Natural Language Processing in Radiology: A Systematic Review
Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagno...
Gespeichert in:
| Veröffentlicht in: | Radiology Jg. 279; H. 2; S. 329 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.05.2016
|
| Schlagworte: | |
| ISSN: | 1527-1315, 1527-1315 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed. |
|---|---|
| AbstractList | Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed.Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed. Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed. |
| Author | Braun, Loes M M Kors, Jan A Pons, Ewoud Hunink, M G Myriam |
| Author_xml | – sequence: 1 givenname: Ewoud surname: Pons fullname: Pons, Ewoud organization: From the Departments of Radiology (E.P., L.M.M.B., M.G.M.H.) and Medical Informatics (J.A.K.), Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands – sequence: 2 givenname: Loes M M surname: Braun fullname: Braun, Loes M M organization: From the Departments of Radiology (E.P., L.M.M.B., M.G.M.H.) and Medical Informatics (J.A.K.), Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands – sequence: 3 givenname: M G Myriam surname: Hunink fullname: Hunink, M G Myriam organization: From the Departments of Radiology (E.P., L.M.M.B., M.G.M.H.) and Medical Informatics (J.A.K.), Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands – sequence: 4 givenname: Jan A surname: Kors fullname: Kors, Jan A organization: From the Departments of Radiology (E.P., L.M.M.B., M.G.M.H.) and Medical Informatics (J.A.K.), Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27089187$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNT0lLw0AYHaRiFz17kzl6SZ1vlsxE8FCKGxSVqucwmXwNI1lqJrH03xu0gpf33uHxlikZ1U2NhJwDmwNIc9Xa3DflHGKQXGt2RCaguI5AgBr902MyDeGDMZDK6BMy5pqZBIyekJsn2_WtLenK1kVvC6QvbeMwBF8X1Nd0_VPQFPtruqCv-9BhZTvv6Bq_PO5OyfHGlgHPDjwj73e3b8uHaPV8_7hcrCInYtFFqITJeKZ0NgzAON8wwfPEOilxGKGsECilVrHOXCLFgFwxmyjJWO5MDI7PyOVv7rZtPnsMXVr54LAsbY1NH1LQhhsBLJaD9eJg7bMK83Tb-sq2-_TvMv8GvEdZUA |
| CitedBy_id | crossref_primary_10_1016_j_jacr_2018_12_004 crossref_primary_10_1007_s00256_021_03760_5 crossref_primary_10_1016_j_redii_2023_100027 crossref_primary_10_1007_s10278_021_00527_1 crossref_primary_10_1016_j_arth_2023_08_047 crossref_primary_10_1016_j_thromres_2021_11_020 crossref_primary_10_1159_000504259 crossref_primary_10_2196_49041 crossref_primary_10_1186_s12911_023_02101_x crossref_primary_10_1016_S0140_6736_21_00673_5 crossref_primary_10_1016_j_cma_2021_114507 crossref_primary_10_1007_s10278_025_01637_w crossref_primary_10_1186_s41824_020_00094_8 crossref_primary_10_1007_s00330_023_10202_4 crossref_primary_10_1097_CIN_0000000000000967 crossref_primary_10_1186_s13244_023_01507_5 crossref_primary_10_1016_j_seizure_2020_11_011 crossref_primary_10_32628_IJSRST2302551 crossref_primary_10_1053_j_ro_2023_01_005 crossref_primary_10_1093_jamiaopen_ooad111 crossref_primary_10_1097_SLA_0000000000004419 crossref_primary_10_12688_wellcomeopenres_16867_2 crossref_primary_10_12688_wellcomeopenres_16867_1 crossref_primary_10_12688_wellcomeopenres_16867_4 crossref_primary_10_1016_j_jvs_2024_12_002 crossref_primary_10_12688_wellcomeopenres_16867_3 crossref_primary_10_1186_s13326_019_0211_7 