 10.1016/j.jbmt.2004.04.001
– start-page: 1
  year: 2017
  ident: 10.1016/j.ins.2017.06.027_bib0016
  article-title: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships
  publication-title: Med. Biol. Eng. Comput.
– ident: 10.1016/j.ins.2017.06.027_bib0017
  doi: 10.1109/ICCV.2015.123
– ident: 10.1016/j.ins.2017.06.027_bib0021
– volume: 1
  start-page: 88
  issue: 2
  year: 2012
  ident: 10.1016/j.ins.2017.06.027_bib0006
  article-title: Cross wavelet transform based analysis of electrocardiogram signals
  publication-title: Int. J. Electr., Electron. Comput. Eng.
– volume: 7
  start-page: 818
  issue: 10
  year: 2014
  ident: 10.1016/j.ins.2017.06.027_bib0031
  article-title: New pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ECG signal
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2014.710081
– volume: 48
  start-page: 133
  year: 2014
  ident: 10.1016/j.ins.2017.06.027_bib0025
  article-title: Current methods in electrocardiogram characterization
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.02.012
– volume: 61
  start-page: 178
  year: 2015
  ident: 10.1016/j.ins.2017.06.027_bib0024
  article-title: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.08.010
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.ins.2017.06.027_bib0011
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– year: 2001
  ident: 10.1016/j.ins.2017.06.027_bib0008
– volume: 62
  start-page: 1827
  issue: 7
  year: 2015
  ident: 10.1016/j.ins.2017.06.027_bib0033
  article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2405134
– year: 2017
  ident: 10.1016/j.ins.2017.06.027_bib0037
  article-title: Segmentation of optic disc, fovea, and retinal vasculature using a single convolutional neural network
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.02.006
– year: 2016
  ident: 10.1016/j.ins.2017.06.027_bib0026
  article-title: Heart disease and stroke statistics–2016 update
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000366
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2017.06.027_bib0029
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– volume: 59
  start-page: 3348
  issue: 12
  year: 2012
  ident: 10.1016/j.ins.2017.06.027_bib0035
  article-title: ECG analysis using multiple instance learning for myocardial infarction detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2213597
– year: 2016
  ident: 10.1016/j.ins.2017.06.027_bib0012
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.ins.2017.06.027_bib0003
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ecg segments with convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.012
– volume: 34
  start-page: 985
  year: 2010
  ident: 10.1016/j.ins.2017.06.027_bib0018
  article-title: Analysis of myocardial infarction using discrete wavelet transform
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9314-5
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  ident: 10.1016/j.ins.2017.06.027_bib0028
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 5
  start-page: 15
  year: 2012
  ident: 10.1016/j.ins.2017.06.027_bib0009
  article-title: Formal design methods for reliable computer-aided diagnosis: a review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2012.2184750
– volume: 35
  start-page: 1322
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2017.06.027_bib0019
  article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2532122
– volume: 16
  start-page: 2402
  issue: 22
  year: 2016
  ident: 10.1016/j.ins.2017.06.027_bib0015
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 99
  start-page: 146
  year: 2016
  ident: 10.1016/j.ins.2017.06.027_bib0002
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.01.040
– ident: 10.1016/j.ins.2017.06.027_bib0007
– volume: 16
  start-page: 275
  issue: 3
  year: 2006
  ident: 10.1016/j.ins.2017.06.027_bib0034
  article-title: Optimal selection of wavelet basis function applied to ECG signal denoising
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2005.12.003
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2017.06.027_bib0036
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 68
  start-page: 866
  year: 2009
  ident: 10.1016/j.ins.2017.06.027_bib0022
  article-title: Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction
  publication-title: J. Scient. Industr. Res.
– volume: 35
  start-page: 1160
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2017.06.027_bib0032
  article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2536809
– volume: 36
  start-page: 279
  year: 2012
  ident: 10.1016/j.ins.2017.06.027_bib0005
  article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9474-3
SSID ssj0004766
Score 2.6860578
Snippet •Classification of normal and MI ECG beats.•With and without noise ECG beats are considered.•Convolutional neural network is employed.•R peak detection is not...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 190
SubjectTerms Convolution neural network
Deep learning
Electrocardiogram signals
Myocardial infarction
Title Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
URI https://dx.doi.org/10.1016/j.ins.2017.06.027
Volume 415-416
WOSCitedRecordID wos000409151300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQc4oLaAKLRoD4gDkVHs3di7x6hKaStUIWilcLLs3TV1mjpRYpf2J_EvmX34kRYQIHFxIttrW57PM9_OzgOh14wQpcudwiQnCzyaJdJjVIReCOZJZiJTCUtMs4no9JRNJvxjr_e9zoW5nkVFwW5u-OK_ihr2gbB16uxfiLu5KOyA_yB02ILYYftHgh-1S9KaCUqlFia23N0URKJrWJofEwFu4yircg7cFdinVKUS9eCrWzB1S5NbAo8GL8ocqIx_YXzwvq-jP5LZqstwXX6TOdGZ14a2j3SO162hq-fv-p-SqSrksrELh9U0t1z2KLnK5bzx_xrPz-eLqv8hv2g15tf8W2KaJPW_VJd513sBFtFf8140aTVrUZ-aw3p6smONlNXMLAq8MLCtvWrVDezDo35XAfu2-aiz5b7tcH3PTFiPxRTmNrpiux-ZEq62RsGd6tt6MdvMu3xQhcykim4G0ZCDAt0cHY8nJ20SbmQXxutnr5fQTTDhnRv9nAR1iM3ZFnrsZiR4ZJG0jXqq2EGPOnUqd9C-y27Bb3BHvNjZhSdo1cEcnmdYYw6vYQ5bzGGHOQwXwQ3mcIM5PbjFHG4xhw3mMGAOO8w9ReeH47ODI8918_AECUnpKZ5IrvstizRUKmRKDKTQCaqUCF9SwQaSCSGJilKSDoKU-CGnqQKKSVMeZpQ8QxvFvFDPESYyHRI-1OcrGiQyDdhQchkpyXhKCN9Fg_r1xsKVutcdV2ZxHdM4jUEisZZIrOM6g2gXvW2GLGydl9-dTGuZxe5LsgQ0BoD9etiLfxv2Ej1sv5w9tFEuK7WPHojrMl8tXzkY_gCuXLv-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+convolutional+neural+network+for+automated+detection+of+myocardial+infarction+using+ECG+signals&rft.jtitle=Information+sciences&rft.au=Acharya%2C+U.+Rajendra&rft.au=Fujita%2C+Hamido&rft.au=Oh%2C+Shu+Lih&rft.au=Hagiwara%2C+Yuki&rft.date=2017-11-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=415-416&rft.spage=190&rft.epage=198&rft_id=info:doi/10.1016%2Fj.ins.2017.06.027&rft.externalDocID=S0020025517308009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon