Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
•Classification of normal and MI ECG beats.•With and without noise ECG beats are considered.•Convolutional neural network is employed.•R peak detection is not performed.•Accuracy of 93.53% and 95.22% obtained for with and without noise respectively The electrocardiogram (ECG) is a useful diagnostic...
Gespeichert in:
| Veröffentlicht in: | Information sciences Jg. 415-416; S. 190 - 198 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.11.2017
|
| Schlagworte: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Classification of normal and MI ECG beats.•With and without noise ECG beats are considered.•Convolutional neural network is employed.•R peak detection is not performed.•Accuracy of 93.53% and 95.22% obtained for with and without noise respectively
The electrocardiogram (ECG) is a useful diagnostic tool to diagnose various cardiovascular diseases (CVDs) such as myocardial infarction (MI). The ECG records the heart's electrical activity and these signals are able to reflect the abnormal activity of the heart. However, it is challenging to visually interpret the ECG signals due to its small amplitude and duration. Therefore, we propose a novel approach to automatically detect the MI using ECG signals. In this study, we implemented a convolutional neural network (CNN) algorithm for the automated detection of a normal and MI ECG beats (with noise and without noise). We achieved an average accuracy of 93.53% and 95.22% using ECG beats with noise and without noise removal respectively. Further, no feature extraction or selection is performed in this work. Hence, our proposed algorithm can accurately detect the unknown ECG signals even with noise. So, this system can be introduced in clinical settings to aid the clinicians in the diagnosis of MI. |
|---|---|
| AbstractList | •Classification of normal and MI ECG beats.•With and without noise ECG beats are considered.•Convolutional neural network is employed.•R peak detection is not performed.•Accuracy of 93.53% and 95.22% obtained for with and without noise respectively
The electrocardiogram (ECG) is a useful diagnostic tool to diagnose various cardiovascular diseases (CVDs) such as myocardial infarction (MI). The ECG records the heart's electrical activity and these signals are able to reflect the abnormal activity of the heart. However, it is challenging to visually interpret the ECG signals due to its small amplitude and duration. Therefore, we propose a novel approach to automatically detect the MI using ECG signals. In this study, we implemented a convolutional neural network (CNN) algorithm for the automated detection of a normal and MI ECG beats (with noise and without noise). We achieved an average accuracy of 93.53% and 95.22% using ECG beats with noise and without noise removal respectively. Further, no feature extraction or selection is performed in this work. Hence, our proposed algorithm can accurately detect the unknown ECG signals even with noise. So, this system can be introduced in clinical settings to aid the clinicians in the diagnosis of MI. |
| Author | Oh, Shu Lih Hagiwara, Yuki Acharya, U. Rajendra Tan, Jen Hong Fujita, Hamido Adam, Muhammad |
| Author_xml | – sequence: 1 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 2 givenname: Hamido surname: Fujita fullname: Fujita, Hamido email: HFujita-799@acm.org organization: Iwate Prefectural University (IPU), Faculty of Software and Information Science, Iwate 020-0693, Japan – sequence: 3 givenname: Shu Lih surname: Oh fullname: Oh, Shu Lih organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 4 givenname: Yuki surname: Hagiwara fullname: Hagiwara, Yuki organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 5 givenname: Jen Hong surname: Tan fullname: Tan, Jen Hong organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 6 givenname: Muhammad surname: Adam fullname: Adam, Muhammad organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore |
| BookMark | eNp9kEFOwzAQRS1UJNrCAdjlAgljJ3USsaqqUpAqsYG15diTyiW1Izst6u1xW9iw6OpLM_-NNG9CRtZZJOSRQkaB8qdtZmzIGNAyA54BK2_ImFYlSzmr6YiMARikwGazOzIJYQsARcn5mIR533dGycE4m7g20Yh9opw9uG5_mskusbj35xi-nf9KWucTuR_cTg6oY39A9Qfvjk5Jr01sG9tKf1nsg7GbZLlYJcFs4sFwT27bGPjwm1Py-bL8WLym6_fV22K-TlXO8yHFWuq6nBVMNRyRV6hAK07LqsgV1YWqQFdK6RzLJm-ANTnlddEgY0XR1Lwt8imhl7vKuxA8tqL3Zif9UVAQJ2tiK6I1cbImgItoLTLlP0aZ4Wxn8NJ0V8nnC4nxpYNBL4IyaBVq46MioZ25Qv8ATWiMwA |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2918792 crossref_primary_10_1016_j_artmed_2021_102192 crossref_primary_10_1016_j_cmpb_2019_05_002 crossref_primary_10_1109_ACCESS_2022_3165966 crossref_primary_10_1016_j_compbiomed_2018_03_016 crossref_primary_10_3389_fcvm_2022_1001982 crossref_primary_10_1016_j_bspc_2023_105766 crossref_primary_10_1016_j_compbiomed_2021_104457 crossref_primary_10_1016_j_cmpb_2019_05_004 crossref_primary_10_1016_j_procs_2020_03_322 crossref_primary_10_3390_s23062993 crossref_primary_10_3389_fmed_2021_714811 crossref_primary_10_1109_JIOT_2021_3097946 crossref_primary_10_1016_j_knosys_2018_06_026 crossref_primary_10_1186_s12911_022_02035_w crossref_primary_10_3390_app15105489 crossref_primary_10_3389_fncom_2020_564015 crossref_primary_10_1016_j_artmed_2021_102181 crossref_primary_10_1109_ACCESS_2022_3220670 crossref_primary_10_1016_j_bspc_2022_104041 crossref_primary_10_3390_s23208573 crossref_primary_10_1007_s11042_022_14305_w crossref_primary_10_1080_23311916_2020_1723198 crossref_primary_10_2196_15931 crossref_primary_10_1007_s00521_018_03980_2 crossref_primary_10_1016_j_cmpb_2020_105596 crossref_primary_10_1088_1741_2552_aadc1f crossref_primary_10_1007_s12652_022_03868_z crossref_primary_10_1016_j_neucom_2021_04_063 crossref_primary_10_1038_s41598_018_33424_9 