crossref_primary_10_12688_wellcomeopenres_16867_5 crossref_primary_10_1007_s10278_018_0105_8 crossref_primary_10_1016_j_jacr_2018_08_011 crossref_primary_10_1111_nyas_13741 crossref_primary_10_1136_bmjhci_2020_100262 crossref_primary_10_1016_j_ijmedinf_2017_02_011 crossref_primary_10_1088_1755_1315_714_4_042018 crossref_primary_10_1016_j_jamda_2023_09_006 crossref_primary_10_1111_epi_17474 crossref_primary_10_3389_fmed_2019_00066 crossref_primary_10_7759_cureus_43866 crossref_primary_10_1007_s10140_025_02354_1 crossref_primary_10_1016_j_jbi_2020_103492 crossref_primary_10_1016_j_acra_2021_01_017 crossref_primary_10_2196_32973 crossref_primary_10_1007_s10278_023_00913_x crossref_primary_10_3389_fdgth_2023_1184919 crossref_primary_10_1055_s_0041_1740493 crossref_primary_10_1007_s10278_018_0131_6 crossref_primary_10_1371_journal_pone_0234908 crossref_primary_10_1016_j_jbi_2017_11_011 crossref_primary_10_1016_j_ijmedinf_2019_02_008 crossref_primary_10_1067_j_cpradiol_2020_07_006 crossref_primary_10_1186_s12911_019_0780_5 crossref_primary_10_1016_j_ajem_2021_05_057 crossref_primary_10_1038_s41746_022_00730_6 crossref_primary_10_1016_j_ijmedinf_2020_104106 crossref_primary_10_1055_s_0040_1715892 crossref_primary_10_2196_38125 crossref_primary_10_2196_16816 crossref_primary_10_1038_s43856_022_00199_0 crossref_primary_10_7717_peerj_17870 crossref_primary_10_1007_s10278_017_0013_3 crossref_primary_10_1177_23202068211005611 crossref_primary_10_1186_s12911_022_01946_y crossref_primary_10_1016_j_jacr_2022_06_016 crossref_primary_10_1186_s12911_021_01533_7 crossref_primary_10_2196_12575 crossref_primary_10_1016_j_jcrc_2020_01_007 crossref_primary_10_1053_j_sult_2024_02_004 crossref_primary_10_1186_s12998_019_0233_3 crossref_primary_10_3390_diagnostics15070930 crossref_primary_10_1007_s10278_018_0141_4 crossref_primary_10_1148_ryai_230364 crossref_primary_10_1016_j_spinee_2019_12_006 crossref_primary_10_1177_10732748241286749 crossref_primary_10_1111_epi_17907 crossref_primary_10_1016_j_ejrad_2022_110366 crossref_primary_10_1109_TCBB_2018_2817488 crossref_primary_10_1097_HC9_0000000000000468 crossref_primary_10_3389_fmed_2021_748168 crossref_primary_10_1016_j_acra_2019_07_028 crossref_primary_10_3390_diagnostics13081420 crossref_primary_10_1007_s00330_023_10061_z crossref_primary_10_1038_s41746_024_01219_0 crossref_primary_10_1186_s12911_019_0908_7 crossref_primary_10_5435_JAAOS_D_22_00639 crossref_primary_10_1016_j_jacr_2020_02_005 crossref_primary_10_1371_journal_pone_0211116 crossref_primary_10_1007_s10278_017_0041_z crossref_primary_10_1016_j_acra_2024_12_028 crossref_primary_10_1093_jamia_ocy173 crossref_primary_10_1007_s10278_019_00271_7 crossref_primary_10_1016_j_acra_2021_09_005 crossref_primary_10_1016_j_procs_2020_08_045 crossref_primary_10_1148_radiol_233117 crossref_primary_10_1016_j_nlp_2022_100001 crossref_primary_10_1007_s00330_020_06721_z crossref_primary_10_1016_j_artmed_2023_102553 crossref_primary_10_2196_12239 crossref_primary_10_1002_cpt_1744 crossref_primary_10_1097_MCG_0000000000001585 crossref_primary_10_1002_ima_23025 crossref_primary_10_7759_cureus_75532 crossref_primary_10_1016_j_crad_2020_11_113 crossref_primary_10_1111_tbj_13718 crossref_primary_10_1016_j_jacr_2021_01_018 