Burkholder–Davis–Gundy Inequalities in UMD Banach Spaces

In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X . Assuming that M 0 = 0 , we show that the following two-sided inequality holds for all 1 ≤ p < ∞ : Here γ ( [ [ M ] ] t ) is the L 2 -norm of the unique Gaussian measure on X...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics Vol. 379; no. 2; pp. 417 - 459
Main Author: Yaroslavtsev, Ivan
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Subjects:
ISSN:0010-3616, 1432-0916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X . Assuming that M 0 = 0 , we show that the following two-sided inequality holds for all 1 ≤ p < ∞ : Here γ ( [ [ M ] ] t ) is the L 2 -norm of the unique Gaussian measure on X having [ [ M ] ] t ( x ∗ , y ∗ ) : = [ ⟨ M , x ∗ ⟩ , ⟨ M , y ∗ ⟩ ] t as its covariance bilinear form. This extends to general UMD spaces a recent result by Veraar and the author, where a pointwise version of ( ⋆ ) was proved for UMD Banach functions spaces X . We show that for continuous martingales, ( ⋆ ) holds for all 0 < p < ∞ , and that for purely discontinuous martingales the right-hand side of ( ⋆ ) can be expressed more explicitly in terms of the jumps of M . For martingales with independent increments, ( ⋆ ) is shown to hold more generally in reflexive Banach spaces X with finite cotype. In the converse direction, we show that the validity of ( ⋆ ) for arbitrary martingales implies the UMD property for X . As an application we prove various Itô isomorphisms for vector-valued stochastic integrals with respect to general martingales, which extends earlier results by van Neerven, Veraar, and Weis for vector-valued stochastic integrals with respect to a Brownian motion. We also provide Itô isomorphisms for vector-valued stochastic integrals with respect to compensated Poisson and general random measures.
AbstractList In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X. Assuming that M0=0, we show that the following two-sided inequality holds for all 1≤p<∞: Here γ([[M]]t) is the L2-norm of the unique Gaussian measure on X having [[M]]t(x∗,y∗):=[⟨M,x∗⟩,⟨M,y∗⟩]t as its covariance bilinear form. This extends to general UMD spaces a recent result by Veraar and the author, where a pointwise version of (⋆) was proved for UMD Banach functions spaces X. We show that for continuous martingales, (⋆) holds for all 0<p<∞, and that for purely discontinuous martingales the right-hand side of (⋆) can be expressed more explicitly in terms of the jumps of M. For martingales with independent increments, (⋆) is shown to hold more generally in reflexive Banach spaces X with finite cotype. In the converse direction, we show that the validity of (⋆) for arbitrary martingales implies the UMD property for X. As an application we prove various Itô isomorphisms for vector-valued stochastic integrals with respect to general martingales, which extends earlier results by van Neerven, Veraar, and Weis for vector-valued stochastic integrals with respect to a Brownian motion. We also provide Itô isomorphisms for vector-valued stochastic integrals with respect to compensated Poisson and general random measures.
In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X . Assuming that $$M_0=0$$ M 0 = 0 , we show that the following two-sided inequality holds for all $$1\le p<\infty $$ 1 ≤ p < ∞ : Here $$ \gamma ([\![M]\!]_t) $$ γ ( [ [ M ] ] t ) is the $$L^2$$ L 2 -norm of the unique Gaussian measure on X having $$[\![M]\!]_t(x^*,y^*):= [\langle M,x^*\rangle , \langle M,y^*\rangle ]_t$$ [ [ M ] ] t ( x ∗ , y ∗ ) : = [ ⟨ M , x ∗ ⟩ , ⟨ M , y ∗ ⟩ ] t as its covariance bilinear form. This extends to general UMD spaces a recent result by Veraar and the author, where a pointwise version of ( $$\star $$ ⋆ ) was proved for UMD Banach functions spaces X . We show that for continuous martingales, ( $$\star $$ ⋆ ) holds for all $$0<p<\infty $$ 0 < p < ∞ , and that for purely discontinuous martingales the right-hand side of ( $$\star $$ ⋆ ) can be expressed more explicitly in terms of the jumps of M . For martingales with independent increments, ( $$\star $$ ⋆ ) is shown to hold more generally in reflexive Banach spaces X with finite cotype. In the converse direction, we show that the validity of ( $$\star $$ ⋆ ) for arbitrary martingales implies the UMD property for X . As an application we prove various Itô isomorphisms for vector-valued stochastic integrals with respect to general martingales, which extends earlier results by van Neerven, Veraar, and Weis for vector-valued stochastic integrals with respect to a Brownian motion. We also provide Itô isomorphisms for vector-valued stochastic integrals with respect to compensated Poisson and general random measures.
In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X . Assuming that M 0 = 0 , we show that the following two-sided inequality holds for all 1 ≤ p < ∞ : Here γ ( [ [ M ] ] t ) is the L 2 -norm of the unique Gaussian measure on X having [ [ M ] ] t ( x ∗ , y ∗ ) : = [ ⟨ M , x ∗ ⟩ , ⟨ M , y ∗ ⟩ ] t as its covariance bilinear form. This extends to general UMD spaces a recent result by Veraar and the author, where a pointwise version of ( ⋆ ) was proved for UMD Banach functions spaces X . We show that for continuous martingales, ( ⋆ ) holds for all 0 < p < ∞ , and that for purely discontinuous martingales the right-hand side of ( ⋆ ) can be expressed more explicitly in terms of the jumps of M . For martingales with independent increments, ( ⋆ ) is shown to hold more generally in reflexive Banach spaces X with finite cotype. In the converse direction, we show that the validity of ( ⋆ ) for arbitrary martingales implies the UMD property for X . As an application we prove various Itô isomorphisms for vector-valued stochastic integrals with respect to general martingales, which extends earlier results by van Neerven, Veraar, and Weis for vector-valued stochastic integrals with respect to a Brownian motion. We also provide Itô isomorphisms for vector-valued stochastic integrals with respect to compensated Poisson and general random measures.