crossref_primary_10_1109_ACCESS_2023_3236506 crossref_primary_10_1016_j_bspc_2023_105506 crossref_primary_10_1016_j_cmpb_2025_108918 crossref_primary_10_1016_j_artmed_2021_102179 crossref_primary_10_1038_s44325_024_00040_8 crossref_primary_10_1007_s40995_018_0549_1 crossref_primary_10_1155_2021_6455053 crossref_primary_10_1007_s00500_022_06878_3 crossref_primary_10_1016_j_ins_2017_12_045 crossref_primary_10_1109_JSEN_2022_3221779 crossref_primary_10_3390_s23187756 crossref_primary_10_1109_TIM_2024_3449956 crossref_primary_10_14801_jkiit_2025_23_8_19 crossref_primary_10_3390_app10051609 crossref_primary_10_1088_1361_6579_ad46e1 crossref_primary_10_1371_journal_pone_0327108 crossref_primary_10_1063_5_0046582 crossref_primary_10_3390_s20174777 crossref_primary_10_1145_3534580 crossref_primary_10_1007_s11042_024_19558_1 crossref_primary_10_1371_journal_pone_0220294 crossref_primary_10_1007_s11042_021_10517_8 crossref_primary_10_1016_j_eswa_2024_125482 crossref_primary_10_3390_s20216318 crossref_primary_10_3390_s18041229 crossref_primary_10_1109_JIOT_2022_3188771 crossref_primary_10_1016_j_asoc_2023_110919 crossref_primary_10_1109_ACCESS_2020_3038210 crossref_primary_10_1007_s12652_018_0867_3 crossref_primary_10_1016_j_bspc_2020_101997 crossref_primary_10_1109_TCE_2021_3085888 crossref_primary_10_1016_j_compbiomed_2018_04_025 crossref_primary_10_1016_j_bbe_2017_11_003 crossref_primary_10_1016_j_eswa_2020_113202 crossref_primary_10_1109_TIM_2023_3301047 crossref_primary_10_1016_j_bspc_2023_105683 crossref_primary_10_1186_s12911_019_1012_8 crossref_primary_10_1016_j_patrec_2019_02_016 crossref_primary_10_1016_j_bspc_2022_104105 crossref_primary_10_1109_ACCESS_2024_3392965 crossref_primary_10_1038_s41746_024_01193_7 crossref_primary_10_1007_s42452_020_1992_0 crossref_primary_10_1016_j_bbe_2018_05_005 crossref_primary_10_1049_sil2_12072 crossref_primary_10_1016_j_bbe_2023_01_006 crossref_primary_10_1111_nyas_15288 crossref_primary_10_1016_j_eswa_2020_113697 crossref_primary_10_1109_JBHI_2019_2910082 crossref_primary_10_1016_j_cmpb_2024_108452 crossref_primary_10_1016_j_compbiomed_2017_08_022 crossref_primary_10_3390_sym14030571 crossref_primary_10_1002_ima_22965 crossref_primary_10_1109_ACCESS_2020_2975258 crossref_primary_10_1007_s11042_024_19740_5 crossref_primary_10_1016_j_bspc_2022_104238 crossref_primary_10_1016_j_compbiomed_2018_09_008 crossref_primary_10_1016_j_compbiomed_2018_09_009 crossref_primary_10_1016_j_eswa_2023_121523 crossref_primary_10_1049_htl_2020_0015 crossref_primary_10_3390_mti2030047 crossref_primary_10_1016_j_irbm_2019_12_001 crossref_primary_10_1007_s11042_020_09938_8 crossref_primary_10_1016_j_bbe_2020_04_004 crossref_primary_10_1016_j_bdr_2021_100271 crossref_primary_10_1016_j_future_2018_10_005 crossref_primary_10_1088_1361_6579_ac10aa crossref_primary_10_1109_TAI_2022_3159505 crossref_primary_10_1016_j_procs_2020_03_340 crossref_primary_10_1016_j_knosys_2021_107187 crossref_primary_10_1007_s13369_024_09420_9 crossref_primary_10_1016_j_ijmedinf_2024_105476 crossref_primary_10_1177_09544119211029745 crossref_primary_10_1016_j_neunet_2018_08_023 crossref_primary_10_1080_0952813X_2018_1518999 crossref_primary_10_1007_s11280_019_00776_9 crossref_primary_10_1007_s40747_024_01419_x crossref_primary_10_1016_j_asoc_2022_109552 crossref_primary_10_1016_j_bspc_2021_102906 crossref_primary_10_1016_j_jksuci_2023_101763 crossref_primary_10_1016_j_future_2017_08_039 crossref_primary_10_1007_s10489_023_04549_w crossref_primary_10_1109_JSEN_2024_3523035 crossref_primary_10_1016_j_envsoft_2024_106261 crossref_primary_10_1007_s12652_021_03456_7 crossref_primary_10_1007_s11042_022_14302_z crossref_primary_10_1007_s11760_019_01617_y crossref_primary_10_1016_j_imu_2020_100479 crossref_primary_10_1016_j_ins_2021_04_036 crossref_primary_10_1109_JSEN_2021_3079241 crossref_primary_10_3390_s22166140 crossref_primary_10_1016_j_artmed_2020_101848 crossref_primary_10_1007_s11042_021_11176_5 crossref_primary_10_1016_j_eswa_2022_118398 crossref_primary_10_1073_pnas_2020620118 crossref_primary_10_1016_j_engstruct_2022_114172 crossref_primary_10_1109_TBME_2018_2877649 crossref_primary_10_1007_s11709_024_1125_8 crossref_primary_10_1109_ACCESS_2019_2946932 crossref_primary_10_1002_ett_4443 crossref_primary_10_1007_s00521_025_11319_x crossref_primary_10_1016_j_bspc_2025_108630 crossref_primary_10_1016_j_inffus_2019_06_024 crossref_primary_10_3390_buildings14061635 crossref_primary_10_1016_j_procs_2018_05_034 crossref_primary_10_3390_bios9010017 crossref_primary_10_3390_mi14061155 crossref_primary_10_1016_j_bspc_2019_101700 crossref_primary_10_1016_j_procs_2022_09_342 crossref_primary_10_1007_s11042_020_08769_x crossref_primary_10_26599_TST_2022_9010008 crossref_primary_10_1016_j_bspc_2023_104701 crossref_primary_10_1259_bjr_20201101 crossref_primary_10_3390_bioengineering9090430 crossref_primary_10_1007_s13755_023_00237_8 crossref_primary_10_1016_j_eswa_2023_122402 crossref_primary_10_38124_ijisrt_25may175 crossref_primary_10_1016_j_microc_2025_113083 crossref_primary_10_1088_2632_2153_abcf89 crossref_primary_10_1038_s41598_021_94363_6 crossref_primary_10_3390_s20030911 crossref_primary_10_1109_ACCESS_2020_3040166 crossref_primary_10_3389_fphys_2023_1118360 crossref_primary_10_1016_j_artmed_2024_102865 crossref_primary_10_3389_fphys_2022_961724 crossref_primary_10_1016_j_compbiomed_2018_08_003 crossref_primary_10_3390_ma15196757 crossref_primary_10_1088_1361_665X_abdd00 crossref_primary_10_1155_2021_4123471 crossref_primary_10_1109_JSEN_2024_3351918 crossref_primary_10_1177_14759217241263955 crossref_primary_10_1016_j_mri_2021_01_005 crossref_primary_10_1109_ACCESS_2024_3385787 crossref_primary_10_1109_JSEN_2019_2935552 