crossref_primary_10_1148_ryai_2019180052 crossref_primary_10_1016_j_jacr_2020_08_002 crossref_primary_10_1111_acem_15080 crossref_primary_10_3171_2022_1_FOCUS21561 crossref_primary_10_1017_S1351324920000509 crossref_primary_10_1177_17562872211044880 crossref_primary_10_1016_j_ijmedinf_2019_05_021 crossref_primary_10_1093_bjro_tzae022 crossref_primary_10_1186_s13326_019_0213_5 crossref_primary_10_1148_radiol_2021210043 crossref_primary_10_3390_jcm13237337 crossref_primary_10_1007_s10140_019_01673_4 crossref_primary_10_3348_jksr_2020_0177 crossref_primary_10_1016_j_jbi_2023_104282 crossref_primary_10_1007_s00234_022_03029_1 crossref_primary_10_1109_ACCESS_2020_3020138 crossref_primary_10_1109_ACCESS_2025_3582728 crossref_primary_10_1016_j_acra_2021_02_019 crossref_primary_10_1136_bjsports_2018_100087 crossref_primary_10_3390_cancers17020218 crossref_primary_10_1097_RLI_0000000000000600 crossref_primary_10_3390_cancers17091595 crossref_primary_10_1016_j_clinimag_2022_04_007 crossref_primary_10_1007_s12350_022_02996_5 crossref_primary_10_1007_s11023_024_09692_y crossref_primary_10_1111_add_15730 crossref_primary_10_1016_j_ccrj_2024_06_008 crossref_primary_10_1007_s10278_022_00692_x crossref_primary_10_1016_j_jacr_2017_09_044 crossref_primary_10_1186_s12911_021_01574_y crossref_primary_10_1371_journal_pone_0214775 crossref_primary_10_1109_ACCESS_2019_2937892 crossref_primary_10_1186_s41747_022_00281_1 crossref_primary_10_1186_s12998_021_00370_9 crossref_primary_10_2196_51822 crossref_primary_10_1001_jamanetworkopen_2022_27109 crossref_primary_10_1016_j_zemedi_2018_11_002 crossref_primary_10_1136_bmjopen_2023_076865 crossref_primary_10_2196_24594 crossref_primary_10_1097_MNM_0000000000001381 crossref_primary_10_2196_45376 crossref_primary_10_1016_j_rcl_2024_03_008 crossref_primary_10_1371_journal_pone_0303519 crossref_primary_10_1016_j_mayocp_2020_01_038 crossref_primary_10_1177_19322968211000831 crossref_primary_10_1007_s00117_019_0555_0 crossref_primary_10_1016_j_nic_2020_08_008 crossref_primary_10_1148_radiol_2018171093 crossref_primary_10_1016_j_acra_2021_12_005 crossref_primary_10_1097_MS9_0000000000002187 crossref_primary_10_1093_jamiaopen_ooy057 crossref_primary_10_1016_j_imu_2023_101309 crossref_primary_10_1055_a_2405_2489 crossref_primary_10_1016_j_rx_2022_03_003 crossref_primary_10_14201_adcaij_31857 crossref_primary_10_1016_j_imu_2022_100961 crossref_primary_10_1016_j_jamda_2023_06_031 crossref_primary_10_1016_j_nic_2020_08_001 crossref_primary_10_1007_s10278_020_00379_1 crossref_primary_10_1016_j_cell_2020_03_022 crossref_primary_10_1007_s10620_020_06156_y crossref_primary_10_1016_j_crad_2019_04_021 crossref_primary_10_3390_diagnostics12081882 crossref_primary_10_1007_s10278_022_00673_0 crossref_primary_10_2196_19905 crossref_primary_10_3390_diagnostics12123223 crossref_primary_10_1016_j_jtocrr_2022_100340 crossref_primary_10_1093_jnci_djac108 crossref_primary_10_1007_s00117_018_0426_0 crossref_primary_10_1109_JBHI_2024_3478809 crossref_primary_10_1016_j_jbi_2020_103665 crossref_primary_10_1016_j_eswa_2020_113647 crossref_primary_10_1038_s41598_024_76369_y crossref_primary_10_2196_24381 crossref_primary_10_1515_dx_2017_0025 crossref_primary_10_1136_bmj_n304 crossref_primary_10_1155_2022_6606588 