Author Yaroslavtsev, Ivan
Author_xml – sequence: 1
  givenname: Ivan
  orcidid: 0000-0003-1071-6718
  surname: Yaroslavtsev
  fullname: Yaroslavtsev, Ivan
  email: yaroslavtsev.i.s@yandex.ru
  organization: Max Planck Institute for Mathematics in the Sciences, Delft Institute of Applied Mathematics, Delft University of Technology
BookMark eNp9kE1OwzAUhC1UJNrCBVhFYh14_omdSGxoC6VSEQvo2nISm7oUp7UTpO64AzfkJCQKEhILFqPZzDfvaUZo4CqnETrHcIkBxFUAIARi6ERTlsTiCA0xoySGDPMBGgJgiCnH_ASNQtgAQEY4H6LrSeNf19W21P7r43Om3m1ofd648hAtnN43amtrq0NkXbR6mEUT5VSxjp52qtDhFB0btQ367MfHaHV3-zy9j5eP88X0ZhkXlNM61jTNQYmMM8PTjJIkSSBPlcrzgnNVMl2KpEwx8DzJjGGCmUSYLM8M4RQDUXSMLvrena_2jQ613FSNd-1JSVgCDAQAa1Npnyp8FYLXRha2VrWtXO2V3UoMsttK9ltJ6NRtJUWLkj_ozts35Q__Q7SHQht2L9r_fvUP9Q0Tan36
CitedBy_id crossref_primary_10_1007_s40072_021_00204_y
crossref_primary_10_1007_s40072_023_00308_7
crossref_primary_10_1007_s00030_025_01090_2
crossref_primary_10_1080_00036811_2025_2471786
crossref_primary_10_1142_S0219493725500212
crossref_primary_10_1007_s00209_023_03221_w
crossref_primary_10_1016_j_jmaa_2024_128969
crossref_primary_10_1093_imanum_draa105
Cites_doi 10.1007/BF01212560
10.3150/18-BEJ1031
10.1007/978-3-642-20212-4
10.1007/978-3-0348-0370-0_7
10.4064/sm-58-1-45-90
10.1007/BF02384306
10.1007/978-3-319-69808-3
10.1090/surv/064/05
10.1007/978-3-662-35347-9
10.1109/PROC.1970.7696
10.1016/S1874-5849(01)80008-5
10.1214/13-AOP906
10.1007/978-3-319-48520-1
10.4064/sm170329-25-8
10.1007/978-3-662-05265-5
10.1007/BFb0099115
10.1006/jfan.1997.3237
10.1214/009117906000001006
10.1007/978-3-319-11970-0_10
10.1007/s007800050020
10.1017/CBO9781107295513
10.1093/oso/9780198536932.001.0001
10.1016/0020-0190(96)00110-X
10.1007/978-3-030-26391-1_16
10.1090/surv/062
10.1214/ECP.v16-1593
10.1080/17442500701594516
10.1090/S0002-9947-1947-0022312-9
10.1214/18-AIHP940
10.1090/S0002-9947-99-02093-0
10.1016/j.jfa.2008.03.015
10.1093/imrn/rnz187
10.1214/aop/1176994270
10.1007/BFb0087212
10.1007/BFb0085167
10.1007/978-1-4757-4015-8
10.1017/CBO9781316480588
10.1214/aoms/1177697823
10.1007/978-3-030-10850-2_19
10.1112/S0024610704005198
10.1007/978-3-319-41598-7
10.1007/978-3-642-30994-6
10.1007/978-94-011-2817-9_3
10.1007/BFb0076300
10.1007/978-3-642-76724-1
10.1007/978-3-662-06400-9
10.1007/BFb0099110
10.1086/294633
10.1214/aop/1023481111
10.1007/BFb0082007
10.1090/S0002-9947-09-04953-8
10.4064/sm-143-1-43-74
10.1007/978-1-4684-6781-9_6
10.1090/S0002-9939-06-08619-9
10.4064/sm166-2-2
10.1214/aop/1176997023
10.1016/0370-1573(94)00087-J
10.1007/978-3-642-16830-7
10.1016/j.exmath.2015.01.002
10.1112/plms.12277
10.1214/16-EJP7
10.1214/19-PS337
10.1023/A:1023261101091
10.1080/03610918008833154
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00220-020-03845-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1432-0916
EndPage 459
ExternalDocumentID 10_1007_s00220_020_03845_7
GrantInformation_xml – fundername: Max Planck Institute for Mathematics in the Sciences (2)
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFFOW
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E3Z
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMI
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RBV
REI
RHV
RIG
RNI
RNS
ROL
RPE
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
WS9
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c363t-e38b0a7964f689325550b8aabbc66ad4ed75d8106b59ff474f57f9b9f263102a3
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000570036600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-3616
IngestDate Wed Sep 17 23:55:34 EDT 2025
Sat Nov 29 05:55:28 EST 2025
Tue Nov 18 22:33:54 EST 2025
Fri Feb 21 02:34:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-e38b0a7964f689325550b8aabbc66ad4ed75d8106b59ff474f57f9b9f263102a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1071-6718
OpenAccessLink https://link.springer.com/10.1007/s00220-020-03845-7
PQID 2450407004
PQPubID 2043584
PageCount 43
ParticipantIDs proquest_journals_2450407004
crossref_citationtrail_10_1007_s00220_020_03845_7
crossref_primary_10_1007_s00220_020_03845_7
springer_journals_10_1007_s00220_020_03845_7
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Communications in mathematical physics
PublicationTitleAbbrev Commun. Math. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BourgainJSome remarks on Banach spaces in which martingale difference sequences are unconditionalArk. Mat.19832121631687273400533.4600810.1007/BF02384306
GeissSMontgomery-SmithSSaksmanEOn singular integral and martingale transformsTrans. Am. Math. Soc.2010362255357525514971196.6007810.1090/S0002-9947-09-04953-8
de la Peña, V.H., Giné, E.: Decoupling. Probability and its Applications (New York). From dependence to independence, Randomly stopped processes. U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document}-statistics and processes. Martingales and beyond. Springer, New York (1999)
Ledoux, M., Talagrand, M.: Probability in Banach Spaces, Volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer, Berlin (1991)
Osȩkowski, A.: Sharp Martingale and Semimartingale Inequalities, Volume 72 of Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series). Springer, Basel (2012)
Métivier, M., Pellaumail, J.: Stochastic Integration. Probability and Mathematical Statistics. Academic Press [Harcourt Brace Jovanovich, Publishers], New York (1980)
PisierGMartingales in Banach Spaces2016CambridgeCambridge University Press1382.46002
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften. 3rd edn, Springer, Berlin (1999)
Weisz, F.: Martingale Hardy Spaces with Continuous Time. In Probability Theory and Applications, Volume 80 of Mathematics Application, pp. 47–75. Kluwer Academic Publication, Dordrecht (1992)
MarinelliCRöcknerMOn the maximal inequalities of Burkholder, Davis and GundyExpo. Math.201634112634636791335.6006410.1016/j.exmath.2015.01.002
Hytönen, T.P., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, volume 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, (2016)