crossref_primary_10_1371_journal_pone_0279305 crossref_primary_10_3390_app9163328 crossref_primary_10_1016_j_measurement_2019_06_023 crossref_primary_10_1088_1361_6579_aaf34d crossref_primary_10_1109_JSEN_2019_2896308 crossref_primary_10_1016_j_ijcip_2019_100306 crossref_primary_10_3390_jpm12030336 crossref_primary_10_1016_j_cmpb_2022_107124 crossref_primary_10_3390_app9091879 crossref_primary_10_1007_s13246_019_00815_9 crossref_primary_10_1007_s10489_020_02167_4 crossref_primary_10_1109_JBHI_2018_2871510 crossref_primary_10_1016_j_future_2019_10_043 crossref_primary_10_1007_s13042_022_01718_0 crossref_primary_10_1155_2024_5822653 crossref_primary_10_1016_j_future_2020_10_024 crossref_primary_10_1007_s42114_024_00906_6 crossref_primary_10_1016_j_engappai_2020_104092 crossref_primary_10_1016_j_procs_2018_05_041 crossref_primary_10_1155_2022_9288452 crossref_primary_10_3390_e24040471 crossref_primary_10_1007_s40031_024_01167_z crossref_primary_10_1016_j_bspc_2022_103493 crossref_primary_10_1016_j_cmpb_2019_104992 crossref_primary_10_1016_j_knosys_2020_105596 crossref_primary_10_1080_1448837X_2025_2457802 crossref_primary_10_3390_s18082497 crossref_primary_10_1016_j_compbiomed_2022_105550 crossref_primary_10_1016_j_bbe_2018_03_001 crossref_primary_10_1088_1757_899X_1022_1_012072 crossref_primary_10_1007_s13534_022_00246_8 crossref_primary_10_1016_j_bbe_2019_05_010 crossref_primary_10_1177_1475921720976989 crossref_primary_10_1109_TIM_2024_3418105 crossref_primary_10_3389_fphys_2022_840011 crossref_primary_10_1016_j_measurement_2025_116969 crossref_primary_10_1016_j_cmpb_2022_107062 crossref_primary_10_1016_j_compbiomed_2017_12_023 crossref_primary_10_1155_2022_6852845 crossref_primary_10_7717_peerj_cs_825 crossref_primary_10_1038_s41598_020_73126_9 crossref_primary_10_46604_aiti_2024_14034 crossref_primary_10_1109_TMC_2020_3012681 crossref_primary_10_1209_0295_5075_127_60004 crossref_primary_10_3389_fphys_2021_672875 crossref_primary_10_1016_j_compbiomed_2018_07_001 crossref_primary_10_1109_TCSII_2024_3355016 crossref_primary_10_1016_j_compbiomed_2018_07_005 crossref_primary_10_1109_TIM_2025_3552859 crossref_primary_10_1109_JBHI_2019_2952285 crossref_primary_10_1080_07388551_2020_1808582 crossref_primary_10_3390_s25175542 crossref_primary_10_1016_j_compbiomed_2018_12_012 crossref_primary_10_3390_s24030828 crossref_primary_10_1038_s41746_024_01410_3 crossref_primary_10_1109_TBCAS_2020_2974154 crossref_primary_10_1016_j_cmpb_2018_04_005 crossref_primary_10_1109_ACCESS_2025_3604728 crossref_primary_10_1007_s10916_018_1107_2 crossref_primary_10_1016_j_ins_2018_07_063 crossref_primary_10_3390_su15031862 crossref_primary_10_1007_s11760_022_02300_5 crossref_primary_10_1007_s10489_020_01906_x crossref_primary_10_1109_JIOT_2022_3231862 crossref_primary_10_1016_j_compbiomed_2018_06_011 crossref_primary_10_1002_mp_16534 crossref_primary_10_1016_j_ins_2022_05_070 crossref_primary_10_1016_j_cmpb_2018_04_012 crossref_primary_10_1016_j_knosys_2019_105460 crossref_primary_10_1016_j_compbiomed_2018_06_002 crossref_primary_10_1109_ACCESS_2019_2930770 crossref_primary_10_1109_RBME_2018_2885714 crossref_primary_10_1109_ACCESS_2019_2959033 crossref_primary_10_1016_j_cmpb_2019_06_021 crossref_primary_10_1002_acm2_14298 crossref_primary_10_3389_fphys_2019_00809 crossref_primary_10_3390_s21051887 crossref_primary_10_1080_10255842_2023_2270101 crossref_primary_10_1016_j_chaos_2022_112333 crossref_primary_10_1038_s41467_020_15432_4 crossref_primary_10_3390_s22134960 crossref_primary_10_1109_JBHI_2021_3060433 crossref_primary_10_3390_bioengineering9040152 crossref_primary_10_1016_j_knosys_2019_04_023 crossref_primary_10_1109_TCSI_2023_3294181 crossref_primary_10_3390_buildings12111916 crossref_primary_10_1080_13682199_2023_2178608 crossref_primary_10_1016_j_iswa_2022_200165 crossref_primary_10_1109_ACCESS_2023_3312948 crossref_primary_10_1109_JSEN_2022_3146576 crossref_primary_10_3390_electronics11091495 crossref_primary_10_1016_j_ymssp_2021_107955 crossref_primary_10_3390_diagnostics12112843 crossref_primary_10_1016_j_bspc_2024_106214 crossref_primary_10_1016_j_future_2018_05_001 crossref_primary_10_1088_1742_6596_2188_1_012009 crossref_primary_10_1007_s11042_022_14233_9 crossref_primary_10_1061__ASCE_BE_1943_5592_0001531 crossref_primary_10_1007_s12530_019_09312_6 crossref_primary_10_1016_j_knosys_2018_09_001 crossref_primary_10_3390_app112210765 crossref_primary_10_3390_app9081526 crossref_primary_10_3390_s21248174 crossref_primary_10_3389_fonc_2020_588990 crossref_primary_10_1007_s10489_020_01790_5 crossref_primary_10_1016_j_irbm_2020_11_002 crossref_primary_10_3390_medicina59081394 crossref_primary_10_1016_j_eswa_2022_118933 crossref_primary_10_1109_ACCESS_2023_3285596 crossref_primary_10_1145_3344258 crossref_primary_10_1186_s13634_024_01197_1 crossref_primary_10_1109_ACCESS_2019_2927726 crossref_primary_10_1016_j_inffus_2024_102698 crossref_primary_10_1088_1361_6579_ad3d25 crossref_primary_10_1007_s11571_022_09918_8 crossref_primary_10_3390_jcm14103339 crossref_primary_10_1080_0952813X_2018_1544283 crossref_primary_10_1109_ACCESS_2020_3026968 crossref_primary_10_1109_ACCESS_2021_3061477 crossref_primary_10_1007_s42979_021_00721_6 crossref_primary_10_1109_ACCESS_2021_3128134 crossref_primary_10_1016_j_bspc_2022_103753 crossref_primary_10_1016_j_cmpb_2019_105219 crossref_primary_10_1088_1361_6579_adfda9 crossref_primary_10_1016_j_cogsys_2018_07_010 crossref_primary_10_1186_s12911_024_02415_4 crossref_primary_10_1016_j_cogsys_2019_09_027 crossref_primary_10_1016_j_heliyon_2024_e26147 crossref_primary_10_1002_jbt_23160 crossref_primary_10_1109_ACCESS_2022_3215665 crossref_primary_10_1186_s12938_025_01349_w crossref_primary_10_32604_cmes_2021_016485 crossref_primary_10_1088_1361_6579_aae304 