crossref_primary_10_1148_ryai_2019180095 crossref_primary_10_1148_rg_2021200205 crossref_primary_10_1016_j_thromres_2024_109105 crossref_primary_10_1371_journal_pone_0236817 crossref_primary_10_1089_neu_2023_0553 crossref_primary_10_3348_kjr_2024_1228 crossref_primary_10_3348_kjr_2017_18_1_107 crossref_primary_10_1109_JBHI_2020_2991043 crossref_primary_10_1016_j_amjcard_2023_08_109 crossref_primary_10_1007_s00234_020_02420_0 crossref_primary_10_1088_1742_6596_1650_3_032131 crossref_primary_10_1259_bjr_20220769 crossref_primary_10_1148_ryai_220055 crossref_primary_10_1097_QCO_0000000000000376 crossref_primary_10_1097_01_CDR_0000804996_57509_75 crossref_primary_10_1177_11207000231155797 crossref_primary_10_1016_j_acra_2018_03_008 crossref_primary_10_1007_s10278_023_00787_z crossref_primary_10_1186_s13195_023_01240_7 crossref_primary_10_7759_cureus_36111 crossref_primary_10_1002_nbm_5014 crossref_primary_10_1016_j_knosys_2020_105695 crossref_primary_10_1016_j_ijnurstu_2016_09_013 crossref_primary_10_1177_10760296211013108 crossref_primary_10_1016_j_cmpb_2025_108638 crossref_primary_10_1016_j_jacr_2019_05_047 crossref_primary_10_1186_s13244_022_01267_8 crossref_primary_10_3389_fneur_2020_559322 crossref_primary_10_1371_journal_pone_0229963 crossref_primary_10_1038_s41598_023_29323_3 crossref_primary_10_2196_35257 crossref_primary_10_3390_aerospace10070600 crossref_primary_10_1053_j_semnuclmed_2018_11_010 crossref_primary_10_1007_s00117_021_00920_5 crossref_primary_10_1177_21925682211026910 crossref_primary_10_1186_s12911_019_0795_y crossref_primary_10_1007_s00330_025_11416_4 crossref_primary_10_31616_asj_2023_0410 crossref_primary_10_3390_diagnostics14242792 crossref_primary_10_1007_s00330_023_10424_6 crossref_primary_10_1016_j_jacr_2019_04_026 crossref_primary_10_1148_ryai_2021210035 crossref_primary_10_1016_j_mri_2019_07_004 crossref_primary_10_1148_ryai_210114 crossref_primary_10_1007_s00234_024_03427_7 crossref_primary_10_1016_j_annemergmed_2022_10_028 crossref_primary_10_1007_s00330_023_10245_7 crossref_primary_10_1016_j_heliyon_2024_e30106 crossref_primary_10_3389_fonc_2021_797454 crossref_primary_10_1007_s12072_020_10111_4 crossref_primary_10_1016_j_carj_2018_02_002 crossref_primary_10_1093_jamia_ocae223 crossref_primary_10_7759_cureus_70614 crossref_primary_10_1186_s12911_022_01843_4 crossref_primary_10_1186_s12911_022_02017_y crossref_primary_10_1186_s41747_018_0071_4 crossref_primary_10_1016_j_cmpb_2021_105939 crossref_primary_10_1016_j_jacr_2019_12_026 crossref_primary_10_2196_40964 crossref_primary_10_2196_68618 crossref_primary_10_1148_radiol_232308 crossref_primary_10_1186_s12911_021_01623_6 crossref_primary_10_1055_s_0041_1735178 crossref_primary_10_1109_JBHI_2022_3150242 crossref_primary_10_7759_cureus_65019 crossref_primary_10_1016_j_acra_2020_01_012 crossref_primary_10_1155_2021_6663884 crossref_primary_10_1007_s10278_017_0021_3 crossref_primary_10_1016_j_ijmedinf_2022_104779 crossref_primary_10_1055_a_2061_6562 crossref_primary_10_3389_fonc_2023_1160167 crossref_primary_10_1016_j_jbi_2018_07_017 crossref_primary_10_1007_s12028_022_01513_3 crossref_primary_10_1007_s10278_020_00350_0 crossref_primary_10_1109_TAI_2021_3086435 crossref_primary_10_1007_s10278_019_00237_9 