Da PratoGZabczykJStochastic Equations in Infinite Dimensions20142CambridgeCambridge University Press1317.6007710.1017/CBO9781107295513
Marinelli, C.: On maximal inequalities for purely discontinuous Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q$$\end{document}-valued martingales (2013). arXiv:1311.7120
BogachevVIGaussian measures1998ProvidenceAmerican Mathematical Society0913.6003510.1090/surv/062
Gyöngy, I., Krylov, N.V.: On stochastic equations with respect to semimartingales. I. Stochastics 4(1):1–21 (1980/81)
KakSCThe discrete Hilbert transformProc. IEEE197058458558610.1109/PROC.1970.7696
Geiss, S., Yaroslavtsev, I.S.: Dyadic and stochastic shifts and Volterra-type operators. In preparation
GoldysBvan NeervenJMAMTransition semigroups of Banach space-valued Ornstein–Uhlenbeck processesActa Appl. Math.200376328333019762971027.6006810.1023/A:1023261101091
Hytönen, T.P., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Analysis in Banach Spaces. Vol. II. Probabilistic Methods and Operator Theory, Volume 67 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Cham (2017)
Meyer-NiebergPBanach Lattices. Universitext1991BerlinSpringer0743.4601510.1007/978-3-642-76724-1
Rozovskiĭ, B.L.: Stochastic Evolution Systems, Volume 35 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, (1990). Linear theory and applications to nonlinear filtering, Translated from the Russian by A. Yarkho
Burkholder, D.L.: Martingales and Fourier Analysis in Banach Spaces. In Probability and Analysis (Varenna, 1985), Volume 1206 of Lecture Notes in Mathematics, pp. 61–108. Springer, Berlin (1986)
BahouriHCheminJ-YDanchinRFourier Analysis and Nonlinear Partial Differential Equations2011HeidelbergSpringer1227.3500410.1007/978-3-642-16830-7
DirksenSItô isomorphisms for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-valued Poisson stochastic integralsAnn. Probab.20144262595264332651751308.6006810.1214/13-AOP906
Burkholder, D.L., Davis, B.J., Gundy, R.F.: Integral inequalities for convex functions of operators on martingales. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory, pages 223–240. University California Press, Berkeley, California (1972)
Protter, P.E.: Stochastic Integration and Differential Equations, Volume 21 of Stochastic Modelling and Applied Probability. 2nd edn, Springer, Berlin (Version 2.1, Corrected third printing) (2005)
Meyer, P.A.: Notes sur les intégrales stochastiques. I. Intégrales hilbertiennes. Lecture Notes in Mathematics, Vol. 581, pp. 446–462 (1977)
Shafarevich, I.R., Remizov, A.O.: Linear Algebra and Geometry. Springer, Heidelberg, (2013). Translated from the 2009 Russian original by David Kramer and Lena Nekludova
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, Volume 288 of Grundlehren der Mathematischen Wissenschaften. 2nd edn, Springer, Berlin (2003)
Kingman, J.F.C.: Poisson Processes, Volume 3 of Oxford Studies in Probability. Oxford University Press, New York (1993)
Burkholder, D.L.: Martingales and Singular Integrals in Banach Spaces. In Handbook of the Geometry of Banach spaces, Vol. I, pp. 233–269. North-Holland, Amsterdam (2001)
Kallenberg, O.: Random Measures, Theory and Applications, Volume 77 of Probability Theory and Stochastic Modelling. Springer, Cham (2017)
van Neerven, J.M.A.M.: γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-radonifying operators—a survey. In: The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, Volume 44 of Proceedings of the Centre for Mathematics and its Applications, Australian National University, pp. 1–61 (2010)
Veraar, M.C., Yaroslavtsev, I.S.: Pointwise properties of martingales with values in Banach function spaces. In: High Dimensional Probability VIII, pp. 321–340. Springer, Berlin (2019)
van NeervenJMAMNonsymmetric Ornstein-Uhlenbeck semigroups in Banach spacesJ. Funct. Anal.1998155249553516245730928.4703110.1006/jfan.1997.3237
BjörkTDi MasiGKabanovYRunggaldierWTowards a general theory of bond marketsFinance Stoch.19971214117429766830889.9001910.1007/s007800050020
YaroslavtsevISFourier multipliers and weak differential subordination of martingales in UMD Banach spacesStudia Math.2018243326930138183261418.4201410.4064/sm170329-25-8
BrzeźniakZvan NeervenJMAMStochastic convolution in separable Banach spaces and the stochastic linear Cauchy problemStudia Math.20001431437418144800964.6004310.4064/sm-143-1-43-74
GeissSA counterexample concerning the relation between decoupling constants and UMD-constantsTrans. Am. Math. Soc.19993514135513751999rqmf.book.....G14583010910.4600710.1090/S0002-9947-99-02093-0
DayMMSome characterizations of inner-product spacesTrans. Am. Math. Soc.194762320337223120034.2170310.1090/S0002-9947-1947-0022312-9
Garling, D.J.H.: Brownian motion and UMD-spaces. In Probability and Banach spaces (Zaragoza, 1985), volume 1221 of Lecture Notes in Mathematics, pp. 36–49. Springer, Berlin (1986)
Métivier, M.: Semimartingales, volume 2 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1982)
van NeervenJMAMVeraarMCWeisLWStochastic evolution equations in UMD Banach spacesJ. Funct. Anal.2008255494099324339581149.6003910.1016/j.jfa.2008.03.015
Garling, D.J.H.: Random martingale transform inequalities. In Probability in Banach Spaces 6 (Sandbjerg, 1986), Volume 20 of Progress in Probability, pp. 101–119. Birkhäuser, Boston (1990)
FamaEFMandelbrot and the stable Paretian hypothesisJ. Bus.196336442042910.1086/294633
Kallenberg, O.: Foundations of Modern Probability. Probability and its Applications (New York). 2nd edn, Springer, New York (2002)
Veraar, M.C.: Stochastic integration in Banach spaces and applications to parabolic evolution equations. Ph.D. thesis, TU Delft, Delft University of Technology (2006)
Sato, K.-i.: Lévy Processes and Infinitely Divisible Distributions, Volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, (2013). Translated from the 1990 Japanese original, Revised edition of the 1999 English translation
Krylov, N.V.: An Analytic Approach to SPDEs. In Stochastic Partial Differential Equations: Six Perspectives, Volume 64 of Mathematics Surveys Monograph, pp. 185–242. American Mathematics Society, Providence (1999)
