Natural Language Processing in Radiology: A Systematic Review

Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiology Jg. 279; H. 2; S. 329
Hauptverfasser: Pons, Ewoud, Braun, Loes M M, Hunink, M G Myriam, Kors, Jan A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.05.2016
Schlagworte:
ISSN:1527-1315, 1527-1315
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed.
AbstractList Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed.Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed.
Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed.
Author Braun, Loes M M
Kors, Jan A
Pons, Ewoud
Hunink, M G Myriam
Author_xml – sequence: 1
  givenname: Ewoud
  surname: Pons
  fullname: Pons, Ewoud
  organization: From the Departments of Radiology (E.P., L.M.M.B., M.G.M.H.) and Medical Informatics (J.A.K.), Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
– sequence: 2
  givenname: Loes M M
  surname: Braun
  fullname: Braun, Loes M M
  organization: From the Departments of Radiology (E.P., L.M.M.B., M.G.M.H.) and Medical Informatics (J.A.K.), Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
– sequence: 3
  givenname: M G Myriam
  surname: Hunink
  fullname: Hunink, M G Myriam
  organization: From the Departments of Radiology (E.P., L.M.M.B., M.G.M.H.) and Medical Informatics (J.A.K.), Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
– sequence: 4
  givenname: Jan A
  surname: Kors
  fullname: Kors, Jan A
  organization: From the Departments of Radiology (E.P., L.M.M.B., M.G.M.H.) and Medical Informatics (J.A.K.), Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27089187$$D View this record in MEDLINE/PubMed
BookMark eNpNT0lLw0AYHaRiFz17kzl6SZ1vlsxE8FCKGxSVqucwmXwNI1lqJrH03xu0gpf33uHxlikZ1U2NhJwDmwNIc9Xa3DflHGKQXGt2RCaguI5AgBr902MyDeGDMZDK6BMy5pqZBIyekJsn2_WtLenK1kVvC6QvbeMwBF8X1Nd0_VPQFPtruqCv-9BhZTvv6Bq_PO5OyfHGlgHPDjwj73e3b8uHaPV8_7hcrCInYtFFqITJeKZ0NgzAON8wwfPEOilxGKGsECilVrHOXCLFgFwxmyjJWO5MDI7PyOVv7rZtPnsMXVr54LAsbY1NH1LQhhsBLJaD9eJg7bMK83Tb-sq2-_TvMv8GvEdZUA
CitedBy_id crossref_primary_10_1016_j_jacr_2018_12_004
crossref_primary_10_1007_s00256_021_03760_5
crossref_primary_10_1016_j_redii_2023_100027
crossref_primary_10_1007_s10278_021_00527_1
crossref_primary_10_1016_j_arth_2023_08_047
crossref_primary_10_1016_j_thromres_2021_11_020
crossref_primary_10_1159_000504259
crossref_primary_10_2196_49041
crossref_primary_10_1186_s12911_023_02101_x
crossref_primary_10_1016_S0140_6736_21_00673_5
crossref_primary_10_1016_j_cma_2021_114507
crossref_primary_10_1007_s10278_025_01637_w
crossref_primary_10_1186_s41824_020_00094_8
crossref_primary_10_1007_s00330_023_10202_4
crossref_primary_10_1097_CIN_0000000000000967
crossref_primary_10_1186_s13244_023_01507_5
crossref_primary_10_1016_j_seizure_2020_11_011
crossref_primary_10_32628_IJSRST2302551
crossref_primary_10_1053_j_ro_2023_01_005
crossref_primary_10_1093_jamiaopen_ooad111
crossref_primary_10_1097_SLA_0000000000004419
crossref_primary_10_12688_wellcomeopenres_16867_2
crossref_primary_10_12688_wellcomeopenres_16867_1
crossref_primary_10_12688_wellcomeopenres_16867_4
crossref_primary_10_1016_j_jvs_2024_12_002
crossref_primary_10_12688_wellcomeopenres_16867_3
crossref_primary_10_1186_s13326_019_0211_7