crossref_primary_10_1038_s41598_025_05695_6 crossref_primary_10_1148_rg_2017170077 crossref_primary_10_2196_44537 crossref_primary_10_1002_ett_4884 crossref_primary_10_1111_1754_9485_12861 crossref_primary_10_1038_s41598_021_85016_9 crossref_primary_10_1016_j_media_2023_103021 crossref_primary_10_1016_j_jbi_2016_07_001 crossref_primary_10_1177_03009858251347529 crossref_primary_10_1016_j_imu_2024_101465 crossref_primary_10_1016_j_procs_2018_10_029 crossref_primary_10_1093_jamia_ocaf056 crossref_primary_10_1186_s12859_023_05480_0 crossref_primary_10_1016_j_acra_2023_08_039 crossref_primary_10_1136_bmjno_2020_000087 crossref_primary_10_2196_28776 crossref_primary_10_1016_j_jbi_2025_104829 crossref_primary_10_1016_j_radi_2022_05_005 crossref_primary_10_1007_s10916_022_01842_y crossref_primary_10_3390_cancers15204909 crossref_primary_10_1007_s12072_021_10229_z crossref_primary_10_3390_app11041691 crossref_primary_10_1259_bjr_20190389 crossref_primary_10_1007_s10579_023_09669_w crossref_primary_10_1186_s12911_021_01565_z crossref_primary_10_1016_j_chest_2021_05_048 crossref_primary_10_1259_bjr_20170564 crossref_primary_10_1097_CM9_0000000000000301 crossref_primary_10_1016_j_imu_2023_101294 crossref_primary_10_1016_j_jacr_2018_10_020 crossref_primary_10_1016_j_rxeng_2022_03_005 crossref_primary_10_1186_s12880_021_00594_4 crossref_primary_10_1182_bloodadvances_2023012200 crossref_primary_10_3390_healthcare8030272 crossref_primary_10_1155_2021_7259414 crossref_primary_10_1016_j_inffus_2025_103024 crossref_primary_10_1186_s12876_025_03608_5 crossref_primary_10_3389_fsurg_2022_957085 crossref_primary_10_1038_s41597_021_00929_4 crossref_primary_10_1186_s13244_025_01976_w crossref_primary_10_1016_j_artmed_2024_102814 crossref_primary_10_1097_RTI_0000000000000486 crossref_primary_10_1007_s12350_018_1275_y crossref_primary_10_1007_s10278_022_00717_5 crossref_primary_10_1007_s00330_018_5954_5 crossref_primary_10_1109_ACCESS_2022_3197772 crossref_primary_10_1111_nuf_12536 crossref_primary_10_1186_s12880_021_00671_8 crossref_primary_10_1148_ryai_210312 crossref_primary_10_1148_radiol_243217 crossref_primary_10_3389_frai_2022_826402 crossref_primary_10_1016_j_diii_2023_02_003 crossref_primary_10_1136_bmjopen_2019_031191 crossref_primary_10_1016_j_jbi_2017_04_011 crossref_primary_10_1016_j_artmed_2018_05_006 crossref_primary_10_1016_j_jiph_2020_06_006 crossref_primary_10_1007_s10278_020_00327_z crossref_primary_10_1007_s11657_020_00859_5 crossref_primary_10_1186_s13244_019_0777_8 crossref_primary_10_1097_RLI_0000000000000673 crossref_primary_10_1016_j_rx_2022_01_013 crossref_primary_10_1097_RCT_0000000000001247 crossref_primary_10_1016_j_artmed_2024_102924 crossref_primary_10_1007_s11277_018_5316_2 crossref_primary_10_1016_j_outlook_2020_12_007 crossref_primary_10_1097_RTI_0000000000000591 crossref_primary_10_1016_j_ejro_2017_08_002 crossref_primary_10_1016_j_artmed_2018_11_004 crossref_primary_10_3390_bioengineering11101043 crossref_primary_10_1016_j_crad_2023_10_032 crossref_primary_10_1016_j_jacr_2017_12_017 crossref_primary_10_1007_s10278_022_00619_6 |
| ContentType | Journal Article |
| Copyright | (©) RSNA, 2016 Online supplemental material is available for this article. |
| Copyright_xml | – notice: (©) RSNA, 2016 Online supplemental material is available for this article. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1148/radiol.16142770 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1527-1315 |
| ExternalDocumentID | 27089187 |
| Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article |
| GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ADBBV AENEX AENYM AFFNX AFOSN AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W NPM OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ W8F WH7 WOQ X7M YQI YQJ ZGI ZVN ZXP 7X8 |
| ID | FETCH-LOGICAL-c363t-e538b2b57b145e6df032d9ac44e1875a33e447567bc9437bc250a95400dc861c2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 370 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378715300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1527-1315 |
| IngestDate | Sun Nov 09 13:44:10 EST 2025 Sat Jun 28 01:34:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | (©) RSNA, 2016 Online supplemental material is available for this article. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-e538b2b57b145e6df032d9ac44e1875a33e447567bc9437bc250a95400dc861c2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
| PMID | 27089187 |
| PQID | 1782831064 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1782831064 pubmed_primary_27089187 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-May 20160501 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-May |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Radiology |
| PublicationTitleAlternate | Radiology |
| PublicationYear | 2016 |
| SSID | ssj0014587 |
| Score | 2.6350784 |
| SecondaryResourceType | review_article |
| Snippet | Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 329 |
| SubjectTerms | Electronic Health Records Humans Information Storage and Retrieval Natural Language Processing Radiology Radiology Information Systems |
| Title | Natural Language Processing in Radiology: A Systematic Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27089187 https://www.proquest.com/docview/1782831064 |
| Volume | 279 |
| WOSCitedRecordID | wos000378715300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Uinjx_agvVvC6mmRfiRcpYvFgS_EBvYXsZiMFSWpbBf-9s8nWngTBy94Cw8zszDczm_kALmQRK22kpMzEknJbBFQzrqkoWKgLGxU6MTXZhOr34-EwGfiG29Q_q5zHxDpQ55VxPfKrEFOZI8WS_Gb8Th1rlJuuegqNZWgxhDLuYqrhYorARU2Q55hbachC4Vf7YAVwNcnyUfV2iXiHR0oFv-PLOs90N_8r4RZseIRJOo1LbMOSLXdgredn6LvgVmG7XRvkwbcqif9ZAJMYGZXksZa5ev26Jh3y9LPomTRThD146d49395TT6JADZNsRi1GNB1poTSqw8q8CFiUJ5nh3IZYq2SMWbfzT6LFEs7wREyUJYjjghytF5poH1bKqrSHQJQwJsyF0FjicCxlMpMLrNe0zrRFX9BtOJ8rJkUndZOHrLTVxzRdqKYNB41203GzTSONVBAnKMrRH74-hnUELLJ5cHgCrQKvqD2FVfM5G00nZ7X18ewPet_jfbmv |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+Language+Processing+in+Radiology%3A+A+Systematic+Review&rft.jtitle=Radiology&rft.au=Pons%2C+Ewoud&rft.au=Braun%2C+Loes+M+M&rft.au=Hunink%2C+M+G+Myriam&rft.au=Kors%2C+Jan+A&rft.date=2016-05-01&rft.issn=1527-1315&rft.eissn=1527-1315&rft.volume=279&rft.issue=2&rft.spage=329&rft_id=info:doi/10.1148%2Fradiol.16142770&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-1315&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-1315&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-1315&client=summon |