crossref_primary_10_1038_s41598_020_63566_8 crossref_primary_10_1088_1361_6579_ad2217 crossref_primary_10_3389_frai_2024_1354742 crossref_primary_10_3390_e19090488 crossref_primary_10_1016_j_ins_2018_09_051 crossref_primary_10_1016_j_knosys_2020_106591 crossref_primary_10_1016_j_bspc_2024_106253 crossref_primary_10_1016_j_cmpb_2023_107627 crossref_primary_10_1088_1361_6579_ac7938 crossref_primary_10_1145_3768580 crossref_primary_10_1109_ACCESS_2020_3008000 crossref_primary_10_1016_j_cmpb_2021_106379 crossref_primary_10_3390_computation13060130 crossref_primary_10_1117_1_JEI_34_1_013050 crossref_primary_10_1186_s12938_018_0441_4 crossref_primary_10_3390_s22041521 crossref_primary_10_1016_j_bspc_2025_107621 crossref_primary_10_1016_j_biopha_2021_111621 crossref_primary_10_1016_j_bspc_2020_102170 crossref_primary_10_1016_j_ins_2021_12_083 crossref_primary_10_1109_LSP_2020_3036314 crossref_primary_10_1016_j_asoc_2020_106383 crossref_primary_10_1016_j_smhl_2021_100221 crossref_primary_10_1007_s10489_018_1179_1 crossref_primary_10_1016_j_bspc_2019_04_003 crossref_primary_10_1016_j_cogsys_2019_09_001 crossref_primary_10_1007_s00521_019_04400_9 crossref_primary_10_1007_s12652_020_02630_7 crossref_primary_10_3389_fcvm_2022_860032 crossref_primary_10_1111_mice_12602 crossref_primary_10_3390_bios8040101 crossref_primary_10_1007_s10921_023_01021_0 crossref_primary_10_3390_electronics11233976 crossref_primary_10_1016_j_bspc_2021_102683 crossref_primary_10_1016_j_cmpb_2021_106024 crossref_primary_10_1007_s11571_022_09870_7 crossref_primary_10_1016_j_bspc_2021_102674 crossref_primary_10_1016_j_jmapro_2019_06_023 crossref_primary_10_1109_ACCESS_2024_3491073 crossref_primary_10_1016_j_bspc_2021_102678 crossref_primary_10_3390_s20236722 crossref_primary_10_1007_s42979_024_03560_3 crossref_primary_10_3390_s21113760 crossref_primary_10_3390_s21051906 crossref_primary_10_7717_peerj_cs_1189 crossref_primary_10_3390_s22041660 crossref_primary_10_1016_j_jfca_2020_103566 crossref_primary_10_1016_j_cmpb_2019_03_012 crossref_primary_10_1016_j_cmpb_2019_105138 crossref_primary_10_1016_j_cmpb_2021_106035 crossref_primary_10_3390_e21030305 crossref_primary_10_1016_j_ins_2020_07_045 crossref_primary_10_3390_app13158699 crossref_primary_10_1109_ACCESS_2022_3143793 crossref_primary_10_1016_j_eswa_2023_123114 crossref_primary_10_1109_LSENS_2024_3450176 crossref_primary_10_1038_s41598_021_84374_8 crossref_primary_10_3390_bioengineering10050607 crossref_primary_10_1016_j_compbiomed_2021_104807 crossref_primary_10_1016_j_eswa_2020_113911 crossref_primary_10_1016_j_aap_2021_106514 crossref_primary_10_1007_s00500_021_06653_w crossref_primary_10_1016_j_eswa_2018_04_021 crossref_primary_10_1016_j_transproceed_2022_12_005 crossref_primary_10_3390_ijerph191711136 crossref_primary_10_1016_j_asoc_2019_105740 crossref_primary_10_1093_jigpal_jzae102 crossref_primary_10_1007_s42600_021_00176_x crossref_primary_10_3389_fcvm_2022_797207 crossref_primary_10_1016_j_knosys_2021_107508 crossref_primary_10_3390_diagnostics15111414 crossref_primary_10_1016_j_bbe_2020_09_005 crossref_primary_10_1109_JSEN_2020_2984493 crossref_primary_10_1002_acs_3926 crossref_primary_10_1016_j_ins_2023_119006 crossref_primary_10_1155_2022_5054641 crossref_primary_10_3390_s23084027 crossref_primary_10_1016_j_matpr_2020_07_088 crossref_primary_10_2478_jce_2023_0019 crossref_primary_10_1007_s11063_022_10949_9 crossref_primary_10_1016_j_bspc_2024_106968 crossref_primary_10_1016_j_compbiomed_2022_106199 crossref_primary_10_1016_j_irbm_2019_09_003 crossref_primary_10_1109_ACCESS_2019_2921568 crossref_primary_10_3390_bioengineering9070268 crossref_primary_10_1007_s11042_023_17619_5 crossref_primary_10_1016_j_knosys_2019_104923 crossref_primary_10_1109_TCSII_2019_2912906 crossref_primary_10_3389_fphys_2022_783184 crossref_primary_10_1016_j_compbiomed_2019_103346 crossref_primary_10_1109_ACCESS_2024_3387041 crossref_primary_10_1109_TIM_2023_3258521 crossref_primary_10_1007_s00530_020_00728_8 crossref_primary_10_1016_j_bspc_2020_102262 crossref_primary_10_3390_bios14040183 crossref_primary_10_1016_j_future_2018_08_044 crossref_primary_10_1016_j_artmed_2019_101789 crossref_primary_10_1515_bmt_2021_0146 crossref_primary_10_1007_s00521_018_3616_9 crossref_primary_10_1016_j_eswa_2025_126901 crossref_primary_10_1515_hsz_2020_0169 crossref_primary_10_1016_j_bspc_2018_05_013 crossref_primary_10_1007_s11042_020_10150_x crossref_primary_10_1016_j_bspc_2023_105463 crossref_primary_10_1109_ACCESS_2019_2955555 crossref_primary_10_1016_j_imu_2018_08_002 crossref_primary_10_1109_TIM_2021_3132833 crossref_primary_10_1038_s41467_020_17804_2 crossref_primary_10_1016_j_patrec_2020_06_016 crossref_primary_10_1038_s41598_024_53142_9 crossref_primary_10_1016_j_cmpb_2019_105286 crossref_primary_10_1016_j_cmpb_2021_106487 crossref_primary_10_1016_j_neuri_2022_100087 crossref_primary_10_1016_j_asoc_2024_112031 crossref_primary_10_1016_j_cmpb_2021_106006 crossref_primary_10_1016_j_cmpb_2021_106483 crossref_primary_10_1109_TIM_2021_3104394 crossref_primary_10_1007_s10489_021_02368_5 crossref_primary_10_1016_j_asoc_2025_113655 crossref_primary_10_1016_j_neucom_2020_07_056 crossref_primary_10_3390_jcm11185408 crossref_primary_10_3390_s20041020 crossref_primary_10_3390_jsan13050052 crossref_primary_10_1016_j_compbiomed_2019_103394 crossref_primary_10_3390_app11177920 crossref_primary_10_1117_1_JMI_11_2_024003 crossref_primary_10_2174_1574893616666211108094205 crossref_primary_10_1007_s12206_024_0345_0 crossref_primary_10_1007_s13246_023_01293_w crossref_primary_10_1080_14779072_2020_1732208 crossref_primary_10_1109_ACCESS_2023_3347610 crossref_primary_10_1007_s00500_022_07729_x crossref_primary_10_1007_s11042_023_17101_2 crossref_primary_10_1155_2022_8559011 