Yaroslavtsev, I.S.: Local characteristics and tangency of vector-valued martingales (2019). arXiv:1907.11588
GravereauxJBPellaumailJFormule de Ito pour des processus non continus à valeurs dans des espaces de BanachAnn. Inst. H. Poincaré Sect. B (N.S.)197510399–42219743730030363.60032
Lindemulder, N.: Weighted Function Spaces with Applications to Boundary Value Problems. Ph.D. thesis, Delft University of Technology (2019)
van NeervenJMAMVeraarMCWeisLWStochastic integration in UMD Banach spacesAnn. Probab.20073541438147823309771121.6006010.1214/009117906000001006
KuoHHGaussian Measures in Banach Spaces1975BerlinSpringer0306.2801010.1007/BFb0082007
OsȩkowskiAOn relaxing the assumption of differential subordination in some martingale inequalitiesElectron. Commun. Probab.20111692127533001231.6003610.1214/ECP.v16-1593
van NeervenJMAMWeisLWStochastic integration of functions with values in a Banach spaceStudia Math.2005166213117021095861073.6005910.4064/sm166-2-2
DirksenSYaroslavtsevISLq\documentclass[12pt
JMAM van Neerven (3845_CR61) 2005; 166
G Da Prato (3845_CR14) 2014
IS Yaroslavtsev (3845_CR85) 2019; 55
MC Veraar (3845_CR78) 2007; 135
JB Gravereaux (3845_CR28) 1975; 10
VI Bogachev (3845_CR3) 1998
J Bourgain (3845_CR4) 1983; 21
HH Kuo (3845_CR45) 1975
P Meyer-Nieberg (3845_CR57) 1991
F Santos (3845_CR71) 1996; 59
3845_CR65
3845_CR64
SC Kak (3845_CR36) 1970; 58
3845_CR69
AA Novikov (3845_CR62) 1975; 20
3845_CR68
3845_CR9
3845_CR23
3845_CR67
3845_CR8
3845_CR22
V Keyantuo (3845_CR41) 2004; 69
E Lenglart (3845_CR47) 1977; 13
T Halpin-Healy (3845_CR31) 1995; 254
3845_CR26
T Björk (3845_CR2) 1997; 1
EF Fama (3845_CR21) 1963; 36
3845_CR50
MC Veraar (3845_CR77) 2007; 79
3845_CR10
3845_CR54
S Dirksen (3845_CR17) 2014; 42
3845_CR51
JMAM van Neerven (3845_CR75) 1998; 155
3845_CR58
DL Burkholder (3845_CR6) 1973; 1
3845_CR13
3845_CR12
B Grigelionis (3845_CR29) 1971; 11
3845_CR56
3845_CR11
3845_CR55
3845_CR18
3845_CR16
S Dirksen (3845_CR19) 2019; 119
JMAM van Neerven (3845_CR59) 2007; 35
MM Day (3845_CR15) 1947; 62
IS Yaroslavtsev (3845_CR84) 2019; 25
S Geiss (3845_CR25) 2010; 362
3845_CR83
JMAM van Neerven (3845_CR60) 2008; 255
3845_CR81
3845_CR80
3845_CR42
NV Krylov (3845_CR43) 1997; 25
IS Yaroslavtsev (3845_CR82) 2018; 243
3845_CR86
3845_CR40
C Marinelli (3845_CR52) 2016; 34
3845_CR46
G Pisier (3845_CR66) 2016
3845_CR44
B Maurey (3845_CR53) 1976; 58
3845_CR49
B Goldys (3845_CR27) 2003; 76
3845_CR48
A Osȩkowski (3845_CR63) 2011; 16
C Doléans (3845_CR20) 1969; 40
S Geiss (3845_CR24) 1999; 351
O Kallenberg (3845_CR39) 1991; 88
3845_CR72
H Bahouri (3845_CR1) 2011
3845_CR70
Z Brzeźniak (3845_CR5) 2000; 143
3845_CR32
3845_CR76
3845_CR30
3845_CR74
3845_CR73
3845_CR35
3845_CR79
3845_CR34
3845_CR33
DL Burkholder (3845_CR7) 1981; 9
3845_CR38
3845_CR37
References_xml – reference: Kallenberg, O.: Foundations of Modern Probability. Probability and its Applications (New York). 2nd edn, Springer, New York (2002)
– reference: Osȩkowski, A., Yaroslavtsev, I.S.: The Hilbert transform and orthogonal martingales in Banach spaces. Int. Math. Res. Notices IMRN (2019). https://doi.org/10.1093/imrn/rnz187
– reference: DayMMSome characterizations of inner-product spacesTrans. Am. Math. Soc.194762320337223120034.2170310.1090/S0002-9947-1947-0022312-9
– reference: Da PratoGZabczykJStochastic Equations in Infinite Dimensions20142CambridgeCambridge University Press1317.6007710.1017/CBO9781107295513
– reference: Métivier, M.: Semimartingales, volume 2 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1982)
– reference: Krylov, N.V.: An Analytic Approach to SPDEs. In Stochastic Partial Differential Equations: Six Perspectives, Volume 64 of Mathematics Surveys Monograph, pp. 185–242. American Mathematics Society, Providence (1999)
– reference: BourgainJSome remarks on Banach spaces in which martingale difference sequences are unconditionalArk. Mat.19832121631687273400533.4600810.1007/BF02384306
– reference: OsȩkowskiAOn relaxing the assumption of differential subordination in some martingale inequalitiesElectron. Commun. Probab.20111692127533001231.6003610.1214/ECP.v16-1593
– reference: YaroslavtsevISMartingale decompositions and weak differential subordination in UMD Banach spacesBernoulli20192531659168939612260706623510.3150/18-BEJ1031
– reference: BahouriHCheminJ-YDanchinRFourier Analysis and Nonlinear Partial Differential Equations2011HeidelbergSpringer1227.3500410.1007/978-3-642-16830-7
– reference: VeraarMCContinuous local martingales and stochastic integration in UMD Banach spacesStochastics200779660161823683701129.6005010.1080/17442500701594516
– reference: SantosFInscribing a symmetric body in an ellipseInform. Process. Lett.199659417517814187380900.6842410.1016/0020-0190(96)00110-X
– reference: Burkholder, D.L.: Explorations in Martingale Theory and Its Applications. In École d’Été de Probabilités de Saint-Flour XIX—1989, Volume 1464 of Lecture Notes in Mathematics, pp. 1–66. Springer, Berlin (1991)
– reference: MarinelliCRöcknerMOn the maximal inequalities of Burkholder, Davis and GundyExpo. Math.201634112634636791335.6006410.1016/j.exmath.2015.01.002
– reference: Kingman, J.F.C.: Poisson Processes, Volume 3 of Oxford Studies in Probability. Oxford University Press, New York (1993)
– reference: Yaroslavtsev, I.S.: Local characteristics and tangency of vector-valued martingales (2019). arXiv:1907.11588
– reference: Ledoux, M., Talagrand, M.: Probability in Banach Spaces, Volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer, Berlin (1991)
– reference: Rubio de Francia, J.L.: Martingale and integral transforms of Banach space valued functions. In Probability and Banach spaces (Zaragoza, 1985), Volume 1221 of Lecture Notes in Mathematics, pp. 195–222. Springer, Berlin (1986)
– reference: KrylovNVOn SPDE’s and superdiffusionsAnn. Probab.19972541789180914874360904.6004710.1214/aop/1023481111
– reference: DirksenSYaroslavtsevISLq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^{q}$$\end{document}-valued Burkholder-Rosenthal inequalities and sharp estimates for stochastic integralsProc. Lond. Math. Soc. (3)20191196163316930717478110.1112/plms.12277