crossref_primary_10_12688_wellcomeopenres_16867_5
crossref_primary_10_1007_s10278_018_0105_8
crossref_primary_10_1016_j_jacr_2018_08_011
crossref_primary_10_1111_nyas_13741
crossref_primary_10_1136_bmjhci_2020_100262
crossref_primary_10_1016_j_ijmedinf_2017_02_011
crossref_primary_10_1088_1755_1315_714_4_042018
crossref_primary_10_1016_j_jamda_2023_09_006
crossref_primary_10_1111_epi_17474
crossref_primary_10_3389_fmed_2019_00066
crossref_primary_10_7759_cureus_43866
crossref_primary_10_1007_s10140_025_02354_1
crossref_primary_10_1016_j_jbi_2020_103492
crossref_primary_10_1016_j_acra_2021_01_017
crossref_primary_10_2196_32973
crossref_primary_10_1007_s10278_023_00913_x
crossref_primary_10_3389_fdgth_2023_1184919
crossref_primary_10_1055_s_0041_1740493
crossref_primary_10_1007_s10278_018_0131_6
crossref_primary_10_1371_journal_pone_0234908
crossref_primary_10_1016_j_jbi_2017_11_011
crossref_primary_10_1016_j_ijmedinf_2019_02_008
crossref_primary_10_1067_j_cpradiol_2020_07_006
crossref_primary_10_1186_s12911_019_0780_5
crossref_primary_10_1016_j_ajem_2021_05_057
crossref_primary_10_1038_s41746_022_00730_6
crossref_primary_10_1016_j_ijmedinf_2020_104106
crossref_primary_10_1055_s_0040_1715892
crossref_primary_10_2196_38125
crossref_primary_10_2196_16816
crossref_primary_10_1038_s43856_022_00199_0
crossref_primary_10_7717_peerj_17870
crossref_primary_10_1007_s10278_017_0013_3
crossref_primary_10_1177_23202068211005611
crossref_primary_10_1186_s12911_022_01946_y
crossref_primary_10_1016_j_jacr_2022_06_016
crossref_primary_10_1186_s12911_021_01533_7
crossref_primary_10_2196_12575
crossref_primary_10_1016_j_jcrc_2020_01_007
crossref_primary_10_1053_j_sult_2024_02_004
crossref_primary_10_1186_s12998_019_0233_3
crossref_primary_10_3390_diagnostics15070930
crossref_primary_10_1007_s10278_018_0141_4
crossref_primary_10_1148_ryai_230364
crossref_primary_10_1016_j_spinee_2019_12_006
crossref_primary_10_1177_10732748241286749
crossref_primary_10_1111_epi_17907
crossref_primary_10_1016_j_ejrad_2022_110366
crossref_primary_10_1109_TCBB_2018_2817488
crossref_primary_10_1097_HC9_0000000000000468
crossref_primary_10_3389_fmed_2021_748168
crossref_primary_10_1016_j_acra_2019_07_028
crossref_primary_10_3390_diagnostics13081420
crossref_primary_10_1007_s00330_023_10061_z
crossref_primary_10_1038_s41746_024_01219_0
crossref_primary_10_1186_s12911_019_0908_7
crossref_primary_10_5435_JAAOS_D_22_00639
crossref_primary_10_1016_j_jacr_2020_02_005
crossref_primary_10_1371_journal_pone_0211116
crossref_primary_10_1007_s10278_017_0041_z
crossref_primary_10_1016_j_acra_2024_12_028
crossref_primary_10_1093_jamia_ocy173
crossref_primary_10_1007_s10278_019_00271_7
crossref_primary_10_1016_j_acra_2021_09_005
crossref_primary_10_1016_j_procs_2020_08_045
crossref_primary_10_1148_radiol_233117
crossref_primary_10_1016_j_nlp_2022_100001
crossref_primary_10_1007_s00330_020_06721_z
crossref_primary_10_1016_j_artmed_2023_102553
crossref_primary_10_2196_12239
crossref_primary_10_1002_cpt_1744
crossref_primary_10_1097_MCG_0000000000001585
crossref_primary_10_1002_ima_23025
crossref_primary_10_7759_cureus_75532
crossref_primary_10_1016_j_crad_2020_11_113
crossref_primary_10_1111_tbj_13718
crossref_primary_10_1016_j_jacr_2021_01_018
crossref_primary_10_1148_ryai_2019180052
crossref_primary_10_1016_j_jacr_2020_08_002
crossref_primary_10_1111_acem_15080
crossref_primary_10_3171_2022_1_FOCUS21561
crossref_primary_10_1017_S1351324920000509
crossref_primary_10_1177_17562872211044880
crossref_primary_10_1016_j_ijmedinf_2019_05_021
crossref_primary_10_1093_bjro_tzae022
crossref_primary_10_1186_s13326_019_0213_5
crossref_primary_10_1148_radiol_2021210043
crossref_primary_10_3390_jcm13237337
crossref_primary_10_1007_s10140_019_01673_4
crossref_primary_10_3348_jksr_2020_0177
crossref_primary_10_1016_j_jbi_2023_104282
crossref_primary_10_1007_s00234_022_03029_1
crossref_primary_10_1109_ACCESS_2020_3020138
crossref_primary_10_1109_ACCESS_2025_3582728
crossref_primary_10_1016_j_acra_2021_02_019
crossref_primary_10_1136_bjsports_2018_100087
crossref_primary_10_3390_cancers17020218
crossref_primary_10_1097_RLI_0000000000000600
crossref_primary_10_3390_cancers17091595
crossref_primary_10_1016_j_clinimag_2022_04_007
crossref_primary_10_1007_s12350_022_02996_5
crossref_primary_10_1007_s11023_024_09692_y
crossref_primary_10_1111_add_15730
crossref_primary_10_1016_j_ccrj_2024_06_008
crossref_primary_10_1007_s10278_022_00692_x
crossref_primary_10_1016_j_jacr_2017_09_044
crossref_primary_10_1186_s12911_021_01574_y
crossref_primary_10_1371_journal_pone_0214775
crossref_primary_10_1109_ACCESS_2019_2937892
crossref_primary_10_1186_s41747_022_00281_1
crossref_primary_10_1186_s12998_021_00370_9
crossref_primary_10_2196_51822
crossref_primary_10_1001_jamanetworkopen_2022_27109
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_1136_bmjopen_2023_076865
crossref_primary_10_2196_24594
crossref_primary_10_1097_MNM_0000000000001381
crossref_primary_10_2196_45376
crossref_primary_10_1016_j_rcl_2024_03_008
crossref_primary_10_1371_journal_pone_0303519
crossref_primary_10_1016_j_mayocp_2020_01_038
crossref_primary_10_1177_19322968211000831
crossref_primary_10_1007_s00117_019_0555_0
crossref_primary_10_1016_j_nic_2020_08_008
crossref_primary_10_1148_radiol_2018171093
crossref_primary_10_1016_j_acra_2021_12_005
crossref_primary_10_1097_MS9_0000000000002187
crossref_primary_10_1093_jamiaopen_ooy057
crossref_primary_10_1016_j_imu_2023_101309
crossref_primary_10_1055_a_2405_2489
crossref_primary_10_1016_j_rx_2022_03_003
crossref_primary_10_14201_adcaij_31857
crossref_primary_10_1016_j_imu_2022_100961
crossref_primary_10_1016_j_jamda_2023_06_031
crossref_primary_10_1016_j_nic_2020_08_001
crossref_primary_10_1007_s10278_020_00379_1
crossref_primary_10_1016_j_cell_2020_03_022
crossref_primary_10_1007_s10620_020_06156_y
crossref_primary_10_1016_j_crad_2019_04_021
crossref_primary_10_3390_diagnostics12081882
crossref_primary_10_1007_s10278_022_00673_0
crossref_primary_10_2196_19905
crossref_primary_10_3390_diagnostics12123223
crossref_primary_10_1016_j_jtocrr_2022_100340
crossref_primary_10_1093_jnci_djac108
crossref_primary_10_1007_s00117_018_0426_0
crossref_primary_10_1109_JBHI_2024_3478809
crossref_primary_10_1016_j_jbi_2020_103665
crossref_primary_10_1016_j_eswa_2020_113647
crossref_primary_10_1038_s41598_024_76369_y
crossref_primary_10_2196_24381
crossref_primary_10_1515_dx_2017_0025
crossref_primary_10_1136_bmj_n304
crossref_primary_10_1155_2022_6606588
crossref_primary_10_1148_ryai_2019180095
crossref_primary_10_1148_rg_2021200205
crossref_primary_10_1016_j_thromres_2024_109105
crossref_primary_10_1371_journal_pone_0236817
crossref_primary_10_1089_neu_2023_0553
crossref_primary_10_3348_kjr_2024_1228
crossref_primary_10_3348_kjr_2017_18_1_107
crossref_primary_10_1109_JBHI_2020_2991043
crossref_primary_10_1016_j_amjcard_2023_08_109
crossref_primary_10_1007_s00234_020_02420_0
crossref_primary_10_1088_1742_6596_1650_3_032131
crossref_primary_10_1259_bjr_20220769
crossref_primary_10_1148_ryai_220055
crossref_primary_10_1097_QCO_0000000000000376
crossref_primary_10_1097_01_CDR_0000804996_57509_75
crossref_primary_10_1177_11207000231155797
crossref_primary_10_1016_j_acra_2018_03_008
crossref_primary_10_1007_s10278_023_00787_z
crossref_primary_10_1186_s13195_023_01240_7
crossref_primary_10_7759_cureus_36111
crossref_primary_10_1002_nbm_5014
crossref_primary_10_1016_j_knosys_2020_105695
crossref_primary_10_1016_j_ijnurstu_2016_09_013
crossref_primary_10_1177_10760296211013108
crossref_primary_10_1016_j_cmpb_2025_108638
crossref_primary_10_1016_j_jacr_2019_05_047
crossref_primary_10_1186_s13244_022_01267_8
crossref_primary_10_3389_fneur_2020_559322
crossref_primary_10_1371_journal_pone_0229963
crossref_primary_10_1038_s41598_023_29323_3
crossref_primary_10_2196_35257
crossref_primary_10_3390_aerospace10070600
crossref_primary_10_1053_j_semnuclmed_2018_11_010
crossref_primary_10_1007_s00117_021_00920_5
crossref_primary_10_1177_21925682211026910
crossref_primary_10_1186_s12911_019_0795_y
crossref_primary_10_1007_s00330_025_11416_4
crossref_primary_10_31616_asj_2023_0410
crossref_primary_10_3390_diagnostics14242792
crossref_primary_10_1007_s00330_023_10424_6
crossref_primary_10_1016_j_jacr_2019_04_026
crossref_primary_10_1148_ryai_2021210035
crossref_primary_10_1016_j_mri_2019_07_004
crossref_primary_10_1148_ryai_210114
crossref_primary_10_1007_s00234_024_03427_7
crossref_primary_10_1016_j_annemergmed_2022_10_028
crossref_primary_10_1007_s00330_023_10245_7
crossref_primary_10_1016_j_heliyon_2024_e30106
crossref_primary_10_3389_fonc_2021_797454
crossref_primary_10_1007_s12072_020_10111_4
crossref_primary_10_1016_j_carj_2018_02_002
crossref_primary_10_1093_jamia_ocae223
crossref_primary_10_7759_cureus_70614
crossref_primary_10_1186_s12911_022_01843_4
crossref_primary_10_1186_s12911_022_02017_y
crossref_primary_10_1186_s41747_018_0071_4
crossref_primary_10_1016_j_cmpb_2021_105939
crossref_primary_10_1016_j_jacr_2019_12_026
crossref_primary_10_2196_40964
crossref_primary_10_2196_68618
crossref_primary_10_1148_radiol_232308
crossref_primary_10_1186_s12911_021_01623_6
crossref_primary_10_1055_s_0041_1735178
crossref_primary_10_1109_JBHI_2022_3150242
crossref_primary_10_7759_cureus_65019
crossref_primary_10_1016_j_acra_2020_01_012
crossref_primary_10_1155_2021_6663884
crossref_primary_10_1007_s10278_017_0021_3
crossref_primary_10_1016_j_ijmedinf_2022_104779
crossref_primary_10_1055_a_2061_6562
crossref_primary_10_3389_fonc_2023_1160167
crossref_primary_10_1016_j_jbi_2018_07_017
crossref_primary_10_1007_s12028_022_01513_3
crossref_primary_10_1007_s10278_020_00350_0
crossref_primary_10_1109_TAI_2021_3086435
crossref_primary_10_1007_s10278_019_00237_9
crossref_primary_10_1038_s41598_025_05695_6
crossref_primary_10_1148_rg_2017170077
crossref_primary_10_2196_44537
crossref_primary_10_1002_ett_4884
crossref_primary_10_1111_1754_9485_12861
crossref_primary_10_1038_s41598_021_85016_9
crossref_primary_10_1016_j_media_2023_103021
crossref_primary_10_1016_j_jbi_2016_07_001
crossref_primary_10_1177_03009858251347529
crossref_primary_10_1016_j_imu_2024_101465
crossref_primary_10_1016_j_procs_2018_10_029
crossref_primary_10_1093_jamia_ocaf056
crossref_primary_10_1186_s12859_023_05480_0
crossref_primary_10_1016_j_acra_2023_08_039
crossref_primary_10_1136_bmjno_2020_000087
crossref_primary_10_2196_28776
crossref_primary_10_1016_j_jbi_2025_104829
crossref_primary_10_1016_j_radi_2022_05_005
crossref_primary_10_1007_s10916_022_01842_y
crossref_primary_10_3390_cancers15204909
crossref_primary_10_1007_s12072_021_10229_z
crossref_primary_10_3390_app11041691
crossref_primary_10_1259_bjr_20190389
crossref_primary_10_1007_s10579_023_09669_w
crossref_primary_10_1186_s12911_021_01565_z
crossref_primary_10_1016_j_chest_2021_05_048
crossref_primary_10_1259_bjr_20170564
crossref_primary_10_1097_CM9_0000000000000301
crossref_primary_10_1016_j_imu_2023_101294
crossref_primary_10_1016_j_jacr_2018_10_020
crossref_primary_10_1016_j_rxeng_2022_03_005
crossref_primary_10_1186_s12880_021_00594_4
crossref_primary_10_1182_bloodadvances_2023012200
crossref_primary_10_3390_healthcare8030272
crossref_primary_10_1155_2021_7259414
crossref_primary_10_1016_j_inffus_2025_103024
crossref_primary_10_1186_s12876_025_03608_5
crossref_primary_10_3389_fsurg_2022_957085
crossref_primary_10_1038_s41597_021_00929_4
crossref_primary_10_1186_s13244_025_01976_w
crossref_primary_10_1016_j_artmed_2024_102814
crossref_primary_10_1097_RTI_0000000000000486
crossref_primary_10_1007_s12350_018_1275_y
crossref_primary_10_1007_s10278_022_00717_5
crossref_primary_10_1007_s00330_018_5954_5
crossref_primary_10_1109_ACCESS_2022_3197772
crossref_primary_10_1111_nuf_12536
crossref_primary_10_1186_s12880_021_00671_8
crossref_primary_10_1148_ryai_210312
crossref_primary_10_1148_radiol_243217
crossref_primary_10_3389_frai_2022_826402
crossref_primary_10_1016_j_diii_2023_02_003
crossref_primary_10_1136_bmjopen_2019_031191
crossref_primary_10_1016_j_jbi_2017_04_011
crossref_primary_10_1016_j_artmed_2018_05_006
crossref_primary_10_1016_j_jiph_2020_06_006
crossref_primary_10_1007_s10278_020_00327_z
crossref_primary_10_1007_s11657_020_00859_5
crossref_primary_10_1186_s13244_019_0777_8
crossref_primary_10_1097_RLI_0000000000000673
crossref_primary_10_1016_j_rx_2022_01_013
crossref_primary_10_1097_RCT_0000000000001247
crossref_primary_10_1016_j_artmed_2024_102924
crossref_primary_10_1007_s11277_018_5316_2
crossref_primary_10_1016_j_outlook_2020_12_007
crossref_primary_10_1097_RTI_0000000000000591
crossref_primary_10_1016_j_ejro_2017_08_002
crossref_primary_10_1016_j_artmed_2018_11_004
crossref_primary_10_3390_bioengineering11101043
crossref_primary_10_1016_j_crad_2023_10_032
crossref_primary_10_1016_j_jacr_2017_12_017
crossref_primary_10_1007_s10278_022_00619_6
ContentType Journal Article
Copyright (©) RSNA, 2016 Online supplemental material is available for this article.
Copyright_xml – notice: (©) RSNA, 2016 Online supplemental material is available for this article.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1148/radiol.16142770
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
ExternalDocumentID 27089187
Genre Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
NPM
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
7X8
ID FETCH-LOGICAL-c363t-e538b2b57b145e6df032d9ac44e1875a33e447567bc9437bc250a95400dc861c2
IEDL.DBID 7X8
ISICitedReferencesCount 370
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378715300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1527-1315
IngestDate Sun Nov 09 13:44:10 EST 2025
Sat Jun 28 01:34:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License (©) RSNA, 2016 Online supplemental material is available for this article.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-e538b2b57b145e6df032d9ac44e1875a33e447567bc9437bc250a95400dc861c2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
PMID 27089187
PQID 1782831064
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1782831064
pubmed_primary_27089187
PublicationCentury 2000
PublicationDate 2016-May
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2016
SSID ssj0014587
Score 2.6350784
SecondaryResourceType review_article
Snippet Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 329
SubjectTerms Electronic Health Records
Humans
Information Storage and Retrieval
Natural Language Processing
Radiology
Radiology Information Systems
Title Natural Language Processing in Radiology: A Systematic Review
URI https://www.ncbi.nlm.nih.gov/pubmed/27089187
https://www.proquest.com/docview/1782831064
Volume 279
WOSCitedRecordID wos000378715300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Uinjx_agvVvC6mmRfiRcpYvFgS_EBvYXsZiMFSWpbBf-9s8nWngTBy94Cw8zszDczm_kALmQRK22kpMzEknJbBFQzrqkoWKgLGxU6MTXZhOr34-EwGfiG29Q_q5zHxDpQ55VxPfKrEFOZI8WS_Gb8Th1rlJuuegqNZWgxhDLuYqrhYorARU2Q55hbachC4Vf7YAVwNcnyUfV2iXiHR0oFv-PLOs90N_8r4RZseIRJOo1LbMOSLXdgredn6LvgVmG7XRvkwbcqif9ZAJMYGZXksZa5ev26Jh3y9LPomTRThD146d49395TT6JADZNsRi1GNB1poTSqw8q8CFiUJ5nh3IZYq2SMWbfzT6LFEs7wREyUJYjjghytF5poH1bKqrSHQJQwJsyF0FjicCxlMpMLrNe0zrRFX9BtOJ8rJkUndZOHrLTVxzRdqKYNB41203GzTSONVBAnKMrRH74-hnUELLJ5cHgCrQKvqD2FVfM5G00nZ7X18ewPet_jfbmv
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+Language+Processing+in+Radiology%3A+A+Systematic+Review&rft.jtitle=Radiology&rft.au=Pons%2C+Ewoud&rft.au=Braun%2C+Loes+M+M&rft.au=Hunink%2C+M+G+Myriam&rft.au=Kors%2C+Jan+A&rft.date=2016-05-01&rft.issn=1527-1315&rft.eissn=1527-1315&rft.volume=279&rft.issue=2&rft.spage=329&rft_id=info:doi/10.1148%2Fradiol.16142770&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-1315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-1315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-1315&client=summon