Counting Induced Subgraphs: An Algebraic Approach to #W[1]-Hardness

We study the problem # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ . It is shown that, given any graph property Φ that distinguishes independent sets from bicliques, # I N D S U B ( Φ ) is hard for the class # W [ 1 ] , i.e., the parameteriz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 84; H. 2; S. 379 - 404
Hauptverfasser: Dörfler, Julian, Roth, Marc, Schmitt, Johannes, Wellnitz, Philip
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2022
Springer Nature B.V
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the problem # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ . It is shown that, given any graph property Φ that distinguishes independent sets from bicliques, # I N D S U B ( Φ ) is hard for the class # W [ 1 ] , i.e., the parameterized counting equivalent of N P . Under additional suitable density conditions on Φ , satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen # W [ 1 ] -hardness by establishing that # I N D S U B ( Φ ) cannot be solved in time f ( k ) · n o ( k ) for any computable function f , unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph G is restricted to be bipartite and counting is done modulo a fixed prime.
AbstractList We study the problem $$\#\textsc {IndSub}(\varPhi )$$ # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property $$\varPhi $$ Φ . It is shown that, given any graph property $$\varPhi $$ Φ that distinguishes independent sets from bicliques, $$\#\textsc {IndSub}(\varPhi )$$ # I N D S U B ( Φ ) is hard for the class $$\#\mathsf {W[1]}$$ # W [ 1 ] , i.e., the parameterized counting equivalent of $${{\mathsf {N}}}{{\mathsf {P}}}$$ N P . Under additional suitable density conditions on $$\varPhi $$ Φ , satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen $$\#\mathsf {W[1]}$$ # W [ 1 ] -hardness by establishing that $$\#\textsc {IndSub}(\varPhi )$$ # I N D S U B ( Φ ) cannot be solved in time $$f(k)\cdot n^{o(k)}$$ f ( k ) · n o ( k ) for any computable function f , unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph G is restricted to be bipartite and counting is done modulo a fixed prime.
We study the problem #INDSUB(Φ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ. It is shown that, given any graph property Φ that distinguishes independent sets from bicliques, #INDSUB(Φ) is hard for the class #W[1], i.e., the parameterized counting equivalent of NP. Under additional suitable density conditions on Φ, satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen #W[1]-hardness by establishing that #INDSUB(Φ) cannot be solved in time f(k)·no(k) for any computable function f, unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph G is restricted to be bipartite and counting is done modulo a fixed prime.
We study the problem # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ . It is shown that, given any graph property Φ that distinguishes independent sets from bicliques, # I N D S U B ( Φ ) is hard for the class # W [ 1 ] , i.e., the parameterized counting equivalent of N P . Under additional suitable density conditions on Φ , satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen # W [ 1 ] -hardness by establishing that # I N D S U B ( Φ ) cannot be solved in time f ( k ) · n o ( k ) for any computable function f , unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph G is restricted to be bipartite and counting is done modulo a fixed prime.
Author Dörfler, Julian
Schmitt, Johannes
Roth, Marc
Wellnitz, Philip
Author_xml – sequence: 1
  givenname: Julian
  surname: Dörfler
  fullname: Dörfler, Julian
  organization: Graduate School of Computer Science, Saarland Informatics Campus
– sequence: 2
  givenname: Marc
  orcidid: 0000-0003-3159-9418
