The Asymptotic Distribution of the Scaled Remainder for Pseudo Golden Ratio Expansions of a Continuous Random Variable

Let X = ∑ k = 1 ∞ X k β - k be the (greedy) base- β expansion of a continuous random variable X on the unit interval where β is the positive solution to β n = 1 + β + ⋯ + β n - 1 for an integer n ⩾ 2 (i.e., β is a generalization of the golden mean corresponding to n = 2 ). We study the asymptotic di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability Jg. 27; H. 1; S. 10
Hauptverfasser: Herbst, Ira W., Møller, Jesper, Svane, Anne Marie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2025
Springer Nature B.V
Schlagworte:
ISSN:1387-5841, 1573-7713
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Let X = ∑ k = 1 ∞ X k β - k be the (greedy) base- β expansion of a continuous random variable X on the unit interval where β is the positive solution to β n = 1 + β + ⋯ + β n - 1 for an integer n ⩾ 2 (i.e., β is a generalization of the golden mean corresponding to n = 2 ). We study the asymptotic distribution and convergence rate of the scaled remainder ∑ k = 1 ∞ X m + k β - k when m tends to infinity.
AbstractList Let X=∑k=1∞Xkβ-k be the (greedy) base-β expansion of a continuous random variable X on the unit interval where β is the positive solution to βn=1+β+⋯+βn-1 for an integer n⩾2 (i.e., β is a generalization of the golden mean corresponding to n=2). We study the asymptotic distribution and convergence rate of the scaled remainder ∑k=1∞Xm+kβ-k when m tends to infinity.
Let X = ∑ k = 1 ∞ X k β - k be the (greedy) base- β expansion of a continuous random variable X on the unit interval where β is the positive solution to β n = 1 + β + ⋯ + β n - 1 for an integer n ⩾ 2 (i.e., β is a generalization of the golden mean corresponding to n = 2 ). We study the asymptotic distribution and convergence rate of the scaled remainder ∑ k = 1 ∞ X m + k β - k when m tends to infinity.
Let $$X=\sum _{k=1}^\infty X_k \beta ^{-k}$$ X = ∑ k = 1 ∞ X k β - k be the (greedy) base- $$\beta $$ β expansion of a continuous random variable X on the unit interval where $$\beta $$ β is the positive solution to $$\beta ^n = 1 + \beta + \cdots + \beta ^{n-1}$$ β n = 1 + β + ⋯ + β n - 1 for an integer $$n\geqslant 2$$ n ⩾ 2 (i.e., $$\beta $$ β is a generalization of the golden mean corresponding to $$n=2$$ n = 2 ). We study the asymptotic distribution and convergence rate of the scaled remainder $$\sum _{k=1}^\infty X_{m+k} \beta ^{-k}$$ ∑ k = 1 ∞ X m + k β - k when m tends to infinity.
ArticleNumber 10
Author Møller, Jesper
Svane, Anne Marie
Herbst, Ira W.
Author_xml – sequence: 1
  givenname: Ira W.
  surname: Herbst
  fullname: Herbst, Ira W.
  organization: Department of Mathematics, University of Virginia
– sequence: 2
  givenname: Jesper
  surname: Møller
  fullname: Møller, Jesper
  email: jm@math.aau.dk
  organization: Department of Mathematical Sciences, Aalborg University
– sequence: 3
  givenname: Anne Marie
  surname: Svane
  fullname: Svane, Anne Marie
  organization: Department of Mathematical Sciences, Aalborg University
BookMark eNp9kE1LAzEQhoMo2Fb_gKeA59V87HZ3j6XWKhSUWr2GbHZWU3aTmmSl_femVhA8lDnMwLzPfLxDdGqsAYSuKLmhhOS3nsZUJoRlCSWU58n2BA1olvMkzyk_jTUv8iQrUnqOht6vCWE04-kAfa0-AE_8rtsEG7TCd9oHp6s-aGuwbXCI7RclW6jxEjqpTQ0ON9bhZw99bfHctjUYvJQRwLPtRhofSb9HJZ5aE7Tpbe-jwNS2w2_SaVm1cIHOGtl6uPzNI_R6P1tNH5LF0_xxOlkkio95SKAYc5lBIfMGVEp5XTCuGJOsqJoUSohPKK7SjLFaSZKXmRo3qpSVzFjaFFXFR-j6MHfj7GcPPoi17Z2JKwWn4xgsjSNHqDiolLPeO2iE0mH_kQlO6lZQIvYui4PLIrosflwW24iyf-jG6U663XGIHyAfxeYd3N9VR6hvyMKTzA
CitedBy_id crossref_primary_10_1017_jpr_2025_3
Cites_doi 10.1007/BF02020954
10.1080/00029890.1960.11989593
10.1007/s11009-024-10073-2
10.1007/BF02020331
10.1137/1.9780898719512
10.1007/b13794
10.4171/jems/76
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Mar 2025
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s11009-025-10137-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1573-7713
ExternalDocumentID 10_1007_s11009_025_10137_x
GrantInformation_xml – fundername: Aalborg University
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBO
EBS
EBU
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9R
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
QWB
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
~8M
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
PQGLB
JQ2
ID FETCH-LOGICAL-c363t-e863a5e8a7fec413d823c22a28bf4e9e215c3c4522dca0795c6fc9aba524f8bb3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001411293200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1387-5841
IngestDate Wed Nov 05 15:30:40 EST 2025
Sat Nov 29 08:08:06 EST 2025
Tue Nov 18 22:31:57 EST 2025
Sun Mar 23 01:28:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 37A50
60F25
Scaled remainder
Asymptotic distribution
Pseudo golden mean
expansions
Invariant distribution
62E17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-e863a5e8a7fec413d823c22a28bf4e9e215c3c4522dca0795c6fc9aba524f8bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11009-025-10137-x
PQID 3161612482
PQPubID 26119
ParticipantIDs proquest_journals_3161612482
crossref_citationtrail_10_1007_s11009_025_10137_x
crossref_primary_10_1007_s11009_025_10137_x
springer_journals_10_1007_s11009_025_10137_x
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Methodology and computing in applied probability
PublicationTitleAbbrev Methodol Comput Appl Probab
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References K Dajani (10137_CR1) 2007; 7
W Parry (10137_CR5) 1960; 11
10137_CR3
10137_CR2
A Tysbakov (10137_CR8) 2009
EP Miles (10137_CR4) 1960; 67
F Schweiger (10137_CR7) 1995
A Rényi (10137_CR6) 1957; 8
References_xml – volume: 11
  start-page: 401
  year: 1960
  ident: 10137_CR5
  publication-title: Acta Math Acad Sci Hungar
  doi: 10.1007/BF02020954
– volume-title: Ergodic Theory of Fibered Systems and Metric Number Theory
  year: 1995
  ident: 10137_CR7
– volume: 67
  start-page: 745
  year: 1960
  ident: 10137_CR4
  publication-title: Amer Math Monthly
  doi: 10.1080/00029890.1960.11989593
– ident: 10137_CR2
  doi: 10.1007/s11009-024-10073-2
– volume: 8
  start-page: 477
  year: 1957
  ident: 10137_CR6
  publication-title: Acta Math Acad Sci Hungar
  doi: 10.1007/BF02020331
– ident: 10137_CR3
  doi: 10.1137/1.9780898719512
– volume-title: Introduction to Nonparametric Estimation
  year: 2009
  ident: 10137_CR8
  doi: 10.1007/b13794
– volume: 7
  start-page: 157
  year: 2007
  ident: 10137_CR1
  publication-title: J Eur Math Soc (JEMS)
  doi: 10.4171/jems/76
SSID ssj0021534
Score 2.3654745
Snippet Let X = ∑ k = 1 ∞ X k β - k be the (greedy) base- β expansion of a continuous random variable X on the unit interval where β is the positive solution to β n =...
Let $$X=\sum _{k=1}^\infty X_k \beta ^{-k}$$ X = ∑ k = 1 ∞ X k β - k be the (greedy) base- $$\beta $$ β expansion of a continuous random variable X on the unit...
Let X=∑k=1∞Xkβ-k be the (greedy) base-β expansion of a continuous random variable X on the unit interval where β is the positive solution to βn=1+β+⋯+βn-1 for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10
SubjectTerms Asymptotic properties
Asymptotic series
Business and Management
Continuity (mathematics)
Economics
Electrical Engineering
Life Sciences
Mathematics and Statistics
Random variables
Statistics
Title The Asymptotic Distribution of the Scaled Remainder for Pseudo Golden Ratio Expansions of a Continuous Random Variable
URI https://link.springer.com/article/10.1007/s11009-025-10137-x
https://www.proquest.com/docview/3161612482
Volume 27
WOSCitedRecordID wos001411293200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7713
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021534
  issn: 1387-5841
  databaseCode: RSV
  dateStart: 19990701
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBeeDH1NxOiUPvmnBJu2aPg7d9MUxNh17K0magrC1Y93G_O-968eGooI-tk1CubvkfrnkfkfItWsrQNnStyKlueUIV1sKcIkV-R7DoL_rGZEVm_C6XTEa-b0iKSwtb7uXR5LZSr1JdrOzQD5D5kybexYgx21wdwILNvQHw_U2C-ZwXsoWpg-4V7tIlfl-jM_uaIMxvxyLZt6mc_C__zwk-wW6pK3cHI7IlolrZLdMPk5rZO95TdMKT1WEmjlT8zFZgsXQVvo-mc4TeEMfkFK3qIZFk4hCPzoAjZqQ9mEEpFmcUYC8tJeaRZjQx2QMaxjto6ppewWrDAbiUuwqKZJgvcWLZJFCgzhMJnQIm3RM2zohr532y_2TVVRlsDRv8rllRJNL1wjpRUaDCwwF45oxyYSKHOMbkL_mGonaQy3vPN_VzUj7UkmXOZFQip-SSpzE5oxQzkMtANLI0BjH9myllUY-QWS9k8yP6sQulRPogrIcK2eMgw3ZMgo7AGEHmbCDVZ3crPtMc8KOX1s3Sp0HxeRNAw4oGICfI1id3JY63nz-ebTzvzW_IFWGZpLdaGuQyny2MJdkRy9B87OrzKg_AJ1_8ZU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EhemD3-L8zINvWrBJu6aPw2_chmwqvpUkTUHQVtZN5n_vXdduKCroY9sklLtL7pdL7ncAh76rEWWr0Em0EY4nfeNoxCVOEgacgv5-YGVRbCLodOTjY3hbJoXl1W336kiyWKmnyW5uEcjnxJzpisBB5Djnoccixvxu72GyzcI5PC5li9MH3atbpsp8P8ZndzTFmF-ORQtvc7H8v_9cgaUSXbLm2BxWYcama1Crko_zNVhsT2ha8WmBoOaYqXkd3tBiWDN_f3kdZPiGnRGlblkNi2UJw36shxq1MeviCESz2GcIedltbodxxi6zZ1zDWJdUzc5HuMpQIC6nrooRCdZTOsyGOTZI4-yFPeAmndK2NuD-4vzu9MopqzI4RjTEwLGyIZRvpQoSa9AFxpILw7niUieeDS3K3whDRO2xUSdB6JtGYkKllc-9RGotNmE2zVK7BUyI2EiENCq21nMDVxttiE-QWO8UD5M6uJVyIlNSllPljOdoSrZMwo5Q2FEh7GhUh6NJn9cxYcevrXcrnUfl5M0jgSgYgZ8neR2OKx1PP_882vbfmh9A7equ3Ypa152bHVjgZDLF7bZdmB30h3YP5s0bWkF_vzDwD_f79Hk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NbGLsgQ22aR1s-IE3FpXYSeM8okHZNFZVLUN9i2zHliZBUjUNgv-eu3w0gNikaY9JfFbku_P9_HG_A9gPfY0oW8We00Z4gQyNpxGXeC6OOG36h5GVVbGJaDSSs1k8vpfFX912b48k65wGYmnKlv156vpd4ptfbepzYtH0ReQhinwe0EV6Wq9PL1ZLLvTnuqwtuhKGWr9Jm3m6j4ehqcObj45Iq8gzfP3___wGNhvUyY5qM9mCZzbbhpdtUnKxDa9-ruhb8WmDIGjN4PwWrtGS2FFxezVf5viGHRPVblMli-WOoRyboqZtyibYA9EvLhhCYTYubJnm7DS_xLmNTcgE2MkNzj60QVeQqGJEjvU7K_OywAZZml-xC1y8UzrXO_g1PDn_-s1rqjV4RgzE0rNyIFRopYqcNRgaU8mF4VxxqV1gY4u6MMIQgXtq1GEUh2bgTKy0CnngpNbiPaxleWY_ABMiNRKhjkqtDfzI10Yb4hkkNjzFY9cDv1VUYhoqc6qocZl0JMw02AkOdlINdnLTg4OVzLwm8vhr691W_0nj1EUiEB0jIAwk78GXVt_d5z_39vHfmu_B-vh4mJx9H_3YgQ1OFlNdetuFteWitJ_ghblGI1h8rmz9DmAH_V0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Asymptotic+Distribution+of+the+Scaled+Remainder+for+Pseudo+Golden+Ratio+Expansions+of+a+Continuous+Random+Variable&rft.jtitle=Methodology+and+computing+in+applied+probability&rft.au=Herbst%2C+Ira+W.&rft.au=M%C3%B8ller%2C+Jesper&rft.au=Svane%2C+Anne+Marie&rft.date=2025-03-01&rft.issn=1387-5841&rft.eissn=1573-7713&rft.volume=27&rft.issue=1&rft_id=info:doi/10.1007%2Fs11009-025-10137-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11009_025_10137_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-5841&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-5841&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-5841&client=summon