crossref_primary_10_1007_s00521_019_04061_8 crossref_primary_10_3390_computers13050109 crossref_primary_10_1007_s43926_025_00157_x crossref_primary_10_1109_ACCESS_2021_3097614 crossref_primary_10_3390_s19133021 crossref_primary_10_1088_1361_6579_ac7fd9 crossref_primary_10_1016_j_saa_2024_124189 crossref_primary_10_1016_j_isci_2024_110167 crossref_primary_10_1007_s11042_020_10043_z crossref_primary_10_1109_JBHI_2019_2919732 crossref_primary_10_1007_s10489_021_02696_6 crossref_primary_10_12688_f1000research_51049_1 crossref_primary_10_1155_2021_6046184 crossref_primary_10_1016_j_ins_2021_06_009 crossref_primary_10_1016_j_knosys_2018_07_019 crossref_primary_10_1007_s12652_020_02536_4 crossref_primary_10_3390_bios12010015 crossref_primary_10_1109_ACCESS_2019_2936516 crossref_primary_10_1109_ACCESS_2022_3206782 crossref_primary_10_3389_fcvm_2022_983543 crossref_primary_10_1007_s10479_021_04006_2 crossref_primary_10_1080_24725579_2019_1583703 crossref_primary_10_1016_j_enconman_2019_06_062 crossref_primary_10_3390_electronics9010142 crossref_primary_10_1109_ACCESS_2019_2919068 crossref_primary_10_1016_j_cmpb_2021_106312 crossref_primary_10_3390_jcm13041033 crossref_primary_10_1007_s11042_022_11957_6 crossref_primary_10_3390_electronics9060951 crossref_primary_10_1016_j_ijcard_2021_11_039 crossref_primary_10_1016_j_compbiomed_2017_09_017 crossref_primary_10_1088_2057_1976_abfd83 crossref_primary_10_1134_S1054661819040151 crossref_primary_10_1016_j_medengphy_2024_104196 crossref_primary_10_1016_j_trac_2022_116549 crossref_primary_10_1007_s42452_021_04162_x crossref_primary_10_1016_j_imu_2023_101284 crossref_primary_10_1016_j_ins_2020_10_014 crossref_primary_10_1016_j_foodcont_2020_107572 crossref_primary_10_1109_TETCI_2019_2907718 crossref_primary_10_1016_j_ins_2024_121516 crossref_primary_10_1007_s11042_023_17246_0 crossref_primary_10_1016_j_knosys_2020_106083 crossref_primary_10_1016_j_bspc_2024_106882 crossref_primary_10_1016_j_bspc_2023_105498 crossref_primary_10_1007_s13246_024_01444_7 crossref_primary_10_1109_ACCESS_2021_3093487 crossref_primary_10_1007_s12065_020_00462_0 crossref_primary_10_1109_JSEN_2021_3056530 crossref_primary_10_1007_s11760_022_02155_w crossref_primary_10_1016_j_ins_2021_06_022 crossref_primary_10_1007_s11633_018_1136_9 crossref_primary_10_3390_biomedicines10082013 |
| Cites_doi | 10.1016/j.ins.2016.10.013 10.1007/s12194-017-0394-5 10.1038/nature14539 10.1109/JBHI.2016.2636665 10.1109/TMI.2016.2553401 10.1109/TMI.2016.2526689 10.1016/j.jbmt.2004.04.001 10.1109/ICCV.2015.123 10.4236/jbise.2014.710081 10.1016/j.compbiomed.2014.02.012 10.1016/j.compbiomed.2014.08.010 10.1161/01.CIR.101.23.e215 10.1109/TBME.2015.2405134 10.1016/j.jocs.2017.02.006 10.1161/CIR.0000000000000366 10.1109/TMI.2016.2538465 10.1109/TBME.2012.2213597 10.1016/j.ins.2017.04.012 10.1007/s10916-009-9314-5 10.1109/TBME.1985.325532 10.1109/RBME.2012.2184750 10.1109/TMI.2016.2532122 10.1001/jama.2016.17216 10.1016/j.knosys.2016.01.040 10.1016/j.dsp.2005.12.003 10.1109/TMI.2016.2535302 10.1109/TMI.2016.2536809 10.1007/s10916-010-9474-3 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. |
| Copyright_xml | – notice: 2017 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2017.06.027 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 198 |
| ExternalDocumentID | 10_1016_j_ins_2017_06_027 S0020025517308009 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c363t-e9ad97542cb6ee68ec0dc617843c1d4c80d8ccd3e7b3b02b31694be2244b96f43 |
| ISICitedReferencesCount | 595 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409151300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 22:12:03 EST 2025 Sat Nov 29 06:25:03 EST 2025 Fri Feb 23 02:33:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Myocardial infarction Electrocardiogram signals Convolution neural network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-e9ad97542cb6ee68ec0dc617843c1d4c80d8ccd3e7b3b02b31694be2244b96f43 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2017_06_027 crossref_citationtrail_10_1016_j_ins_2017_06_027 elsevier_sciencedirect_doi_10_1016_j_ins_2017_06_027 |
| PublicationCentury | 2000 |
| PublicationDate | November 2017 2017-11-00 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Acharya, Fujita, Oh, Hagiwara, Tan, Muhammad (bib0003) 2017; 405 Faust, Acharya, Tamura (bib0009) 2012; 5 (bib0027) 2015 Singh, Tiwari (bib0034) 2006; 16 LeCun, Bengio, Hinton (bib0023) 2015; 521 Acharya, Fujita, Muhammad, Oh, Sudarshan, Tan, Koh, Hagiwara, Chua, Chua, Tan (bib0001) 2017; 337 Goodfellow, Bengio, Courville (bib0012) 2016 Hatipoglu, Bilgin (bib0016) 2017 Tan, Acharya, Bhandary, Chua, Sivaprasad (bib0037) 2017 Arif, Malagore, Afsar (bib0005) 2012; 36 Sun, Lu, Yang, Li (bib0035) 2012; 59 Lahiri, Kumar, Mishra, Sarkar, Roy (bib0022) 2009; 68 J. Bouvrie, Notes on convolutional neural network, 2007. Jayachandran, Joseph, Acharya (bib0018) 2010; 34 Mozaffarian, Benjamin, Go, Arnett, Blaha, Cushman, Das, de. Ferranti, Després, Fullerton, Howard, Huffman, Isasi, Jiménez, Judd, Kissela, Lichtman, Lisabeth, Liu, Mackey, Magid, McGuire, Mohler, Moy, Muntner, Mussolino, Nasir, Neumar, Nichol, Palaniappan, Pandey, Reeves, Rodriguez, Rosamond, Sorlie, Stein, Towfighi, Turan, Virani, Woo, Yeh, Turner (bib0026) 2016 Ginneken (bib0010) 2017; 10 Safdarian, Dabanloo, Attarodi (bib0031) 2014; 7 van. Grinsven, van Grinneken, Hoyng, Theelen, Sánchez (bib0014) 2016; 35 Sharma, Tripathy, Dandapat (bib0033) 2015; 62 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib0011) 2000; 101 Pereira, Pinto, Alves, Silva (bib0029) 2016; 35 Banerjee, Mitra (bib0006) 2012; 1 Krizhevsky, Sutskever, Hinton (bib0020) 2012; 25 Tuzlukov (bib0038) 2010 Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros, Kim, Raman, Nelson, Mega, Webster (bib0015) 2016; 16 Acharya, Fujita, Sudarshan, Oh, Adam, Koh, Tan, Ghista, Martis, Chua, Chua, Tan (bib0002) 2016; 99 Kallenberg, Petersen, Nielsen, Ng, Diao, Igel, Vachon, Holland, Winkel, Karssemeijer, Lillholm (bib0019) 2016; 35 Greenspan, Summers, van Ginneken (bib0013) 2016; 35 Tajbakhsh, Shin, Gurundu, Hurst, Kendall, Gotway, Liang (bib0036) 2016; 35 Setio, Ciompi, Litjens, Gerke, Jacobs, van Riel, Wille, Naqibullah, Sánchex, van Ginneken (bib0032) 2016; 35 Martis, Acharya, Adeli (bib0025) 2014; 48 Liu, Liu, Wang, Huang, Li, Zheng, Luo, Zhou (bib0024) 2015; 61 Pan, Tompkins (bib0028) 1985; 32 Duda, Hart, Stork (bib0008) 2001 Acharya, Kannathal, Lee, Leong (bib0004) 2005; 9 Ravi, Wong, Deligianni, Berthelot, Andreu-Perez, Lo, Yang (bib0030) 2017; 21 He.K. Zhang, X. Ren, S. Sun, Delving deep into rectifiers: surpassing human-level performance on image net classification, 1026–1034, 2015. Kulick, Marks, Davis (bib0021) 2015 Mozaffarian (10.1016/j.ins.2017.06.027_bib0026) 2016 Jayachandran (10.1016/j.ins.2017.06.027_bib0018) 2010; 34 Gulshan (10.1016/j.ins.2017.06.027_bib0015) 2016; 16 Greenspan (10.1016/j.ins.2017.06.027_bib0013) 2016; 35 van. Grinsven (10.1016/j.ins.2017.06.027_bib0014) 2016; 35 Krizhevsky (10.1016/j.ins.2017.06.027_bib0020) 2012; 25 Pereira (10.1016/j.ins.2017.06.027_bib0029) 2016; 35 Faust (10.1016/j.ins.2017.06.027_bib0009) 2012; 5 Singh (10.1016/j.ins.2017.06.027_bib0034) 2006; 16 10.1016/j.ins.2017.06.027_bib0007 Setio (10.1016/j.ins.2017.06.027_bib0032) 2016; 35 Sharma (10.1016/j.ins.2017.06.027_bib0033) 2015; 62 Acharya (10.1016/j.ins.2017.06.027_bib0003) 2017; 405 Liu (10.1016/j.ins.2017.06.027_bib0024) 2015; 61 Acharya (10.1016/j.ins.2017.06.027_bib0001) 2017; 337 Kulick (10.1016/j.ins.2017.06.027_bib0021) Safdarian (10.1016/j.ins.2017.06.027_bib0031) 2014; 7 Tajbakhsh (10.1016/j.ins.2017.06.027_bib0036) 2016; 35 Acharya (10.1016/j.ins.2017.06.027_bib0002) 2016; 99 Martis (10.1016/j.ins.2017.06.027_bib0025) 2014; 48 Banerjee (10.1016/j.ins.2017.06.027_bib0006) 2012; 1 Sun (10.1016/j.ins.2017.06.027_bib0035) 2012; 59 Hatipoglu (10.1016/j.ins.2017.06.027_bib0016) 2017 Tan (10.1016/j.ins.2017.06.027_bib0037) 2017 Tuzlukov (10.1016/j.ins.2017.06.027_bib0038) 2010 Kallenberg (10.1016/j.ins.2017.06.027_bib0019) 2016; 35 Arif (10.1016/j.ins.2017.06.027_bib0005) 2012; 36 Lahiri (10.1016/j.ins.2017.06.027_bib0022) 2009; 68 Acharya (10.1016/j.ins.2017.06.027_bib0004) 2005; 9 10.1016/j.ins.2017.06.027_bib0017 Pan (10.1016/j.ins.2017.06.027_bib0028) 1985; 32 Goldberger (10.1016/j.ins.2017.06.027_bib0011) 2000; 101 LeCun (10.1016/j.ins.2017.06.027_bib0023) 2015; 521 Ginneken (10.1016/j.ins.2017.06.027_bib0010) 2017; 10 Goodfellow (10.1016/j.ins.2017.06.027_bib0012) 2016 Duda (10.1016/j.ins.2017.06.027_bib0008) 2001 Ravi (10.1016/j.ins.2017.06.027_bib0030) 2017; 21 |
| References_xml | – volume: 35 start-page: 1153 year: 2016 end-page: 1159 ident: bib0013 article-title: Deep learning in medical imaging: overview and future promise of an exciting new technique publication-title: IEEE Trans. Med. Imaging – volume: 5 start-page: 15 year: 2012 end-page: 28 ident: bib0009 article-title: Formal design methods for reliable computer-aided diagnosis: a review publication-title: IEEE Rev. Biomed. Eng. – volume: 10 start-page: 23 year: 2017 end-page: 32 ident: bib0010 article-title: Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning publication-title: Radiol. Phys. Technol. – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib0011 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 16 start-page: 2402 year: 2016 end-page: 2410 ident: bib0015 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – year: 2001 ident: bib0008 article-title: Pattern Classification – volume: 35 start-page: 1160 year: 2016 end-page: 1169 ident: bib0032 article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks publication-title: IEEE Trans. Med. Imaging – year: 2015 ident: bib0021 article-title: Heart Attack (Myocardial Infarction) – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0023 article-title: Deep learning publication-title: Nature – volume: 35 start-page: 1299 year: 2016 end-page: 1312 ident: bib0036 article-title: Convolutional neural networks for medical image analysis: full training or fine tuning publication-title: IEEE Trans. Med. Imaging – volume: 35 start-page: 1322 year: 2016 end-page: 1331 ident: bib0019 article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring publication-title: IEEE Trans. Med. Imaging – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: bib0003 article-title: Automated detection of arrhythmias using different intervals of tachycardia ecg segments with convolutional neural network publication-title: Inf. Sci. – volume: 34 start-page: 985 year: 2010 end-page: 992 ident: bib0018 article-title: Analysis of myocardial infarction using discrete wavelet transform publication-title: J. Med. Syst. – year: 2016 ident: bib0012 article-title: Deep Learning – volume: 7 start-page: 818 year: 2014 end-page: 824 ident: bib0031 article-title: New pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ECG signal publication-title: J. Biomed. Sci. Eng. – reference: J. Bouvrie, Notes on convolutional neural network, 2007. – year: 2015 ident: bib0027 article-title: What is a Heart Attack – volume: 16 start-page: 275 year: 2006 end-page: 287 ident: bib0034 article-title: Optimal selection of wavelet basis function applied to ECG signal denoising publication-title: Digital Signal Process. – year: 2017 ident: bib0037 article-title: Segmentation of optic disc, fovea, and retinal vasculature using a single convolutional neural network publication-title: J. Comput. Sci. – volume: 