– reference: Burkholder, D.L., Davis, B.J., Gundy, R.F.: Integral inequalities for convex functions of operators on martingales. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory, pages 223–240. University California Press, Berkeley, California (1972)
– reference: Gyöngy, I., Krylov, N.V.: On stochastic equations with respect to semimartingales. I. Stochastics 4(1):1–21 (1980/81)
– reference: BurkholderDLDistribution function inequalities for martingalesAnn. Probab.1973119423656920301.6003510.1214/aop/1176997023
– reference: YaroslavtsevISOn the martingale decompositions of Gundy, Meyer, and Yoeurp in infinite dimensionsAnn. Inst. Henri Poincaré Probab. Stat.20195541988201840291460716149710.1214/18-AIHP940
– reference: GrigelionisBThe representation of integer-valued random measures as stochastic integrals over the Poisson measureLitovsk. Mat. Sb.197111931082937030239.60050
– reference: VeraarMCRandomized UMD Banach spaces and decoupling inequalities for stochastic integralsProc. Am. Math. Soc.200713551477148622766571116.6002410.1090/S0002-9939-06-08619-9
– reference: Burkholder, D.L.: Sharp inequalities for martingales and stochastic integrals. Astérisque, (157–158):75–94, 1988. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987)
– reference: Geiss, S., Yaroslavtsev, I.S.: Dyadic and stochastic shifts and Volterra-type operators. In preparation
– reference: van NeervenJMAMWeisLWStochastic integration of functions with values in a Banach spaceStudia Math.2005166213117021095861073.6005910.4064/sm166-2-2
– reference: BrzeźniakZvan NeervenJMAMStochastic convolution in separable Banach spaces and the stochastic linear Cauchy problemStudia Math.20001431437418144800964.6004310.4064/sm-143-1-43-74
– reference: van Neerven, J.M.A.M.: γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-radonifying operators—a survey. In: The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, Volume 44 of Proceedings of the Centre for Mathematics and its Applications, Australian National University, pp. 1–61 (2010)
– reference: DirksenSItô isomorphisms for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-valued Poisson stochastic integralsAnn. Probab.20144262595264332651751308.6006810.1214/13-AOP906
– reference: de la Peña, V.H., Giné, E.: Decoupling. Probability and its Applications (New York). From dependence to independence, Randomly stopped processes. U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document}-statistics and processes. Martingales and beyond. Springer, New York (1999)
– reference: Shiryaev, A.N., Chernyĭ, A.S.: A vector stochastic integral and the fundamental theorem of asset pricing. Tr. Mat. Inst. Steklova, 237(Stokhast. Finans. Mat.):12–56 (2002)
– reference: Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, Volume 113 of Graduate Texts in Mathematics. 2nd edn, Springer, New York (1991)
– reference: BjörkTDi MasiGKabanovYRunggaldierWTowards a general theory of bond marketsFinance Stoch.19971214117429766830889.9001910.1007/s007800050020
– reference: Hytönen, T.P., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, volume 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, (2016)
– reference: KallenbergOSztencelRSome dimension-free features of vector-valued martingalesProbab. Theory Related Fields199188221524710964810717.6005310.1007/BF01212560
– reference: Sato, K.-i.: Lévy Processes and Infinitely Divisible Distributions, Volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, (2013). Translated from the 1990 Japanese original, Revised edition of the 1999 English translation
– reference: Veraar, M.C., Yaroslavtsev, I.S.: Pointwise properties of martingales with values in Banach function spaces. In: High Dimensional Probability VIII, pp. 321–340. Springer, Berlin (2019)
– reference: MaureyBPisierGSéries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de BanachStudia Math.197658145904430150344.4701410.4064/sm-58-1-45-90
– reference: Rozovskiĭ, B.L.: Stochastic Evolution Systems, Volume 35 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, (1990). Linear theory and applications to nonlinear filtering, Translated from the Russian by A. Yarkho
– reference: Kallenberg, O.: Random Measures, Theory and Applications, Volume 77 of Probability Theory and Stochastic Modelling. Springer, Cham (2017)
– reference: NovikovAADiscontinuous martingalesTeor. Verojatnost. i Primemen.1975201328394861
– reference: PisierGMartingales in Banach Spaces2016CambridgeCambridge University Press1382.46002
– reference: GeissSMontgomery-SmithSSaksmanEOn singular integral and martingale transformsTrans. Am. Math. Soc.2010362255357525514971196.6007810.1090/S0002-9947-09-04953-8
– reference: BogachevVIGaussian measures1998ProvidenceAmerican Mathematical Society0913.6003510.1090/surv/062
– reference: Meyer, P.A.: Notes sur les intégrales stochastiques. I. Intégrales hilbertiennes. Lecture Notes in Mathematics, Vol. 581, pp. 446–462 (1977)
– reference: Veraar, M.C.: Stochastic integration in Banach spaces and applications to parabolic evolution equations. Ph.D. thesis, TU Delft, Delft University of Technology (2006)
– reference: Halpin-HealyTZhangY-ChKinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanicsPhys Rep19952544–62154141995PhR...254..215H10.1016/0370-1573(94)00087-J
– reference: YaroslavtsevISFourier multipliers and weak differential subordination of martingales in UMD Banach spacesStudia Math.2018243326930138183261418.4201410.4064/sm170329-25-8
– reference: Zaanen, A.C.: Integration. North-Holland Publishing Co., Amsterdam; Interscience Publishers Wiley, New York (1967)
– reference: Burkholder, D.L.: Martingales and Fourier Analysis in Banach Spaces. In Probability and Analysis (Varenna, 1985), Volume 1206 of Lecture Notes in Mathematics, pp. 61–108. Springer, Berlin (1986)
– reference: Weisz, F.: Martingale Hardy Spaces with Continuous Time. In Probability Theory and Applications, Volume 80 of Mathematics Application, pp. 47–75. Kluwer Academic Publication, Dordrecht (1992)
– reference: GoldysBvan NeervenJMAMTransition semigroups of Banach space-valued Ornstein–Uhlenbeck processesActa Appl. Math.200376328333019762971027.6006810.1023/A:1023261101091
– reference: BurkholderDLA geometrical characterization of Banach spaces in which martingale difference sequences are unconditionalAnn. Probab.19819699710116329720474.6003610.1214/aop/1176994270
– reference: Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II, Volume 97 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1979)
– reference: Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften. 3rd edn, Springer, Berlin (1999)
– reference: GeissSA counterexample concerning the relation between decoupling constants and UMD-constantsTrans. Am. Math. Soc.19993514135513751999rqmf.book.....G14583010910.4600710.1090/S0002-9947-99-02093-0
– reference: LenglartERelation de domination entre deux processusAnn. Inst. H. Poincaré Sect. B (N.S.)19771321711794710690373.60054
– reference: Hytönen, T.P., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Analysis in Banach spaces. Vol. III. Harmonic and Spectral Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, in preparation
– reference: Lindemulder, N., Veraar, M.C., Yaroslavtsev, I.S.: The UMD property for Musielak–Orlicz Spaces. In Positivity and Noncommutative Analysis, Trends Math., pp. 349–363. Springer, Cham (2019)
– reference: Burkholder, D.L.: Martingales and Singular Integrals in Banach Spaces. In Handbook of the Geometry of Banach spaces, Vol. I, pp. 233–269. North-Holland, Amsterdam (2001)
– reference: van NeervenJMAMVeraarMCWeisLWStochastic evolution equations in UMD Banach spacesJ. Funct. Anal.2008255494099324339581149.6003910.1016/j.jfa.2008.03.015
– reference: Cox, S.G., Geiss, S.: On decoupling in Banach spaces (2018). arXiv:1805.12377
– reference: FamaEFMandelbrot and the stable Paretian hypothesisJ. Bus.196336442042910.1086/294633
– reference: Métivier, M., Pellaumail, J.: Stochastic Integration. Probability and Mathematical Statistics. Academic Press [Harcourt Brace Jovanovich, Publishers], New York (1980)
– reference: DoléansCVariation quadratique des martingales continues à droiteAnn. Math. Stat.1969402842892369820177.2160310.1214/aoms/1177697823
– reference: van NeervenJMAMVeraarMCWeisLWStochastic integration in UMD Banach spacesAnn. Probab.20073541438147823309771121.6006010.1214/009117906000001006
– reference: Meyer-NiebergPBanach Lattices. Universitext1991BerlinSpringer0743.4601510.1007/978-3-642-76724-1
– reference: Garling, D.J.H.: Brownian motion and UMD-spaces. In Probability and Banach spaces (Zaragoza, 1985), volume 1221 of Lecture Notes in Mathematics, pp. 36–49. Springer, Berlin (1986)
– reference: Garling, D.J.H.: Random martingale transform inequalities. In Probability in Banach Spaces 6 (Sandbjerg, 1986), Volume 20 of Progress in Probability, pp. 101–119. Birkhäuser, Boston (1990)
– reference: KakSCThe discrete Hilbert transformProc. IEEE197058458558610.1109/PROC.1970.7696
– reference: Veraar, M.C., Yaroslavtsev, I.S.: Cylindrical continuous martingales and stochastic integration in infinite dimensions. Electron. J. Probab., 21: Paper No. 59, 53 (2016)
– reference: van NeervenJMAMNonsymmetric Ornstein-Uhlenbeck semigroups in Banach spacesJ. Funct. Anal.1998155249553516245730928.4703110.1006/jfan.1997.3237
– reference: Dirksen, S., Marinelli, C., Yaroslavtsev, I.S.: Stochastic evolution equations in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^p$$\end{document}-spaces driven by jump noise. In preparation
– reference: Hytönen, T.P., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Analysis in Banach Spaces. Vol. II. Probabilistic Methods and Operator Theory, Volume 67 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Cham (2017)
– reference: KeyantuoVLizamaCFourier multipliers and integro-differential equations in Banach spacesJ. Lond. Math. Soc. (2)200469373775020500431053.4500810.1112/S0024610704005198
– reference: Shafarevich, I.R., Remizov, A.O.: Linear Algebra and Geometry. Springer, Heidelberg, (2013). Translated from the 2009 Russian original by David Kramer and Lena Nekludova
– reference: Protter, P.E.: Stochastic Integration and Differential Equations, Volume 21 of Stochastic Modelling and Applied Probability. 2nd edn, Springer, Berlin (Version 2.1, Corrected third printing) (2005)
– reference: Osȩkowski, A.: Sharp Martingale and Semimartingale Inequalities, Volume 72 of Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series). Springer, Basel (2012)
– reference: KuoHHGaussian Measures in Banach Spaces1975BerlinSpringer0306.2801010.1007/BFb0082007
– reference: Lindemulder, N.: Weighted Function Spaces with Applications to Boundary Value Problems. Ph.D. thesis, Delft University of Technology (2019)
– reference: Marinelli, C.: On maximal inequalities for purely discontinuous Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q$$\end{document}-valued martingales (2013). arXiv:1311.7120
– reference: Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, Volume 288 of Grundlehren der Mathematischen Wissenschaften. 2nd edn, Springer, Berlin (2003)
– reference: GravereauxJBPellaumailJFormule de Ito pour des processus non continus à valeurs dans des espaces de BanachAnn. Inst. H. Poincaré Sect. B (N.S.)197510399–42219743730030363.60032
– volume: 88
  start-page: 215
  issue: 2
  year: 1991
  ident: 3845_CR39
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/BF01212560
– ident: 3845_CR12
– ident: 3845_CR58
– volume: 25
  start-page: 1659
  issue: 3
  year: 2019
  ident: 3845_CR84
  publication-title: Bernoulli
  doi: 10.3150/18-BEJ1031
– ident: 3845_CR46
  doi: 10.1007/978-3-642-20212-4
– ident: 3845_CR54
– ident: 3845_CR64
  doi: 10.1007/978-3-0348-0370-0_7
– volume: 58
  start-page: 45
  issue: 1
  year: 1976
  ident: 3845_CR53
  publication-title: Studia Math.
  doi: 10.4064/sm-58-1-45-90
– volume: 21
  start-page: 163
  issue: 2
  year: 1983
  ident: 3845_CR4
  publication-title: Ark. Mat.
  doi: 10.1007/BF02384306
– ident: 3845_CR33
  doi: 10.1007/978-3-319-69808-3
– ident: 3845_CR44
  doi: 10.1090/surv/064/05
– ident: 3845_CR50
  doi: 10.1007/978-3-662-35347-9
– volume: 58
  start-page: 585
  issue: 4
  year: 1970
  ident: 3845_CR36
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1970.7696
– ident: 3845_CR11
  doi: 10.1016/S1874-5849(01)80008-5
– ident: 3845_CR26
– ident: 3845_CR16
– volume: 42
  start-page: 2595
  issue: 6
  year: 2014
  ident: 3845_CR17
  publication-title: Ann. Probab.
  doi: 10.1214/13-AOP906
– ident: 3845_CR32
  doi: 10.1007/978-3-319-48520-1
– volume: 243
  start-page: 269
  issue: 3
  year: 2018
  ident: 3845_CR82
  publication-title: Studia Math.
  doi: 10.4064/sm170329-25-8
– ident: 3845_CR35
  doi: 10.1007/978-3-662-05265-5
– ident: 3845_CR70
  doi: 10.1007/BFb0099115
– volume: 13
  start-page: 171
  issue: 2
  year: 1977
  ident: 3845_CR47
  publication-title: Ann. Inst. H. Poincaré Sect. B (N.S.)
– volume: 155
  start-page: 495
  issue: 2
  year: 1998
  ident: 3845_CR75
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1997.3237
– volume: 35
  start-page: 1438
  issue: 4
  year: 2007
  ident: 3845_CR59
  publication-title: Ann. Probab.
  doi: 10.1214/009117906000001006
– ident: 3845_CR51
  doi: 10.1007/978-3-319-11970-0_10
– ident: 3845_CR9
– ident: 3845_CR74
– volume: 1
  start-page: 141
  issue: 2
  year: 1997
  ident: 3845_CR2
  publication-title: Finance Stoch.
  doi: 10.1007/s007800050020
– ident: 3845_CR67
– volume-title: Stochastic Equations in Infinite Dimensions
  year: 2014
  ident: 3845_CR14
  doi: 10.1017/CBO9781107295513
– ident: 3845_CR42
  doi: 10.1093/oso/9780198536932.001.0001
– volume: 59
  start-page: 175
  issue: 4
  year: 1996
  ident: 3845_CR71
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(96)00110-X
– ident: 3845_CR80
  doi: 10.1007/978-3-030-26391-1_16
– volume-title: Gaussian measures
  year: 1998
  ident: 3845_CR3
  doi: 10.1090/surv/062
– volume: 16
  start-page: 9
  year: 2011
  ident: 3845_CR63
  publication-title: Electron. Commun. Probab.
  doi: 10.1214/ECP.v16-1593
– volume: 79
  start-page: 601
  issue: 6
  year: 2007
  ident: 3845_CR77
  publication-title: Stochastics
  doi: 10.1080/17442500701594516
– volume: 62
  start-page: 320
  year: 1947
  ident: 3845_CR15
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1947-0022312-9
– volume: 55
  start-page: 1988
  issue: 4
  year: 2019
  ident: 3845_CR85
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
  doi: 10.1214/18-AIHP940
– volume: 351
  start-page: 1355
  issue: 4
  year: 1999
  ident: 3845_CR24
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-99-02093-0
– volume: 255
  start-page: 940
  issue: 4
  year: 2008
  ident: 3845_CR60
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2008.03.015
– volume: 20
  start-page: 13
  year: 1975
  ident: 3845_CR62
  publication-title: Teor. Verojatnost. i Primemen.
– ident: 3845_CR65
  doi: 10.1093/imrn/rnz187
– volume: 9
  start-page: 997
  issue: 6
  year: 1981
  ident: 3845_CR7
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176994270
– ident: 3845_CR56
  doi: 10.1007/BFb0087212
– ident: 3845_CR10
  doi: 10.1007/BFb0085167
– ident: 3845_CR37
  doi: 10.1007/978-1-4757-4015-8
– volume-title: Martingales in Banach Spaces
  year: 2016
  ident: 3845_CR66
  doi: 10.1017/CBO9781316480588
– volume: 11
  start-page: 93
  year: 1971
  ident: 3845_CR29
  publication-title: Litovsk. Mat. Sb.
– volume: 40
  start-page: 284
  year: 1969
  ident: 3845_CR20
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177697823
– ident: 3845_CR49
  doi: 10.1007/978-3-030-10850-2_19
– volume: 69
  start-page: 737
  issue: 3
  year: 2004
  ident: 3845_CR41
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/S0024610704005198
– ident: 3845_CR38
  doi: 10.1007/978-3-319-41598-7
– ident: 3845_CR73
  doi: 10.1007/978-3-642-30994-6
– ident: 3845_CR81
  doi: 10.1007/978-94-011-2817-9_3
– ident: 3845_CR8
  doi: 10.1007/BFb0076300
– volume-title: Banach Lattices. Universitext
  year: 1991
  ident: 3845_CR57
  doi: 10.1007/978-3-642-76724-1
– ident: 3845_CR68
  doi: 10.1007/978-3-662-06400-9
– ident: 3845_CR18
– ident: 3845_CR22
  doi: 10.1007/BFb0099110
– volume: 36
  start-page: 420
  issue: 4
  year: 1963
  ident: 3845_CR21
  publication-title: J. Bus.
  doi: 10.1086/294633
– ident: 3845_CR13
– ident: 3845_CR55
– ident: 3845_CR40
– ident: 3845_CR34
– volume: 10
  start-page: 1974
  issue: 399–422
  year: 1975
  ident: 3845_CR28
  publication-title: Ann. Inst. H. Poincaré Sect. B (N.S.)
– volume: 25
  start-page: 1789
  issue: 4
  year: 1997
  ident: 3845_CR43
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1023481111
– volume-title: Gaussian Measures in Banach Spaces
  year: 1975
  ident: 3845_CR45
  doi: 10.1007/BFb0082007
– ident: 3845_CR76
– volume: 362
  start-page: 553
  issue: 2
  year: 2010
  ident: 3845_CR25
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-09-04953-8
– volume: 143
  start-page: 43
  issue: 1
  year: 2000
  ident: 3845_CR5
  publication-title: Studia Math.
  doi: 10.4064/sm-143-1-43-74
– ident: 3845_CR23
  doi: 10.1007/978-1-4684-6781-9_6
– volume: 135
  start-page: 1477
  issue: 5
  year: 2007
  ident: 3845_CR78
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-06-08619-9
– volume: 166
  start-page: 131
  issue: 2
  year: 2005
  ident: 3845_CR61
  publication-title: Studia Math.
  doi: 10.4064/sm166-2-2
– volume: 1
  start-page: 19
  year: 1973
  ident: 3845_CR6
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176997023
– volume: 254
  start-page: 215
  issue: 4–6
  year: 1995
  ident: 3845_CR31
  publication-title: Phys Rep
  doi: 10.1016/0370-1573(94)00087-J
– volume-title: Fourier Analysis and Nonlinear Partial Differential Equations
  year: 2011
  ident: 3845_CR1
  doi: 10.1007/978-3-642-16830-7
– ident: 3845_CR72
– volume: 34
  start-page: 1
  issue: 1
  year: 2016
  ident: 3845_CR52
  publication-title: Expo. Math.
  doi: 10.1016/j.exmath.2015.01.002
– ident: 3845_CR48
– ident: 3845_CR69
– volume: 119
  start-page: 1633
  issue: 6
  year: 2019
  ident: 3845_CR19
  publication-title: Proc. Lond. Math. Soc. (3)
  doi: 10.1112/plms.12277
– ident: 3845_CR79
  doi: 10.1214/16-EJP7
– ident: 3845_CR83
  doi: 10.1214/19-PS337
– volume: 76
  start-page: 283
  issue: 3
  year: 2003
  ident: 3845_CR27
  publication-title: Acta Appl. Math.
  doi: 10.1023/A:1023261101091
– ident: 3845_CR86
– ident: 3845_CR30
  doi: 10.1080/03610918008833154
SSID ssj0009266
Score 2.430071
Snippet In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X . Assuming that M 0 = 0 , we show...
In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X . Assuming that $$M_0=0$$ M 0 = 0 ,...
In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X. Assuming that M0=0, we show that the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 417
SubjectTerms Banach spaces
Brownian motion
Classical and Quantum Gravitation
Complex Systems
Covariance
Inequalities
Integrals
Isomorphism
Martingales
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
Title Burkholder–Davis–Gundy Inequalities in UMD Banach Spaces
URI https://link.springer.com/article/10.1007/s00220-020-03845-7
https://www.proquest.com/docview/2450407004
Volume 379
WOSCitedRecordID wos000570036600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009266
  issn: 0010-3616
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48QR-8xfWiD75poN3c4Iu3gop44VvJ0aAoVba7gm_-B_-hv8Sk2-6iqKAPpZSkIcwkczAz3wCsyURYFVuJsHQcEWIk0swR5AxOrNScGlNC5h_z01NxcyPPqqKwos52r0OSpaTuFbsFdROj4O7EWBCK-CAMe3UnQsOG84vrPtRusxuhDGFezBJWlcp8v8ZnddS3Mb-ERUttsz_5v31OwURlXUZb3eMwDQNZPgOTlaUZVfe4mIHxkx5aq_8aLdNATTELm9ud1n0ISGWt99e3EoHAvw86uX2JjvKsW4HpfevoLo-uTnajbZUrcxtdPIXErjm42t-73DlEVX8FZDDDbZRhoWMValEd82aLdy5orIVSWhvGlCWZ5dQK7zNqKp0jnDjKndTSNZk3CpsKz8NQ_phnCxBpkjElvPngZSuhwghirGczxVwkzBLagKQmc2oq8PHQA-Mh7cEml2RL4_AEsqW8Aeu9f5660Bu_zl6uuZdW17BI_V68kAoI_g3YqLnVH_55tcW_TV-CsWZgeJnktwxD7VYnW4ER89y-K1qr5fH8AF7Q3Gc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK4IQsCDIGBYBZwDN-lkZvudeBF1XeLuhsAu4Tbpx3QgkJHs7Jp48z_4D_0lds9rI1ETOEw6k36kU9Vdj1TV1wCHMhFWxVYiLB1HhBiJNHMEOYMTKzWnxpSQ-QM-GonLS3laF4UVTbZ7E5IsJXVb7BbUTYyCuxNjQSjiS_CUeI0VEPPPzi8WULvdKkIZwryYJawulfn7Gn-qo4WNeS8sWmqb3sbj9rkJz2vrMnpfHYcX8CTLt2CjtjSj-h4XW_Bs2KK1-r_VMg3UFNvw7ng-vQkBqWz668fPEoHAt5_nuf0eneRZVYHpfevoOo8mw4_RscqVuYrO70Ji1w5Mep_GH_qofl8BGczwDGVY6FiFWlTHvNninQsaa6GU1oYxZUlmObXC-4yaSucIJ45yJ7V0XeaNwq7CL2E5_5pnuxBpkjElPDO8bCVUGEGM9WymmIuEWUI7kDRkTk0NPh7ewLhNW9jkkmxpHL5AtpR34G07566C3vjv6L2Ge2l9DYvU78ULqYDg34GjhluL7n-v9uphw9_AWn88HKSDk9GX17DeDcwvE_72YHk2nWf7sGK-za6L6UF5VH8DvK3fSw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC6i0aCHaDTiJmucg7fYOLP9hlzc6KpEF8EH3oZ-TKMo47IPwZv_wX_oL7F7ZnY3igriYRiG7mmaqu6ur6iqrwHWZCKsiq1EWDqOCDESaeYIcgYnVmpOjSko8_d5uy3OzuThf1X8Rbb7MCRZ1jQElqa8v9GxbmNU-BZMT4yC6xNjQSjiE_CZhET64K8fnY5pdxtltDKEfDFLWFU28_IYT03TGG8-C5EWlqc19_E5z8PXCnVGm-Uy-QafsnwB5ioEGlX7u7cAswcjFlf_NV2kh5reIvxpDrqXIVCVdR_u7gtmAv_eGeT2NtrLs7Iy0_vc0UUenRxsRU2VK3MeHXVCwtd3OGltH__dRdW9C8hghvsow0LHKtSoOubhjHc6aKyFUlobxpQlmeXUCu9LaiqdI5w4yp3U0jWYB4sNhZdgMr_Os2WINMmYEh5W-DOXUGEEMdarn2IuEmYJrUEyFHlqKlLycDfGVTqiUy7ElsbhCWJLeQ1-j_7plJQcb_auDzWZVtuzl_q5-MMrMPvXYH2ouXHz66P9eF_3VfhyuNVK9_fa_37CTCPovsgDrMNkvzvIVmDK3PQvet1fxap9BFFS6C8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Burkholder%E2%80%93Davis%E2%80%93Gundy+Inequalities+in+UMD+Banach+Spaces&rft.jtitle=Communications+in+mathematical+physics&rft.au=Yaroslavtsev+Ivan&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0010-3616&rft.eissn=1432-0916&rft.volume=379&rft.issue=2&rft.spage=417&rft.epage=459&rft_id=info:doi/10.1007%2Fs00220-020-03845-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3616&client=summon