  surname: Roth
  fullname: Roth, Marc
  email: marc.roth@cs.ox.ac.uk
  organization: Department of Computer Science and Merton College, University of Oxford, Cluster of Excellence (MMCI), Saarland Informatics Campus
– sequence: 3
  givenname: Johannes
  surname: Schmitt
  fullname: Schmitt, Johannes
  organization: ETH Zurich, Mathematical Institute, University of Bonn
– sequence: 4
  givenname: Philip
  surname: Wellnitz
  fullname: Wellnitz, Philip
  organization: Max Planck Institute for Informatics, Saarland Informatics Campus
BookMark eNp9kEFLwzAUx4NMcJt-AU-FnaMvTZY03spQNxh4UPEgEtIk7TpmWpP24Le3WkHwsNO7_H_v_d9vhia-8Q6hSwJXBEBcRwC2pBhSggEyybA8QVPCaIphycgETYGIDDNOxBmaxbgHIKmQfIpWq6b3Xe2rZONtb5xNHvuiCrrdxZsk90l-qFwRdG2SvG1Do80u6Zpk8fJK3vBaB-tdjOfotNSH6C5-5xw9390-rdZ4-3C_WeVbbCinHXaUllIYIyyTZSkKymhmDVkW0mRQlKYE4FaWIBnn1nGdWgGCAtcwcMYWdI4W496hyEfvYqf2TR_8cFKlPJWQEc5gSGVjyoQmxuBKZepOd3Xju-GPgyKgvpWpUZkalKkfZUoOaPoPbUP9rsPncYiOUBzCvnLhr9UR6guCwn7z
CitedBy_id crossref_primary_10_1137_22M1535668
crossref_primary_10_1007_s00453_023_01178_0
crossref_primary_10_1137_22M1512211
Cites_doi 10.1016/0304-3975(79)90044-6
10.2307/2033425
10.1016/j.dam.2015.06.019
10.4153/CJM-1965-045-4
10.1142/9789812773449
10.1090/coll/060
10.1007/BF02579140
10.1145/2902251.2902279
10.1016/j.tcs.2004.08.008
10.1137/1.9781611973730.111
10.1145/2786017
10.1016/j.ic.2005.05.001
10.1007/978-3-662-47672-7_19
10.1007/3-540-29953-X
10.1145/3055399.3055502
10.1016/j.apal.2005.06.010
10.4230/LIPIcs.IPEC.2018.24
10.1137/S0097539703427203
10.1137/0220053
10.1016/0304-3975(76)90053-0
10.1016/j.jcss.2006.04.007
10.1007/s00493-016-3338-5
10.1017/CBO9780511608704
10.1016/j.jcss.2014.11.015
10.1561/0400000055
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-021-00894-9
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 404
ExternalDocumentID 10_1007_s00453_021_00894_9
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 786580
  funderid: http://dx.doi.org/10.13039/100010663
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c363t-e33f97cc7d49ff7b3438dc15b9c80bfcf006d9f09466de6a2d707306a03f9cdb3
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728240000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sun Nov 09 08:21:33 EST 2025
Sat Nov 29 02:20:32 EST 2025
Tue Nov 18 21:43:31 EST 2025
Fri Feb 21 02:47:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Counting complexity
Edge-transitive graphs
Graph homomorphisms
Induced subgraphs
Parameterized complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-e33f97cc7d49ff7b3438dc15b9c80bfcf006d9f09466de6a2d707306a03f9cdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3159-9418
OpenAccessLink https://link.springer.com/10.1007/s00453-021-00894-9
PQID 2629081640
PQPubID 2043795
PageCount 26
ParticipantIDs proquest_journals_2629081640
crossref_citationtrail_10_1007_s00453_021_00894_9
crossref_primary_10_1007_s00453_021_00894_9
springer_journals_10_1007_s00453_021_00894_9
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References FlumJGroheMThe parameterized complexity of counting problemsSIAM J. Comput.2004334892922206533810.1137/S00975397034272031105.68042
Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June, 2017, pp. 210–223 (2017). https://doi.org/10.1145/3055399.3055502
Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Computer Science. An EATCS Series. Springer (2006). https://doi.org/10.1007/3-540-29953-X
ChenJChorBFellowsMHuangXJuedesDWKanjIAXiaGTight lower bounds for certain parameterized NP-hard problemsInf. Comput.20052012216231216571610.1016/j.ic.2005.05.0011161.68476
Williams, V.V., Wang, J.R., Williams, R.R., Yu, H.: Finding four-node subgraphs in triangle time. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 January, 2015, pp. 1671–1680 (2015). https://doi.org/10.1137/1.9781611973730.111
DalmauVJonssonPThe complexity of counting homomorphisms seen from the other sideTheor. Comput. Sci.20043291–3315323210365510.1016/j.tcs.2004.08.0081086.68054
Björklund, A., Dell, H., Husfeldt, T.: The parity of set systems under random restrictions with applications to exponential time problems. In: Automata, Languages, and Programming—42nd International Colloquium, ICALP 2015, Kyoto, Japan, 6–10 July, 2015, Proceedings, Part I, pp. 231–242 (2015). https://doi.org/10.1007/978-3-662-47672-7_19
MillerCAEvasiveness of graph properties and topological fixed-point theoremsFound. Trends Theor. Comput. Sci.201374337415305561410.1561/04000000551278.68019
McCartinCParameterized counting problemsAnn. Pure Appl. Logic20061381–3147182218381210.1016/j.apal.2005.06.0101133.68027
Abhyankar, S.S.: Lectures on algebra, vol. I. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). https://doi.org/10.1142/9789812773449
Chen, H., Mengel, S.: Counting answers to existential positive queries: A complexity classification. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26–July 01, 2016, pp. 315–326 (2016). https://doi.org/10.1145/2902251.2902279
JerrumMMeeksKThe parameterised complexity of counting connected subgraphs and graph motifsJ. Comput. Syst. Sci.2015814702716330595710.1016/j.jcss.2014.11.0151320.68101
Jerrum, M., Meeks, K.: Some hard families of parameterized counting problems. TOCT 7(3), 11:1–11:18 (2015). https://doi.org/10.1145/2786017
Biggs, N.: Algebraic graph theory, 2nd (edn.). Cambridge Mathematical Library. Cambridge University Press, Cambridge (1993). https://doi.org/10.1017/CBO9780511608704
ChenJHuangXKanjIAXiaGStrong computational lower bounds via parameterized complexityJ. Comput. Syst. Sci.200672813461367227341210.1016/j.jcss.2006.04.0071119.68092
MeeksKThe challenges of unbounded treewidth in parameterised subgraph counting problemsDiscrete Appl. Math.2016198170194342689010.1016/j.dam.2015.06.0191327.05244
Curticapean, R.: The simple, little and slow things count: On parameterized counting complexity. Ph.D. thesis, Saarland University (2015). http://scidok.sulb.uni-saarland.de/volltexte/2015/6217
JerrumMMeeksKThe parameterised complexity of counting even and odd induced subgraphsCombinatorica2017375965990373737610.1007/s00493-016-3338-51413.68063
TodaSPP is as hard as the polynomial-time hierarchySIAM J. Comput.1991205865877111565510.1137/02200530733.68034
Lovász, L.: Large networks and graph limits, Colloquium Publications, vol. 60. American Mathematical Society (2012). http://www.ams.org/bookstore-getitem/item=COLL-60
Roth, M., Schmitt, J.: Counting induced subgraphs: A topological approach to #W[1]-hardness. In: 13th International Symposium on Parameterized and Exact Computation, IPEC 2018, 20–24 August, 2018, Helsinki, Finland, pp. 24:1–24:14 (2018). https://doi.org/10.4230/LIPIcs.IPEC.2018.24
Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency matrices. Theoret. Comput. Sci. 3(3), 371–384 (1976/77). https://doi.org/10.1016/0304-3975(76)90053-0
WeirAJThe Sylow subgroups of the symmetric groupsProc. Amer. Math. Soc.195565345417214210.2307/20334250065.25602
ValiantLGThe complexity of computing the permanentTheor. Comput. Sci.1979818920152620310.1016/0304-3975(79)90044-60415.68008
EdmondsJPaths, trees, and flowersCan. J. Math.19651744946717790710.4153/CJM-1965-045-40132.20903
KahnJSaksMESturtevantDA topological approach to evasivenessCombinatorica19844429730677989010.1007/BF025791400577.05061
K Meeks (894_CR19) 2016; 198
894_CR22
894_CR21
LG Valiant (894_CR24) 1979; 8
894_CR26
J Edmonds (894_CR10) 1965; 17
CA Miller (894_CR20) 2013; 7
V Dalmau (894_CR9) 2004; 329
894_CR3
894_CR4
894_CR7
894_CR8
M Jerrum (894_CR13) 2015; 81
894_CR17
894_CR1
894_CR2
S Toda (894_CR23) 1991; 20
AJ Weir (894_CR25) 1955; 6
J Chen (894_CR5) 2005; 201
894_CR14
894_CR12
J Flum (894_CR11) 2004; 33
J Kahn (894_CR16) 1984; 4
M Jerrum (894_CR15) 2017; 37
J Chen (894_CR6) 2006; 72
C McCartin (894_CR18) 2006; 138
References_xml – reference: McCartinCParameterized counting problemsAnn. Pure Appl. Logic20061381–3147182218381210.1016/j.apal.2005.06.0101133.68027
– reference: MeeksKThe challenges of unbounded treewidth in parameterised subgraph counting problemsDiscrete Appl. Math.2016198170194342689010.1016/j.dam.2015.06.0191327.05244
– reference: Curticapean, R.: The simple, little and slow things count: On parameterized counting complexity. Ph.D. thesis, Saarland University (2015). http://scidok.sulb.uni-saarland.de/volltexte/2015/6217/
– reference: Chen, H., Mengel, S.: Counting answers to existential positive queries: A complexity classification. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26–July 01, 2016, pp. 315–326 (2016). https://doi.org/10.1145/2902251.2902279
– reference: EdmondsJPaths, trees, and flowersCan. J. Math.19651744946717790710.4153/CJM-1965-045-40132.20903
– reference: JerrumMMeeksKThe parameterised complexity of counting even and odd induced subgraphsCombinatorica2017375965990373737610.1007/s00493-016-3338-51413.68063
– reference: TodaSPP is as hard as the polynomial-time hierarchySIAM J. Comput.1991205865877111565510.1137/02200530733.68034
– reference: Björklund, A., Dell, H., Husfeldt, T.: The parity of set systems under random restrictions with applications to exponential time problems. In: Automata, Languages, and Programming—42nd International Colloquium, ICALP 2015, Kyoto, Japan, 6–10 July, 2015, Proceedings, Part I, pp. 231–242 (2015). https://doi.org/10.1007/978-3-662-47672-7_19
– reference: FlumJGroheMThe parameterized complexity of counting problemsSIAM J. Comput.2004334892922206533810.1137/S00975397034272031105.68042
– reference: ChenJChorBFellowsMHuangXJuedesDWKanjIAXiaGTight lower bounds for certain parameterized NP-hard problemsInf. Comput.20052012216231216571610.1016/j.ic.2005.05.0011161.68476
– reference: WeirAJThe Sylow subgroups of the symmetric groupsProc. Amer. Math. Soc.195565345417214210.2307/20334250065.25602
– reference: Williams, V.V., Wang, J.R., Williams, R.R., Yu, H.: Finding four-node subgraphs in triangle time. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 January, 2015, pp. 1671–1680 (2015). https://doi.org/10.1137/1.9781611973730.111
– reference: Biggs, N.: Algebraic graph theory, 2nd (edn.). Cambridge Mathematical Library. Cambridge University Press, Cambridge (1993). https://doi.org/10.1017/CBO9780511608704
– reference: Roth, M., Schmitt, J.: Counting induced subgraphs: A topological approach to #W[1]-hardness. In: 13th International Symposium on Parameterized and Exact Computation, IPEC 2018, 20–24 August, 2018, Helsinki, Finland, pp. 24:1–24:14 (2018). https://doi.org/10.4230/LIPIcs.IPEC.2018.24
– reference: Abhyankar, S.S.: Lectures on algebra, vol. I. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). https://doi.org/10.1142/9789812773449
– reference: DalmauVJonssonPThe complexity of counting homomorphisms seen from the other sideTheor. Comput. Sci.20043291–3315323210365510.1016/j.tcs.2004.08.0081086.68054
– reference: ChenJHuangXKanjIAXiaGStrong computational lower bounds via parameterized complexityJ. Comput. Syst. Sci.200672813461367227341210.1016/j.jcss.2006.04.0071119.68092
– reference: KahnJSaksMESturtevantDA topological approach to evasivenessCombinatorica19844429730677989010.1007/BF025791400577.05061
– reference: Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Computer Science. An EATCS Series. Springer (2006). https://doi.org/10.1007/3-540-29953-X
– reference: Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency matrices. Theoret. Comput. Sci. 3(3), 371–384 (1976/77). https://doi.org/10.1016/0304-3975(76)90053-0
– reference: MillerCAEvasiveness of graph properties and topological fixed-point theoremsFound. Trends Theor. Comput. Sci.201374337415305561410.1561/04000000551278.68019
– reference: Jerrum, M., Meeks, K.: Some hard families of parameterized counting problems. TOCT 7(3), 11:1–11:18 (2015). https://doi.org/10.1145/2786017
– reference: Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June, 2017, pp. 210–223 (2017). https://doi.org/10.1145/3055399.3055502
– reference: Lovász, L.: Large networks and graph limits, Colloquium Publications, vol. 60. American Mathematical Society (2012). http://www.ams.org/bookstore-getitem/item=COLL-60
– reference: ValiantLGThe complexity of computing the permanentTheor. Comput. Sci.1979818920152620310.1016/0304-3975(79)90044-60415.68008
– reference: JerrumMMeeksKThe parameterised complexity of counting connected subgraphs and graph motifsJ. Comput. Syst. Sci.2015814702716330595710.1016/j.jcss.2014.11.0151320.68101
– volume: 8
  start-page: 189
  year: 1979
  ident: 894_CR24
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(79)90044-6
– volume: 6
  start-page: 534
  year: 1955
  ident: 894_CR25
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.2307/2033425
– volume: 198
  start-page: 170
  year: 2016
  ident: 894_CR19
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2015.06.019
– volume: 17
  start-page: 449
  year: 1965
  ident: 894_CR10
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1965-045-4
– ident: 894_CR1
  doi: 10.1142/9789812773449
– ident: 894_CR17
  doi: 10.1090/coll/060
– volume: 4
  start-page: 297
  issue: 4
  year: 1984
  ident: 894_CR16
  publication-title: Combinatorica
  doi: 10.1007/BF02579140
– ident: 894_CR4
  doi: 10.1145/2902251.2902279
– volume: 329
  start-page: 315
  issue: 1–3
  year: 2004
  ident: 894_CR9
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2004.08.008
– ident: 894_CR26
  doi: 10.1137/1.9781611973730.111
– ident: 894_CR14
  doi: 10.1145/2786017
– volume: 201
  start-page: 216
  issue: 2
  year: 2005
  ident: 894_CR5
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2005.05.001
– ident: 894_CR3
  doi: 10.1007/978-3-662-47672-7_19
– ident: 894_CR12
  doi: 10.1007/3-540-29953-X
– ident: 894_CR8
  doi: 10.1145/3055399.3055502
– volume: 138
  start-page: 147
  issue: 1–3
  year: 2006
  ident: 894_CR18
  publication-title: Ann. Pure Appl. Logic
  doi: 10.1016/j.apal.2005.06.010
– ident: 894_CR22
  doi: 10.4230/LIPIcs.IPEC.2018.24
– ident: 894_CR7
– volume: 33
  start-page: 892
  issue: 4
  year: 2004
  ident: 894_CR11
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539703427203
– volume: 20
  start-page: 865
  issue: 5
  year: 1991
  ident: 894_CR23
  publication-title: SIAM J. Comput.
  doi: 10.1137/0220053
– ident: 894_CR21
  doi: 10.1016/0304-3975(76)90053-0
– volume: 72
  start-page: 1346
  issue: 8
  year: 2006
  ident: 894_CR6
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2006.04.007
– volume: 37
  start-page: 965
  issue: 5
  year: 2017
  ident: 894_CR15
  publication-title: Combinatorica
  doi: 10.1007/s00493-016-3338-5
– ident: 894_CR2
  doi: 10.1017/CBO9780511608704
– volume: 81
  start-page: 702
  issue: 4
  year: 2015
  ident: 894_CR13
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2014.11.015
– volume: 7
  start-page: 337
  issue: 4
  year: 2013
  ident: 894_CR20
  publication-title: Found. Trends Theor. Comput. Sci.
  doi: 10.1561/0400000055
SSID ssj0012796
Score 2.4206161
Snippet We study the problem # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ . It is shown that, given any...
We study the problem $$\#\textsc {IndSub}(\varPhi )$$ # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property...
We study the problem #INDSUB(Φ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ. It is shown that, given any graph...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 379
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graph theory
Hardness
Mathematics of Computing
Theory of Computation
Title Counting Induced Subgraphs: An Algebraic Approach to #W[1]-Hardness
URI https://link.springer.com/article/10.1007/s00453-021-00894-9
https://www.proquest.com/docview/2629081640
Volume 84
WOSCitedRecordID wos000728240000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-uCL8xOnUwL6poG2ydrEtzIcPg3xcyBS2ksrg7HJWv37TWLaoaigz02OcMl9pL_c_QBOcp0yoI8R7THuUc6QU8kwpSLgmMkiFZh7lmwiGg7FaCSvXFFYWb92ryFJ66mbYjeTfRjMUV9_PSG1zGVY0eFOGMKG65v7BjsIIsvKZXjnKdcB2pXKfC_jczha5JhfYFEbbQbt_61zA9Zddknij-OwCUv5dAvaNXMDcYa8Df2-o4gghroDc0W0A7G9q8tzEk9JPHk2gPIYSex6jpNqRo4fHv0narB-4x934G5wcdu_pI5OgSILWUVzxgoZIUaKmx-1GeNMKPR7mUThZQUW2gCVLDzTcV7lYRqoyNh_mHp6HqqM7UJrOpvme0D8AiOdCAgVSsnNrUthoXxf6YDLUwx5B_xaqwm6XuOG8mKSNF2SrZYSraXEaimRHTht5rx8dNr4dXS33qzEWV2ZBGEgDZEI9zpwVm_O4vPP0vb_NvwA1gJTBWEfb3ehVc1f80NYxbdqXM6P7Gl8Bza41oY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1IC-aaBtsrbxbQzHxDlEpw5ESntpZTA22ap_v0mWbigq6HOTI1xyH-nlfj-Ak1SlDOhiQGuMO5Qz5FQwjGnocUxEFoeYOoZsIuh0wl5P3NimsEnx2r0oSRpPPWt209mHrjmq668TCiVzEZa4ilgaMf_27mFWO_ACw8qleecpVwHatsp8L-NzOJrnmF_KoibaNMv_W-c6rNnsktSnx2EDFtLhJpQL5gZiDXkLGg1LEUE0dQemkigHYrCrJ-ekPiT1wYsuKPeR1C3mOMlH5PjxyX2mutav_eM23Dcvuo0WtXQKFJnPcpoylokAMZBc_6hNGGehRLeWCAydJMNMGaAUmaMR52Xqx54MtP37saPmoUzYDpSGo2G6C8TNMFCJQCh9Ibi-dUnMpOtKFXB5jD6vgFtoNUKLNa4pLwbRDCXZaClSWoqMliJRgdPZnNcp0savo6vFZkXW6iaR53tCE4lwpwJnxebMP_8sbe9vw49gpdW9bkfty87VPqx6uiPCPOSuQikfv6UHsIzveX8yPjQn8wNOS9lq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS8MwED98IX5xPnE-A_pNg22TtY3fxnQoyhj4BJHSXloZjCpb9e83l7XzgQri5yYhXJJ79O5-P4C91LgM6GLAG0I6XAqUXAmMeehJTFQWh5g6lmwi6HTCuzvV_dDFb6vdq5TkqKeBUJry4vBZZ4fjxjfyRCj_aEJhJ1Rm_UmYllRIT_H65c04j-AFlqGLOOi5NMa6bJv5fo3Ppund3_ySIrWWp137_54XYL70OllzdE0WYSLNl6BWMTqw8oEvQ6tVUkcwovTAVDOjWCym9fCINXPW7D9SormHrFlikbPiie3e3rsPnGoASG-uwHX75Kp1ykuaBY7CFwVPhchUgBhoST9wEyFFqNFtJApDJ8kwMw9Tq8whJHqd-rGnA9ILfuyYeagTsQpT-VOergFzMwyMgxBqXylJ0ZjGTLuuNoZYxujLOriVhCMsMciJCqMfjdGTrZQiI6XISilSddgfz3keIXD8OnqzOriofI3DyPM9RQQj0qnDQXVQ759_Xm39b8N3YLZ73I4uzjrnGzDnUaOEre_ehKli8JJuwQy-Fr3hYNte0jdGCeJO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counting+Induced+Subgraphs%3A+An+Algebraic+Approach+to+%23W%5B1%5D-Hardness&rft.jtitle=Algorithmica&rft.au=D%C3%B6rfler%2C+Julian&rft.au=Roth%2C+Marc&rft.au=Schmitt%2C+Johannes&rft.au=Wellnitz%2C+Philip&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=84&rft.issue=2&rft.spage=379&rft.epage=404&rft_id=info:doi/10.1007%2Fs00453-021-00894-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon