An efficient surrogate-assisted hybrid optimization algorithm for expensive optimization problems

Surrogate-assisted evolutionary algorithms (SAEAs) are potential approaches to solve computationally expensive optimization problems. The critical idea of SAEAs is to combine the powerful searching capabilities of evolutionary algorithms with the predictive capabilities of surrogate models. In this...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 561; s. 304 - 325
Hlavní autori: Pan, Jeng-Shyang, Liu, Nengxian, Chu, Shu-Chuan, Lai, Taotao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.06.2021
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Surrogate-assisted evolutionary algorithms (SAEAs) are potential approaches to solve computationally expensive optimization problems. The critical idea of SAEAs is to combine the powerful searching capabilities of evolutionary algorithms with the predictive capabilities of surrogate models. In this study, an efficient surrogate-assisted hybrid optimization (SAHO) algorithm is proposed via combining two famous algorithms, namely, teaching–learning-based optimization (TLBO) and differential evolution (DE). The TLBO is focused on global exploration and the DE is concentrated on local exploitation. These two algorithms are carried out alternately when no better candidate solution can be found. Meanwhile, a new prescreening criterion based on the best and top collection information is introduced to choose promising candidates for real function evaluations. Besides, two evolution control (i.e., the generation-based and individual-based) strategies and a top-ranked restart strategy are integrated in the SAHO. Moreover, a local RBF surrogate which does not need too many training samples is employed to model the landscapes of the target function. Sixteen benchmark functions and the tension/compression spring design problem are adopted to compare the proposed SAHO with other state-of-the-art approaches. Extensive comparison results demonstrate that the proposed SAHO has superior performance for solving expensive optimization problems.
AbstractList Surrogate-assisted evolutionary algorithms (SAEAs) are potential approaches to solve computationally expensive optimization problems. The critical idea of SAEAs is to combine the powerful searching capabilities of evolutionary algorithms with the predictive capabilities of surrogate models. In this study, an efficient surrogate-assisted hybrid optimization (SAHO) algorithm is proposed via combining two famous algorithms, namely, teaching–learning-based optimization (TLBO) and differential evolution (DE). The TLBO is focused on global exploration and the DE is concentrated on local exploitation. These two algorithms are carried out alternately when no better candidate solution can be found. Meanwhile, a new prescreening criterion based on the best and top collection information is introduced to choose promising candidates for real function evaluations. Besides, two evolution control (i.e., the generation-based and individual-based) strategies and a top-ranked restart strategy are integrated in the SAHO. Moreover, a local RBF surrogate which does not need too many training samples is employed to model the landscapes of the target function. Sixteen benchmark functions and the tension/compression spring design problem are adopted to compare the proposed SAHO with other state-of-the-art approaches. Extensive comparison results demonstrate that the proposed SAHO has superior performance for solving expensive optimization problems.
Author Liu, Nengxian
Chu, Shu-Chuan
Pan, Jeng-Shyang
Lai, Taotao
Author_xml – sequence: 1
  givenname: Jeng-Shyang
  surname: Pan
  fullname: Pan, Jeng-Shyang
  email: jspan@cc.kuas.edu.tw
  organization: College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Nengxian
  surname: Liu
  fullname: Liu, Nengxian
  email: lylnx@fzu.edu.cn
  organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
– sequence: 3
  givenname: Shu-Chuan
  orcidid: 0000-0003-2117-0618
  surname: Chu
  fullname: Chu, Shu-Chuan
  organization: College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
– sequence: 4
  givenname: Taotao
  surname: Lai
  fullname: Lai, Taotao
  organization: College of Computer and Control Engineering, Minjiang University, Fuzhou, China
BookMark eNp9kMtOwzAQRS1UJNrCB7DLDyTYcWI3YlVVvKRKbGBt-TFuXSVxZJuK8vWklA0suhqNZs5o7pmhSe97QOiW4IJgwu52hetjUeJy7EmBa3aBpmTBy5yVDZmgKR4nOS7r-grNYtxhjCvO2BTJZZ-BtU476FMWP0LwG5kglzG6mMBk24MKzmR-SK5zXzI532ey3fjg0rbLrA8ZfA7QR7eHv0tD8KqFLl6jSyvbCDe_dY7eHx_eVs_5-vXpZbVc55oymnLgiilqjW6qhmnDrMaWa04XDTWqUlwaSqUlCo-hFprWptEV11ozTC0AKDpH5HRXBx9jACuG4DoZDoJgcXQkdmJ0JI6OBCFidDQy_B-jXfp5PwXp2rPk_YmEMdLeQRDxqFCDcQF0Esa7M_Q3_fyH7Q
CitedBy_id crossref_primary_10_1007_s10489_025_06674_0
crossref_primary_10_1155_2021_8368646
crossref_primary_10_3390_s22103858
crossref_primary_10_1016_j_asoc_2024_112464
crossref_primary_10_1007_s11831_022_09800_0
crossref_primary_10_1155_2022_2748215
crossref_primary_10_1016_j_ins_2022_04_041
crossref_primary_10_1007_s40747_023_01113_4
crossref_primary_10_1007_s40747_021_00541_4
crossref_primary_10_1007_s40747_022_00751_4
crossref_primary_10_1016_j_swevo_2025_101879
crossref_primary_10_2478_amns_2024_0441
crossref_primary_10_1007_s10586_025_05459_x
crossref_primary_10_1016_j_ast_2025_110341
crossref_primary_10_1016_j_ins_2024_120246
crossref_primary_10_1016_j_swevo_2023_101357
crossref_primary_10_3233_JIFS_230928
crossref_primary_10_1016_j_knosys_2024_111998
crossref_primary_10_3390_math13152381
crossref_primary_10_1038_s41598_025_06648_9
crossref_primary_10_3390_drones6010010
crossref_primary_10_1016_j_asoc_2024_111876
crossref_primary_10_1109_TEVC_2023_3346435
crossref_primary_10_1016_j_ins_2024_121224
crossref_primary_10_1051_sbuild_2024005
crossref_primary_10_1109_TCYB_2024_3489885
crossref_primary_10_1109_TEVC_2022_3155533
crossref_primary_10_1007_s10462_022_10328_9
crossref_primary_10_1155_2021_9968550
crossref_primary_10_1016_j_array_2025_100461
crossref_primary_10_1016_j_compstruc_2023_107118
crossref_primary_10_1016_j_knosys_2023_110494
crossref_primary_10_1155_2021_5591543
crossref_primary_10_1016_j_ins_2023_03_101
crossref_primary_10_1016_j_knosys_2022_108436
crossref_primary_10_1016_j_petrol_2021_110050
crossref_primary_10_1007_s40747_022_00923_2
crossref_primary_10_1016_j_knosys_2022_109484
crossref_primary_10_1016_j_ins_2022_07_162
crossref_primary_10_1016_j_envsoft_2023_105639
crossref_primary_10_1016_j_eswa_2024_123517
crossref_primary_10_1016_j_ins_2021_07_080
crossref_primary_10_1155_2022_7675788
crossref_primary_10_1155_2021_9946458
crossref_primary_10_1007_s40747_023_01177_2
crossref_primary_10_1016_j_engappai_2023_107684
crossref_primary_10_1016_j_epsr_2022_107925
crossref_primary_10_1007_s40747_023_01340_9
crossref_primary_10_1155_2021_1676879
crossref_primary_10_1016_j_compstruc_2024_107542
crossref_primary_10_1016_j_ins_2022_10_134
crossref_primary_10_3390_biomimetics10040236
crossref_primary_10_1007_s10489_022_04080_4
crossref_primary_10_1016_j_image_2021_116428
crossref_primary_10_1007_s40747_025_01947_0
crossref_primary_10_1007_s00158_025_04007_w
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_1631_FITEE_2000691
crossref_primary_10_1007_s11042_022_14195_y
crossref_primary_10_7717_peerj_cs_1007
crossref_primary_10_1016_j_knosys_2025_114238
crossref_primary_10_1109_TPWRS_2023_3248293
crossref_primary_10_1016_j_asoc_2025_112727
crossref_primary_10_1016_j_knosys_2023_110630
crossref_primary_10_1016_j_ast_2025_110257
crossref_primary_10_1109_TEVC_2022_3177605
crossref_primary_10_1007_s00500_021_06348_2
crossref_primary_10_3390_math13061007
crossref_primary_10_1007_s11227_025_07785_8
crossref_primary_10_1016_j_ins_2024_121408
crossref_primary_10_1080_15435075_2022_2131433
crossref_primary_10_1007_s40747_023_01243_9
crossref_primary_10_3390_biomimetics10050338
crossref_primary_10_1016_j_apm_2022_11_016
crossref_primary_10_1155_2021_2299632
crossref_primary_10_1007_s11276_024_03677_6
crossref_primary_10_1016_j_asoc_2024_111967
crossref_primary_10_1155_2021_3132062
crossref_primary_10_3390_electronics13245061
crossref_primary_10_1016_j_swevo_2025_102003
crossref_primary_10_3390_e25020317
crossref_primary_10_1016_j_asoc_2022_109639
crossref_primary_10_1016_j_ins_2022_07_174
crossref_primary_10_32604_cmes_2022_019595
crossref_primary_10_1016_j_eswa_2021_116332
crossref_primary_10_1016_j_asoc_2023_111212
crossref_primary_10_3390_a18010004
crossref_primary_10_3390_biomimetics8020174
crossref_primary_10_1016_j_eswa_2022_117127
crossref_primary_10_1145_3716504
crossref_primary_10_1515_mt_2022_0012
crossref_primary_10_1016_j_asoc_2022_108736
crossref_primary_10_1155_2022_9122881
crossref_primary_10_1109_TCYB_2021_3118783
crossref_primary_10_1016_j_ins_2022_12_020
crossref_primary_10_1109_ACCESS_2024_3403889
crossref_primary_10_1155_2022_4390923
crossref_primary_10_3390_e24070980
crossref_primary_10_1007_s40747_022_00910_7
crossref_primary_10_1155_2021_5537018
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_3390_app14177853
crossref_primary_10_1016_j_asoc_2023_110785
crossref_primary_10_3390_math11020439
crossref_primary_10_1016_j_knosys_2022_110090
crossref_primary_10_1155_2022_9241112
crossref_primary_10_1016_j_ins_2023_119035
crossref_primary_10_1016_j_asoc_2025_113619
crossref_primary_10_1155_2021_9944460
crossref_primary_10_3390_e24050586
crossref_primary_10_1016_j_swevo_2023_101466
Cites_doi 10.1109/TEVC.2003.814902
10.1016/j.swevo.2020.100665
10.1109/TEVC.2019.2890818
10.1109/TEVC.2018.2869247
10.1109/TSMCB.2006.873185
10.1016/j.asoc.2020.106303
10.2514/1.C001017
10.1109/TCYB.2017.2710978
10.1016/j.knosys.2018.08.010
10.3390/app9101973
10.1016/j.swevo.2018.08.015
10.1016/j.knosys.2020.105746
10.1016/j.ins.2012.09.030
10.1007/s00500-003-0328-5
10.1109/TCYB.2018.2809430
10.1016/j.knosys.2016.06.029
10.1016/j.ins.2017.02.055
10.1016/j.ins.2018.04.062
10.1002/nme.1620210904
10.1016/j.asoc.2019.01.037
10.1109/ACCESS.2020.2968119
10.1109/TEVC.2013.2248012
10.1109/CEC.2013.6557879
10.1016/S0045-7825(01)00323-1
10.1109/TEVC.2018.2869001
10.1109/TEVC.2017.2675628
10.1007/s00500-014-1283-z
10.1016/j.ins.2012.04.028
10.1016/j.eswa.2009.06.044
10.1016/j.amc.2006.07.105
10.1016/j.eswa.2020.113377
10.1016/j.swevo.2016.01.004
10.1016/j.eswa.2015.07.043
10.1016/j.knosys.2014.07.025
10.1007/s00158-001-0160-4
10.1109/ICNN.1995.488968
10.1016/j.knosys.2019.104901
10.1109/TEVC.2009.2027359
10.1016/j.ins.2014.11.051
10.2514/2.1999
10.1007/s00500-016-2140-z
10.1109/ACCESS.2020.3012686
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2020.11.056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 325
ExternalDocumentID 10_1016_j_ins_2020_11_056
S0020025520311609
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-e7b6b3fdc9496cd6fc0f7c73893db4b7ad33af1b08728c35d9c47ccc603feeeb3
ISICitedReferencesCount 117
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000644023200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:25:37 EST 2025
Tue Nov 18 22:31:03 EST 2025
Fri Feb 23 02:40:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Hybrid optimization algorithm
Surrogate-assisted
Teaching-learning-based optimization
Expensive problems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-e7b6b3fdc9496cd6fc0f7c73893db4b7ad33af1b08728c35d9c47ccc603feeeb3
ORCID 0000-0003-2117-0618
PageCount 22
ParticipantIDs crossref_primary_10_1016_j_ins_2020_11_056
crossref_citationtrail_10_1016_j_ins_2020_11_056
elsevier_sciencedirect_doi_10_1016_j_ins_2020_11_056
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Di Nuovo, Ascia, Catania (b0085) 2012; 7492
Li, Shen, Cai, Gao, Gary Wang (b0090) 2020; 92
Wang, Jin, Doherty (b0130) 2017; 47
Alaviyan Shahri, Alfi, Tenreiro Machado (b0040) 2019; 77
Jin (b0055) 2005; 9
Nair, Keane, Shimpi (b0160) 1998; 2
Massaro, Benini (b0050) 2012; 49
Li, Wang, Yan, Li (b0180) 2015; 42
Jin, Wang, Chugh, Guo, Miettinen (b0060) 2019; 23
Wang, Gary Wang, Song, Wang, Wang (b0135) 2019; 23
Li, Cai, Gao, Shen (b0095) 2020
N.H. Awad, M.Z. Ali, J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on real-parameter optimization, 2016
Yu, Tan, Sun, Zeng (b0080) 2019; 163
Tian, Tan, Zeng, Sun, Jin (b0150) 2019; 23
Nengxian, Jeng-Shyang, Jinfeng, Shu-Chuan, Trong-The (b0170) 2020; 21
Krohling, Dos Santos Coelho (b0235) 2006; 36
Wu, Mallipeddi, Suganthan (b0190) 2019; 44
Meng, Pan, Xu (b0035) 2016; 109
Lim, Jin, Ong, Sendhoff (b0115) 2010; 14
F. Zhuo Huang, L. Wang, Q. He, An effective co-evolutionary differential evolution for constrained optimization, Appl. Math. Comput. 186 (2007) 340–356.
Faramarzi, Heidarinejad, Mirjalili, Gandomi (b0250) 2020; 152
Sun, Jin, Cheng, Ding, Zeng (b0120) 2017; 21
Hu, Pan, Chu (b0010) 2020; 195
Nguyen, Pan, Dao (b0030) 2019; 9
Coello Coello (b0220) 2002; 191
Rao, Patel (b0020) 2013; 20
Yu, Tan, Zeng, Sun, Jin (b0195) 2018; 454–455
Salimi (b0245) 2015; 75
Martinez, Coello (b0100) 2013; 2013
Díaz-Manríquez, Toscano, Coello Coello (b0065) 2017; 21
Sun, Zeng, Pan, Xue, Jin (b0110) 2013; 221
Ray, Liew (b0225) 2003; 7
Das, Mullick, Suganthan (b0015) 2016; 27
Arab, Alfi (b0185) 2015; 299
Jin, Chen, Simpson (b0070) 2001; 23
P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Tech. Report, Nanyang Technol. Univ. Singapore, May 2005 KanGAL Rep. 2005005, IIT Kanpur, India. 2005.
Pan, Liu, Chu (b0175) 2020; 8
Cai, Qiu, Gao, Jiang, Shao (b0125) 2019; 184
J. Kennedy, R.B.T.-I.C. on N.N. Eberhart, Particle swarm Optimization, in: Proc. IEEE Int. Conf. Neural Networks, IEEE, Perth, WA, 1995, pp. 1942–1948.
Liu, Zhang, Gielen (b0075) 2014; 18
Ong, Nair, Keane (b0105) 2003; 41
Nasir, Das, Maity, Sengupta, Halder, Suganthan (b0045) 2012; 209
Zheng, Zhang, Tang, Zheng (b0165) 2017; 399
Coelho (b0240) 2010; 37
Mousavi, Alfi, Kucukdemiral (b0025) 2020; 8
Belegundu, Arora (b0215) 1985; 21
Sun, Jin, Zeng, Yu (b0145) 2015; 19
Wang, Yin, Yang, Sun (b0140) 2019; 49
Jin, Olhofer, Sendhoff (b0155) 2000
Carrasco, García, Rueda, Das, Herrera (b0210) 2020; 54
Pan (10.1016/j.ins.2020.11.056_b0175) 2020; 8
Sun (10.1016/j.ins.2020.11.056_b0120) 2017; 21
Wang (10.1016/j.ins.2020.11.056_b0140) 2019; 49
Tian (10.1016/j.ins.2020.11.056_b0150) 2019; 23
Yu (10.1016/j.ins.2020.11.056_b0080) 2019; 163
Wu (10.1016/j.ins.2020.11.056_b0190) 2019; 44
Nguyen (10.1016/j.ins.2020.11.056_b0030) 2019; 9
Nair (10.1016/j.ins.2020.11.056_b0160) 1998; 2
Li (10.1016/j.ins.2020.11.056_b0095) 2020
Rao (10.1016/j.ins.2020.11.056_b0020) 2013; 20
Díaz-Manríquez (10.1016/j.ins.2020.11.056_b0065) 2017; 21
Li (10.1016/j.ins.2020.11.056_b0180) 2015; 42
Jin (10.1016/j.ins.2020.11.056_b0155) 2000
Wang (10.1016/j.ins.2020.11.056_b0130) 2017; 47
Sun (10.1016/j.ins.2020.11.056_b0145) 2015; 19
Jin (10.1016/j.ins.2020.11.056_b0055) 2005; 9
Wang (10.1016/j.ins.2020.11.056_b0135) 2019; 23
Das (10.1016/j.ins.2020.11.056_b0015) 2016; 27
Jin (10.1016/j.ins.2020.11.056_b0070) 2001; 23
Di Nuovo (10.1016/j.ins.2020.11.056_b0085) 2012; 7492
Arab (10.1016/j.ins.2020.11.056_b0185) 2015; 299
Krohling (10.1016/j.ins.2020.11.056_b0235) 2006; 36
Lim (10.1016/j.ins.2020.11.056_b0115) 2010; 14
Belegundu (10.1016/j.ins.2020.11.056_b0215) 1985; 21
Faramarzi (10.1016/j.ins.2020.11.056_b0250) 2020; 152
Nasir (10.1016/j.ins.2020.11.056_b0045) 2012; 209
Liu (10.1016/j.ins.2020.11.056_b0075) 2014; 18
Mousavi (10.1016/j.ins.2020.11.056_b0025) 2020; 8
Martinez (10.1016/j.ins.2020.11.056_b0100) 2013; 2013
Carrasco (10.1016/j.ins.2020.11.056_b0210) 2020; 54
10.1016/j.ins.2020.11.056_b0230
Coello Coello (10.1016/j.ins.2020.11.056_b0220) 2002; 191
Coelho (10.1016/j.ins.2020.11.056_b0240) 2010; 37
Cai (10.1016/j.ins.2020.11.056_b0125) 2019; 184
Hu (10.1016/j.ins.2020.11.056_b0010) 2020; 195
Alaviyan Shahri (10.1016/j.ins.2020.11.056_b0040) 2019; 77
Zheng (10.1016/j.ins.2020.11.056_b0165) 2017; 399
Li (10.1016/j.ins.2020.11.056_b0090) 2020; 92
Jin (10.1016/j.ins.2020.11.056_b0060) 2019; 23
Salimi (10.1016/j.ins.2020.11.056_b0245) 2015; 75
Sun (10.1016/j.ins.2020.11.056_b0110) 2013; 221
Nengxian (10.1016/j.ins.2020.11.056_b0170) 2020; 21
Ray (10.1016/j.ins.2020.11.056_b0225) 2003; 7
Yu (10.1016/j.ins.2020.11.056_b0195) 2018; 454–455
Massaro (10.1016/j.ins.2020.11.056_b0050) 2012; 49
Meng (10.1016/j.ins.2020.11.056_b0035) 2016; 109
10.1016/j.ins.2020.11.056_b0200
10.1016/j.ins.2020.11.056_b0005
Ong (10.1016/j.ins.2020.11.056_b0105) 2003; 41
10.1016/j.ins.2020.11.056_b0205
References_xml – volume: 18
  start-page: 180
  year: 2014
  end-page: 192
  ident: b0075
  article-title: A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems
  publication-title: IEEE Trans. Evol. Computat.
– volume: 184
  start-page: 104901
  year: 2019
  ident: b0125
  article-title: An efficient surrogate-assisted particle swarm optimization algorithm for high-dimensional expensive problems
  publication-title: Knowl.-Based Syst.
– volume: 21
  start-page: 629
  year: 2020
  end-page: 643
  ident: b0170
  article-title: An efficient differential evolution via both top collective and P-best information
  publication-title: J. Internet Technol.
– volume: 8
  start-page: 140862
  year: 2020
  end-page: 140875
  ident: b0025
  article-title: Enhanced fractional chaotic whale optimization algorithm for parameter identification of isolated wind-diesel power systems
  publication-title: IEEE Access
– volume: 209
  start-page: 16
  year: 2012
  end-page: 36
  ident: b0045
  article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
  publication-title: Inf. Sci.
– volume: 21
  start-page: 644
  year: 2017
  end-page: 660
  ident: b0120
  article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 17691
  year: 2020
  end-page: 17712
  ident: b0175
  article-title: A hybrid differential evolution algorithm and its application in unmanned combat aerial vehicle path planning
  publication-title: IEEE Access
– volume: 42
  start-page: 8881
  year: 2015
  end-page: 8895
  ident: b0180
  article-title: PS-ABC: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 442
  year: 2019
  end-page: 458
  ident: b0060
  article-title: Data-driven evolutionary optimization: an overview and case studies
  publication-title: IEEE Trans. Evol. Comput.
– volume: 163
  start-page: 14
  year: 2019
  end-page: 25
  ident: b0080
  article-title: A generation-based optimal restart strategy for surrogate-assisted social learning particle swarm optimization
  publication-title: Knowl.-Based Syst.
– volume: 7492
  start-page: 102
  year: 2012
  end-page: 111
  ident: b0085
  article-title: A study on evolutionary multi-objective optimization with fuzzy approximation for computational expensive problems
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– volume: 36
  start-page: 1407
  year: 2006
  end-page: 1416
  ident: b0235
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans. Syst., Man, Cybern. B
– volume: 54
  start-page: 100665
  year: 2020
  ident: b0210
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
– volume: 47
  start-page: 2664
  year: 2017
  end-page: 2677
  ident: b0130
  article-title: Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems
  publication-title: IEEE Trans. Cybern.
– volume: 49
  start-page: 1642
  year: 2019
  end-page: 1656
  ident: b0140
  article-title: Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints
  publication-title: IEEE Trans. Cybern.
– volume: 299
  start-page: 117
  year: 2015
  end-page: 142
  ident: b0185
  article-title: An adaptive gradient descent-based local search in memetic algorithm applied to optimal controller design
  publication-title: Inf. Sci.
– volume: 92
  start-page: 106303
  year: 2020
  ident: b0090
  article-title: A fast surrogate-assisted particle swarm optimization algorithm for computationally expensive problems
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 1583
  year: 1985
  end-page: 1599
  ident: b0215
  article-title: A study of mathematical programming methods for structural optimization. Part I: theory
  publication-title: Int. J. Numer. Methods Eng.
– volume: 20
  start-page: 710
  year: 2013
  end-page: 720
  ident: b0020
  article-title: An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems
  publication-title: Sci. Iran.
– volume: 19
  start-page: 1461
  year: 2015
  end-page: 1475
  ident: b0145
  article-title: A two-layer surrogate-assisted particle swarm optimization algorithm
  publication-title: Soft Comput.
– volume: 23
  start-page: 459
  year: 2019
  end-page: 472
  ident: b0150
  article-title: Multiobjective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 109
  start-page: 104
  year: 2016
  end-page: 121
  ident: b0035
  article-title: QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm: a cooperative swarm based algorithm for global optimization
  publication-title: Knowl.-Based Syst.
– volume: 14
  start-page: 329
  year: 2010
  end-page: 355
  ident: b0115
  article-title: Generalizing surrogate-assisted evolutionary computation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 41
  start-page: 687
  year: 2003
  end-page: 696
  ident: b0105
  article-title: Evolutionary optimization of computationally expensive problems via surrogate modeling
  publication-title: AIAA J.
– volume: 37
  start-page: 1676
  year: 2010
  end-page: 1683
  ident: b0240
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Syst. Appl.
– volume: 195
  start-page: 105746
  year: 2020
  ident: b0010
  article-title: Improved binary grey wolf optimizer and its application for feature selection
  publication-title: Knowl.-Based Syst.
– reference: P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Tech. Report, Nanyang Technol. Univ. Singapore, May 2005 KanGAL Rep. 2005005, IIT Kanpur, India. 2005.
– volume: 9
  start-page: 1973
  year: 2019
  ident: b0030
  article-title: A compact bat algorithm for unequal clustering in wireless sensor networks
  publication-title: Appl. Sci.
– volume: 2013
  start-page: 2572
  year: 2013
  end-page: 2579
  ident: b0100
  article-title: Combining surrogate models and local search for dealing with expensive multi-objective optimization problems
  publication-title: 2013 IEEE Congr. Evol. Comput. CEC
– volume: 27
  start-page: 1
  year: 2016
  end-page: 30
  ident: b0015
  article-title: Recent advances in differential evolution – an updated survey
  publication-title: Swarm Evol. Comput.
– volume: 221
  start-page: 355
  year: 2013
  end-page: 370
  ident: b0110
  article-title: A new fitness estimation strategy for particle swarm optimization
  publication-title: Inf. Sci.
– volume: 2
  start-page: 1741
  year: 1998
  end-page: 1751
  ident: b0160
  article-title: Combining approximation concepts with genetic algorithm-based structural optimization procedures
  publication-title: Collect. Tech. Pap. – AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf.
– reference: N.H. Awad, M.Z. Ali, J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on real-parameter optimization, 2016
– volume: 7
  start-page: 386
  year: 2003
  end-page: 396
  ident: b0225
  article-title: Society and civilization: an optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 5647
  year: 2017
  end-page: 5663
  ident: b0065
  article-title: Comparison of metamodeling techniques in evolutionary algorithms
  publication-title: Soft Comput.
– volume: 9
  start-page: 3
  year: 2005
  end-page: 12
  ident: b0055
  article-title: A comprehensive survey of fitness approximation in evolutionary computation
  publication-title: Soft. Comput.
– volume: 44
  start-page: 695
  year: 2019
  end-page: 711
  ident: b0190
  article-title: Ensemble strategies for population-based optimization algorithms – a survey
  publication-title: Swarm Evol. Comput.
– reference: F. Zhuo Huang, L. Wang, Q. He, An effective co-evolutionary differential evolution for constrained optimization, Appl. Math. Comput. 186 (2007) 340–356.
– volume: 152
  start-page: 113377
  year: 2020
  ident: b0250
  article-title: Marine predators algorithm: a nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
– volume: 399
  start-page: 13
  year: 2017
  end-page: 29
  ident: b0165
  article-title: Differential evolution powered by collective information
  publication-title: Inf. Sci.
– volume: 75
  start-page: 1
  year: 2015
  end-page: 18
  ident: b0245
  article-title: Stochastic Fractal Search: a powerful metaheuristic algorithm
  publication-title: Knowl.-Based Syst.
– volume: 23
  start-page: 1
  year: 2001
  end-page: 13
  ident: b0070
  article-title: Comparative studies of metamodelling techniques under multiple modelling criteria
  publication-title: Struct. Multidiscip. Optim.
– volume: 49
  start-page: 375
  year: 2012
  end-page: 383
  ident: b0050
  article-title: Multi-objective optimization of helicopter airfoils using surrogate-assisted memetic algorithms
  publication-title: J. Aircraft
– volume: 454–455
  start-page: 59
  year: 2018
  end-page: 72
  ident: b0195
  article-title: Surrogate-assisted hierarchical particle swarm optimization
  publication-title: Inf. Sci.
– start-page: 786
  year: 2000
  end-page: 793
  ident: b0155
  article-title: On evolutionary optimization with approximate fitness functions
  publication-title: Gecco
– reference: J. Kennedy, R.B.T.-I.C. on N.N. Eberhart, Particle swarm Optimization, in: Proc. IEEE Int. Conf. Neural Networks, IEEE, Perth, WA, 1995, pp. 1942–1948.
– start-page: 1
  year: 2020
  end-page: 13
  ident: b0095
  article-title: A surrogate-assisted multiswarm optimization algorithm for high-dimensional computationally expensive problems
  publication-title: IEEE Trans. Cybern.
– volume: 77
  start-page: 688
  year: 2019
  end-page: 695
  ident: b0040
  article-title: Fractional fixed-structure H ∞ controller design using Augmented Lagrangian Particle Swarm Optimization with Fractional Order Velocity
  publication-title: Appl. Soft Comput. J.
– volume: 23
  start-page: 815
  year: 2019
  end-page: 827
  ident: b0135
  article-title: A novel evolutionary sampling assisted optimization method for high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Computat.
– volume: 191
  start-page: 1245
  year: 2002
  end-page: 1287
  ident: b0220
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 7
  start-page: 386
  year: 2003
  ident: 10.1016/j.ins.2020.11.056_b0225
  article-title: Society and civilization: an optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.814902
– volume: 54
  start-page: 100665
  year: 2020
  ident: 10.1016/j.ins.2020.11.056_b0210
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100665
– volume: 2
  start-page: 1741
  year: 1998
  ident: 10.1016/j.ins.2020.11.056_b0160
  article-title: Combining approximation concepts with genetic algorithm-based structural optimization procedures
  publication-title: Collect. Tech. Pap. – AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf.
– volume: 23
  start-page: 815
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2020.11.056_b0135
  article-title: A novel evolutionary sampling assisted optimization method for high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Computat.
  doi: 10.1109/TEVC.2019.2890818
– volume: 20
  start-page: 710
  year: 2013
  ident: 10.1016/j.ins.2020.11.056_b0020
  article-title: An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems
  publication-title: Sci. Iran.
– volume: 23
  start-page: 459
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2020.11.056_b0150
  article-title: Multiobjective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869247
– volume: 36
  start-page: 1407
  year: 2006
  ident: 10.1016/j.ins.2020.11.056_b0235
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans. Syst., Man, Cybern. B
  doi: 10.1109/TSMCB.2006.873185
– ident: 10.1016/j.ins.2020.11.056_b0205
– volume: 92
  start-page: 106303
  year: 2020
  ident: 10.1016/j.ins.2020.11.056_b0090
  article-title: A fast surrogate-assisted particle swarm optimization algorithm for computationally expensive problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106303
– volume: 49
  start-page: 375
  issue: 2
  year: 2012
  ident: 10.1016/j.ins.2020.11.056_b0050
  article-title: Multi-objective optimization of helicopter airfoils using surrogate-assisted memetic algorithms
  publication-title: J. Aircraft
  doi: 10.2514/1.C001017
– volume: 47
  start-page: 2664
  issue: 9
  year: 2017
  ident: 10.1016/j.ins.2020.11.056_b0130
  article-title: Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2710978
– volume: 163
  start-page: 14
  year: 2019
  ident: 10.1016/j.ins.2020.11.056_b0080
  article-title: A generation-based optimal restart strategy for surrogate-assisted social learning particle swarm optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.010
– volume: 9
  start-page: 1973
  year: 2019
  ident: 10.1016/j.ins.2020.11.056_b0030
  article-title: A compact bat algorithm for unequal clustering in wireless sensor networks
  publication-title: Appl. Sci.
  doi: 10.3390/app9101973
– volume: 44
  start-page: 695
  year: 2019
  ident: 10.1016/j.ins.2020.11.056_b0190
  article-title: Ensemble strategies for population-based optimization algorithms – a survey
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.015
– volume: 195
  start-page: 105746
  year: 2020
  ident: 10.1016/j.ins.2020.11.056_b0010
  article-title: Improved binary grey wolf optimizer and its application for feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105746
– volume: 221
  start-page: 355
  year: 2013
  ident: 10.1016/j.ins.2020.11.056_b0110
  article-title: A new fitness estimation strategy for particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.09.030
– volume: 9
  start-page: 3
  issue: 1
  year: 2005
  ident: 10.1016/j.ins.2020.11.056_b0055
  article-title: A comprehensive survey of fitness approximation in evolutionary computation
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-003-0328-5
– volume: 49
  start-page: 1642
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2020.11.056_b0140
  article-title: Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2809430
– volume: 109
  start-page: 104
  year: 2016
  ident: 10.1016/j.ins.2020.11.056_b0035
  article-title: QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm: a cooperative swarm based algorithm for global optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.06.029
– volume: 399
  start-page: 13
  year: 2017
  ident: 10.1016/j.ins.2020.11.056_b0165
  article-title: Differential evolution powered by collective information
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.02.055
– volume: 454–455
  start-page: 59
  year: 2018
  ident: 10.1016/j.ins.2020.11.056_b0195
  article-title: Surrogate-assisted hierarchical particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.04.062
– volume: 21
  start-page: 1583
  year: 1985
  ident: 10.1016/j.ins.2020.11.056_b0215
  article-title: A study of mathematical programming methods for structural optimization. Part I: theory
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620210904
– volume: 77
  start-page: 688
  year: 2019
  ident: 10.1016/j.ins.2020.11.056_b0040
  article-title: Fractional fixed-structure H ∞ controller design using Augmented Lagrangian Particle Swarm Optimization with Fractional Order Velocity
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.01.037
– volume: 8
  start-page: 17691
  year: 2020
  ident: 10.1016/j.ins.2020.11.056_b0175
  article-title: A hybrid differential evolution algorithm and its application in unmanned combat aerial vehicle path planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968119
– volume: 18
  start-page: 180
  issue: 2
  year: 2014
  ident: 10.1016/j.ins.2020.11.056_b0075
  article-title: A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems
  publication-title: IEEE Trans. Evol. Computat.
  doi: 10.1109/TEVC.2013.2248012
– volume: 2013
  start-page: 2572
  year: 2013
  ident: 10.1016/j.ins.2020.11.056_b0100
  article-title: Combining surrogate models and local search for dealing with expensive multi-objective optimization problems
  publication-title: 2013 IEEE Congr. Evol. Comput. CEC
  doi: 10.1109/CEC.2013.6557879
– volume: 191
  start-page: 1245
  year: 2002
  ident: 10.1016/j.ins.2020.11.056_b0220
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00323-1
– volume: 23
  start-page: 442
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2020.11.056_b0060
  article-title: Data-driven evolutionary optimization: an overview and case studies
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869001
– volume: 21
  start-page: 644
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2020.11.056_b0120
  article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2675628
– volume: 19
  start-page: 1461
  issue: 6
  year: 2015
  ident: 10.1016/j.ins.2020.11.056_b0145
  article-title: A two-layer surrogate-assisted particle swarm optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1283-z
– ident: 10.1016/j.ins.2020.11.056_b0200
– volume: 209
  start-page: 16
  year: 2012
  ident: 10.1016/j.ins.2020.11.056_b0045
  article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.04.028
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2020.11.056_b0095
  article-title: A surrogate-assisted multiswarm optimization algorithm for high-dimensional computationally expensive problems
  publication-title: IEEE Trans. Cybern.
– volume: 37
  start-page: 1676
  year: 2010
  ident: 10.1016/j.ins.2020.11.056_b0240
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.044
– volume: 7492
  start-page: 102
  year: 2012
  ident: 10.1016/j.ins.2020.11.056_b0085
  article-title: A study on evolutionary multi-objective optimization with fuzzy approximation for computational expensive problems
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– ident: 10.1016/j.ins.2020.11.056_b0230
  doi: 10.1016/j.amc.2006.07.105
– volume: 152
  start-page: 113377
  year: 2020
  ident: 10.1016/j.ins.2020.11.056_b0250
  article-title: Marine predators algorithm: a nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 27
  start-page: 1
  year: 2016
  ident: 10.1016/j.ins.2020.11.056_b0015
  article-title: Recent advances in differential evolution – an updated survey
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.01.004
– volume: 42
  start-page: 8881
  year: 2015
  ident: 10.1016/j.ins.2020.11.056_b0180
  article-title: PS-ABC: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.07.043
– volume: 75
  start-page: 1
  year: 2015
  ident: 10.1016/j.ins.2020.11.056_b0245
  article-title: Stochastic Fractal Search: a powerful metaheuristic algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.07.025
– volume: 23
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.ins.2020.11.056_b0070
  article-title: Comparative studies of metamodelling techniques under multiple modelling criteria
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-001-0160-4
– ident: 10.1016/j.ins.2020.11.056_b0005
  doi: 10.1109/ICNN.1995.488968
– volume: 184
  start-page: 104901
  year: 2019
  ident: 10.1016/j.ins.2020.11.056_b0125
  article-title: An efficient surrogate-assisted particle swarm optimization algorithm for high-dimensional expensive problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104901
– volume: 14
  start-page: 329
  issue: 3
  year: 2010
  ident: 10.1016/j.ins.2020.11.056_b0115
  article-title: Generalizing surrogate-assisted evolutionary computation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2027359
– volume: 299
  start-page: 117
  year: 2015
  ident: 10.1016/j.ins.2020.11.056_b0185
  article-title: An adaptive gradient descent-based local search in memetic algorithm applied to optimal controller design
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.11.051
– start-page: 786
  year: 2000
  ident: 10.1016/j.ins.2020.11.056_b0155
  article-title: On evolutionary optimization with approximate fitness functions
  publication-title: Gecco
– volume: 41
  start-page: 687
  issue: 4
  year: 2003
  ident: 10.1016/j.ins.2020.11.056_b0105
  article-title: Evolutionary optimization of computationally expensive problems via surrogate modeling
  publication-title: AIAA J.
  doi: 10.2514/2.1999
– volume: 21
  start-page: 5647
  issue: 19
  year: 2017
  ident: 10.1016/j.ins.2020.11.056_b0065
  article-title: Comparison of metamodeling techniques in evolutionary algorithms
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2140-z
– volume: 8
  start-page: 140862
  year: 2020
  ident: 10.1016/j.ins.2020.11.056_b0025
  article-title: Enhanced fractional chaotic whale optimization algorithm for parameter identification of isolated wind-diesel power systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3012686
– volume: 21
  start-page: 629
  year: 2020
  ident: 10.1016/j.ins.2020.11.056_b0170
  article-title: An efficient differential evolution via both top collective and P-best information
  publication-title: J. Internet Technol.
SSID ssj0004766
Score 2.625653
Snippet Surrogate-assisted evolutionary algorithms (SAEAs) are potential approaches to solve computationally expensive optimization problems. The critical idea of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 304
SubjectTerms Differential evolution
Expensive problems
Hybrid optimization algorithm
Surrogate-assisted
Teaching-learning-based optimization
Title An efficient surrogate-assisted hybrid optimization algorithm for expensive optimization problems
URI https://dx.doi.org/10.1016/j.ins.2020.11.056
Volume 561
WOSCitedRecordID wos000644023200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOCAZoA4Z8QByojJI4ieNjNQ3BhKZJK1Jvkb-yduqSKk2n7r4_fHbsZN4XYgcuUeQ4bpPfz8_vOe8DgC8BjvUUCzliCVXIWAgoYwFFMg4lZ6EqsGqR_k2OjrLplB4PBlddLMzFgpRlttnQ5X-FWrdpsE3o7BPg7gfVDfpcg66PGnZ9_Cfgx6Vx0pi3gY6j1bquK7NThrSSbBCVo9mlCdIaVVpWnLsgzBFbnFb1vJmd2wzgm6Vza7_VydWeWfn6rItmaq-7xbRX0o_t3uqhKk_RyeySuTXSeP_M1y0L9ZWNR8_9Wdt8Mlsjfeo5C9mS2RNWNazytykiz52qDxsIkDFgfNGb2ETsTnhiW4jYrcPYBkTfE_F2t-FM2yUm23pkhP73IHkgnfadZa53Puz82s5yPURuhtBmUK6HeAa2IpLQbAi2xr8Opoc38bXEfvPuHqH7Ot76Cd75Hw_rN57OMnkNXjljA44tSd6AgSq3wUsvBeU22HOBK_Ar9LCETuS_BWxcwp5O8D6doKUT9JkCezpBPSLs6XS7U0end-DPj4PJ_k_kynIggVPcIEV4ynEhBY1pKmRaiKAgghjNV_KYEyYxZkXIg4xEmcCJpCImQog0wIVSiuP3YFhWpdoBMMMsCDkXERU4DiLKwywOjQlMpdSKbroLgu5l5sLlrDelUxb5oyDugm_9LUubsOVvneMOodxNEqtJ5pptj9_24Sm_8RG8uJkPn8CwqddqDzwXF818VX92VLsGdkCmnQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+surrogate-assisted+hybrid+optimization+algorithm+for+expensive+optimization+problems&rft.jtitle=Information+sciences&rft.au=Pan%2C+Jeng-Shyang&rft.au=Liu%2C+Nengxian&rft.au=Chu%2C+Shu-Chuan&rft.au=Lai%2C+Taotao&rft.date=2021-06-01&rft.issn=0020-0255&rft.volume=561&rft.spage=304&rft.epage=325&rft_id=info:doi/10.1016%2Fj.ins.2020.11.056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2020_11_056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon