Burkholder–Davis–Gundy Inequalities in UMD Banach Spaces

In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X . Assuming that M 0 = 0 , we show that the following two-sided inequality holds for all 1 ≤ p < ∞ : Here γ ( [ [ M ] ] t ) is the L 2 -norm of the unique Gaussian measure on X...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in mathematical physics Ročník 379; číslo 2; s. 417 - 459
Hlavní autor: Yaroslavtsev, Ivan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Témata:
ISSN:0010-3616, 1432-0916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X . Assuming that M 0 = 0 , we show that the following two-sided inequality holds for all 1 ≤ p < ∞ : Here γ ( [ [ M ] ] t ) is the L 2 -norm of the unique Gaussian measure on X having [ [ M ] ] t ( x ∗ , y ∗ ) : = [ ⟨ M , x ∗ ⟩ , ⟨ M , y ∗ ⟩ ] t as its covariance bilinear form. This extends to general UMD spaces a recent result by Veraar and the author, where a pointwise version of ( ⋆ ) was proved for UMD Banach functions spaces X . We show that for continuous martingales, ( ⋆ ) holds for all 0 < p < ∞ , and that for purely discontinuous martingales the right-hand side of ( ⋆ ) can be expressed more explicitly in terms of the jumps of M . For martingales with independent increments, ( ⋆ ) is shown to hold more generally in reflexive Banach spaces X with finite cotype. In the converse direction, we show that the validity of ( ⋆ ) for arbitrary martingales implies the UMD property for X . As an application we prove various Itô isomorphisms for vector-valued stochastic integrals with respect to general martingales, which extends earlier results by van Neerven, Veraar, and Weis for vector-valued stochastic integrals with respect to a Brownian motion. We also provide Itô isomorphisms for vector-valued stochastic integrals with respect to compensated Poisson and general random measures.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-020-03845-7