337 start-page: 17 year: 2017 end-page: 29 ident: bib0001 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study publication-title: Inf. Sci. – volume: 62 start-page: 1827 year: 2015 end-page: 1837 ident: bib0033 article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction publication-title: IEEE Trans. Biomed. Eng. – volume: 32 start-page: 230 year: 1985 end-page: 236 ident: bib0028 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. – start-page: 1 year: 2017 end-page: 20 ident: bib0016 article-title: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships publication-title: Med. Biol. Eng. Comput. – volume: 68 start-page: 866 year: 2009 end-page: 870 ident: bib0022 article-title: Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction publication-title: J. Scient. Industr. Res. – year: 2016 ident: bib0026 article-title: Heart disease and stroke statistics–2016 update publication-title: Circulation – volume: 48 start-page: 133 year: 2014 end-page: 149 ident: bib0025 article-title: Current methods in electrocardiogram characterization publication-title: Comput. Biol. Med. – volume: 25 year: 2012 ident: bib0020 article-title: ImageNet classification with deep convolutional neural networks publication-title: Neural Information Processing Systems Conference – volume: 9 start-page: 134 year: 2005 end-page: 141 ident: bib0004 article-title: Study of heart rate variability signals at sitting and lying postures publication-title: J. Body Mov. Ther. – reference: He.K. Zhang, X. Ren, S. Sun, Delving deep into rectifiers: surpassing human-level performance on image net classification, 1026–1034, 2015. – year: 2010 ident: bib0038 article-title: Signal Processing Noise Electrical Engineering, and Applied Signal Processing Series – volume: 1 start-page: 88 year: 2012 end-page: 92 ident: bib0006 article-title: Cross wavelet transform based analysis of electrocardiogram signals publication-title: Int. J. Electr., Electron. Comput. Eng. – volume: 35 start-page: 1273 year: 2016 end-page: 1284 ident: bib0014 article-title: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images publication-title: IEEE Trans. Med. Imaging – volume: 59 start-page: 3348 year: 2012 end-page: 3356 ident: bib0035 article-title: ECG analysis using multiple instance learning for myocardial infarction detection publication-title: IEEE Trans. Biomed. Eng. – volume: 99 start-page: 146 year: 2016 end-page: 156 ident: bib0002 article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads publication-title: Knowl.-Based Syst. – volume: 35 start-page: 1240 year: 2016 end-page: 1251 ident: bib0029 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imaging – volume: 21 start-page: 4 year: 2017 end-page: 21 ident: bib0030 article-title: Deep leaning for health informatics publication-title: IEEE J. Biomed. Health Inform. – volume: 61 start-page: 178 year: 2015 end-page: 184 ident: bib0024 article-title: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection publication-title: Comput. Biol. Med. – volume: 36 start-page: 279 year: 2012 end-page: 289 ident: bib0005 article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier publication-title: J. Med. Syst. – volume: 337 start-page: 17 year: 2017 ident: 10.1016/j.ins.2017.06.027_bib0001 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.10.013 – volume: 10 start-page: 23 issue: 1 year: 2017 ident: 10.1016/j.ins.2017.06.027_bib0010 article-title: Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning publication-title: Radiol. Phys. Technol. doi: 10.1007/s12194-017-0394-5 – year: 2010 ident: 10.1016/j.ins.2017.06.027_bib0038 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.ins.2017.06.027_bib0023 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 21 start-page: 4 issue: 1 year: 2017 ident: 10.1016/j.ins.2017.06.027_bib0030 article-title: Deep leaning for health informatics publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2636665 – volume: 35 start-page: 1153 issue: 5 year: 2016 ident: 10.1016/j.ins.2017.06.027_bib0013 article-title: Deep learning in medical imaging: overview and future promise of an exciting new technique publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2553401 – volume: 35 start-page: 1273 issue: 5 year: 2016 ident: 10.1016/j.ins.2017.06.027_bib0014 article-title: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2526689 – volume: 25 year: 2012 ident: 10.1016/j.ins.2017.06.027_bib0020 article-title: ImageNet classification with deep convolutional neural networks – volume: 9 start-page: 134 year: 2005 ident: 10.1016/j.ins.2017.06.027_bib0004 article-title: Study of heart rate variability signals at sitting and lying postures publication-title: J. Body Mov. Ther. doi: 10.1016/j.jbmt.2004.04.001 – start-page: 1 year: 2017 ident: 10.1016/j.ins.2017.06.027_bib0016 article-title: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships publication-title: Med. Biol. Eng. Comput. – ident: 10.1016/j.ins.2017.06.027_bib0017 doi: 10.1109/ICCV.2015.123 – ident: 10.1016/j.ins.2017.06.027_bib0021 – volume: 1 start-page: 88 issue: 2 year: 2012 ident: 10.1016/j.ins.2017.06.027_bib0006 article-title: Cross wavelet transform based analysis of electrocardiogram signals publication-title: Int. J. Electr., Electron. Comput. Eng. – volume: 7 start-page: 818 issue: 10 year: 2014 ident: 10.1016/j.ins.2017.06.027_bib0031 article-title: New pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ECG signal publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2014.710081 – volume: 48 start-page: 133 year: 2014 ident: 10.1016/j.ins.2017.06.027_bib0025 article-title: Current methods in electrocardiogram characterization publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.02.012 – volume: 61 start-page: 178 year: 2015 ident: 10.1016/j.ins.2017.06.027_bib0024 article-title: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.08.010 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.ins.2017.06.027_bib0011 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – year: 2001 ident: 10.1016/j.ins.2017.06.027_bib0008 – volume: 62 start-page: 1827 issue: 7 year: 2015 ident: 10.1016/j.ins.2017.06.027_bib0033 article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2405134 – year: 2017 ident: 10.1016/j.ins.2017.06.027_bib0037 article-title: Segmentation of optic disc, fovea, and retinal vasculature using a single convolutional neural network publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.02.006 – year: 2016 ident: 10.1016/j.ins.2017.06.027_bib0026 article-title: Heart disease and stroke statistics–2016 update publication-title: Circulation doi: 10.1161/CIR.0000000000000366 – volume: 35 start-page: 1240 issue: 5 year: 2016 ident: 10.1016/j.ins.2017.06.027_bib0029 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2538465 – volume: 59 start-page: 3348 issue: 12 year: 2012 ident: 10.1016/j.ins.2017.06.027_bib0035 article-title: ECG analysis using multiple instance learning for myocardial infarction detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2213597 – year: 2016 ident: 10.1016/j.ins.2017.06.027_bib0012 – volume: 405 start-page: 81 year: 2017 ident: 10.1016/j.ins.2017.06.027_bib0003 article-title: Automated detection of arrhythmias using different intervals of tachycardia ecg segments with convolutional neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.012 – volume: 34 start-page: 985 year: 2010 ident: 10.1016/j.ins.2017.06.027_bib0018 article-title: Analysis of myocardial infarction using discrete wavelet transform publication-title: J. Med. Syst. doi: 10.1007/s10916-009-9314-5 – volume: 32 start-page: 230 issue: 3 year: 1985 ident: 10.1016/j.ins.2017.06.027_bib0028 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – volume: 5 start-page: 15 year: 2012 ident: 10.1016/j.ins.2017.06.027_bib0009 article-title: Formal design methods for reliable computer-aided diagnosis: a review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2012.2184750 – volume: 35 start-page: 1322 issue: 5 year: 2016 ident: 10.1016/j.ins.2017.06.027_bib0019 article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2532122 – volume: 16 start-page: 2402 issue: 22 year: 2016 ident: 10.1016/j.ins.2017.06.027_bib0015 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 99 start-page: 146 year: 2016 ident: 10.1016/j.ins.2017.06.027_bib0002 article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.01.040 – ident: 10.1016/j.ins.2017.06.027_bib0007 – volume: 16 start-page: 275 issue: 3 year: 2006 ident: 10.1016/j.ins.2017.06.027_bib0034 article-title: Optimal selection of wavelet basis function applied to ECG signal denoising publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2005.12.003 – volume: 35 start-page: 1299 issue: 5 year: 2016 ident: 10.1016/j.ins.2017.06.027_bib0036 article-title: Convolutional neural networks for medical image analysis: full training or fine tuning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535302 – volume: 68 start-page: 866 year: 2009 ident: 10.1016/j.ins.2017.06.027_bib0022 article-title: Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction publication-title: J. Scient. Industr. Res. – volume: 35 start-page: 1160 issue: 5 year: 2016 ident: 10.1016/j.ins.2017.06.027_bib0032 article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2536809 – volume: 36 start-page: 279 year: 2012 ident: 10.1016/j.ins.2017.06.027_bib0005 article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier publication-title: J. Med. Syst. doi: 10.1007/s10916-010-9474-3 |
| SSID | ssj0004766 |
| Score | 2.6860578 |
| Snippet | •Classification of normal and MI ECG beats.•With and without noise ECG beats are considered.•Convolutional neural network is employed.•R peak detection is not... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 190 |
| SubjectTerms | Convolution neural network Deep learning Electrocardiogram signals Myocardial infarction |
| Title | Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals |
| URI | https://dx.doi.org/10.1016/j.ins.2017.06.027 |
| Volume | 415-416 |
| WOSCitedRecordID | wos000409151300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMcEBQQpRTNAXEgMvLYzox9jKqUglCFoJXCyfIsbh1SJ0rsLr-Gv8qbxUsLRfTAxbYcz9jx-zzvmzdvQeiNULECLcA9n5PIizjNvCyU3JNZOMpHhIpRwk2xCXZ4GE-nyZfB4GcTC3M-Z2UZX14my_8qajgHwtahs3cQd9spnIBjEDpsQeyw_SfBj7slac0EpVJL41vubgoi0Tkszc54gFs_yrpaAHcF9ilVpUTT-OwKVN3KxJbAo8GLMj_Uxr4w2fsw1N4f2XzdZ7guvslc6NRrS9vHOsbrytDV4_fDr9lMlXLV6oX9elZYLnuQnRVy0dp_jeXn22k9_FycdiPmSXGRmSJJw-_1j6JvvQCNSFrrRRNN4Ht6XtMfkYFUeBHpj6vE1hR1KprYwtW_jf7WEDGDKYtOxE6YycxqUw9cz7R9QwO2fomNy9sshS5S3UWq3f4Cdg9tBmyUwLC5Of44mX7qQm-ZXQ5v_kazcG5cCG88x5-pT4_OHD1Gj9w8BI8tfp6ggSq30MNedsottOtiWvBb3BMqdtrgKVr3kIYXOdZIw9eQhi3SsEMahk5wizTcIk037pCGO6RhgzQMSMMOac_Q8f7kaO_AczU8PBHSsPJUkslEV1kWnCpFYyV8KXRYahQKIiMR-zIWQoaK8ZD7AQ8JTSKugFhGPKF5FD5HG-WiVC8QFj6njOaByiWLeK5rbIlEsCSQLBOE0W3kN683FS7Bva6zMk9vFes2etc2WdrsLn-7OGpklrrvx9LOFPB3e7OXd7nHDnrQfSWv0Ea1qtUuui_Oq2K9eu3A9wsL27XB |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+convolutional+neural+network+for+automated+detection+of+myocardial+infarction+using+ECG+signals&rft.jtitle=Information+sciences&rft.au=Acharya%2C+U.+Rajendra&rft.au=Fujita%2C+Hamido&rft.au=Oh%2C+Shu+Lih&rft.au=Hagiwara%2C+Yuki&rft.date=2017-11-01&rft.issn=0020-0255&rft.volume=415-416&rft.spage=190&rft.epage=198&rft_id=info:doi/10.1016%2Fj.ins.2017.06.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2017_06_027 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |