Counting Induced Subgraphs: An Algebraic Approach to #W[1]-Hardness
We study the problem # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ . It is shown that, given any graph property Φ that distinguishes independent sets from bicliques, # I N D S U B ( Φ ) is hard for the class # W [ 1 ] , i.e., the parameteriz...
Gespeichert in:
| Veröffentlicht in: | Algorithmica Jg. 84; H. 2; S. 379 - 404 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-4617, 1432-0541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We study the problem
#
I
N
D
S
U
B
(
Φ
)
of counting all induced subgraphs of size
k
in a graph
G
that satisfy the property
Φ
. It is shown that, given
any
graph property
Φ
that distinguishes independent sets from bicliques,
#
I
N
D
S
U
B
(
Φ
)
is hard for the class
#
W
[
1
]
, i.e., the parameterized counting equivalent of
N
P
. Under additional suitable density conditions on
Φ
, satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen
#
W
[
1
]
-hardness by establishing that
#
I
N
D
S
U
B
(
Φ
)
cannot be solved in time
f
(
k
)
·
n
o
(
k
)
for any computable function
f
, unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph
G
is restricted to be bipartite and counting is done modulo a fixed prime. |
|---|---|
| AbstractList | We study the problem
$$\#\textsc {IndSub}(\varPhi )$$
#
I
N
D
S
U
B
(
Φ
)
of counting all induced subgraphs of size
k
in a graph
G
that satisfy the property
$$\varPhi $$
Φ
. It is shown that, given
any
graph property
$$\varPhi $$
Φ
that distinguishes independent sets from bicliques,
$$\#\textsc {IndSub}(\varPhi )$$
#
I
N
D
S
U
B
(
Φ
)
is hard for the class
$$\#\mathsf {W[1]}$$
#
W
[
1
]
, i.e., the parameterized counting equivalent of
$${{\mathsf {N}}}{{\mathsf {P}}}$$
N
P
. Under additional suitable density conditions on
$$\varPhi $$
Φ
, satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen
$$\#\mathsf {W[1]}$$
#
W
[
1
]
-hardness by establishing that
$$\#\textsc {IndSub}(\varPhi )$$
#
I
N
D
S
U
B
(
Φ
)
cannot be solved in time
$$f(k)\cdot n^{o(k)}$$
f
(
k
)
·
n
o
(
k
)
for any computable function
f
, unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph
G
is restricted to be bipartite and counting is done modulo a fixed prime. We study the problem #INDSUB(Φ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ. It is shown that, given any graph property Φ that distinguishes independent sets from bicliques, #INDSUB(Φ) is hard for the class #W[1], i.e., the parameterized counting equivalent of NP. Under additional suitable density conditions on Φ, satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen #W[1]-hardness by establishing that #INDSUB(Φ) cannot be solved in time f(k)·no(k) for any computable function f, unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph G is restricted to be bipartite and counting is done modulo a fixed prime. We study the problem # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ . It is shown that, given any graph property Φ that distinguishes independent sets from bicliques, # I N D S U B ( Φ ) is hard for the class # W [ 1 ] , i.e., the parameterized counting equivalent of N P . Under additional suitable density conditions on Φ , satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen # W [ 1 ] -hardness by establishing that # I N D S U B ( Φ ) cannot be solved in time f ( k ) · n o ( k ) for any computable function f , unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph G is restricted to be bipartite and counting is done modulo a fixed prime. |
| Author | Dörfler, Julian Schmitt, Johannes Roth, Marc Wellnitz, Philip |
| Author_xml | – sequence: 1 givenname: Julian surname: Dörfler fullname: Dörfler, Julian organization: Graduate School of Computer Science, Saarland Informatics Campus – sequence: 2 givenname: Marc orcidid: 0000-0003-3159-9418 surname: Roth fullname: Roth, Marc email: marc.roth@cs.ox.ac.uk organization: Department of Computer Science and Merton College, University of Oxford, Cluster of Excellence (MMCI), Saarland Informatics Campus – sequence: 3 givenname: Johannes surname: Schmitt fullname: Schmitt, Johannes organization: ETH Zurich, Mathematical Institute, University of Bonn – sequence: 4 givenname: Philip surname: Wellnitz fullname: Wellnitz, Philip organization: Max Planck Institute for Informatics, Saarland Informatics Campus |
| BookMark | eNp9kEFLwzAUx4NMcJt-AU-FnaMvTZY03spQNxh4UPEgEtIk7TpmWpP24Le3WkHwsNO7_H_v_d9vhia-8Q6hSwJXBEBcRwC2pBhSggEyybA8QVPCaIphycgETYGIDDNOxBmaxbgHIKmQfIpWq6b3Xe2rZONtb5xNHvuiCrrdxZsk90l-qFwRdG2SvG1Do80u6Zpk8fJK3vBaB-tdjOfotNSH6C5-5xw9390-rdZ4-3C_WeVbbCinHXaUllIYIyyTZSkKymhmDVkW0mRQlKYE4FaWIBnn1nGdWgGCAtcwcMYWdI4W496hyEfvYqf2TR_8cFKlPJWQEc5gSGVjyoQmxuBKZepOd3Xju-GPgyKgvpWpUZkalKkfZUoOaPoPbUP9rsPncYiOUBzCvnLhr9UR6guCwn7z |
| CitedBy_id | crossref_primary_10_1137_22M1535668 crossref_primary_10_1007_s00453_023_01178_0 crossref_primary_10_1137_22M1512211 |
| Cites_doi | 10.1016/0304-3975(79)90044-6 10.2307/2033425 10.1016/j.dam.2015.06.019 10.4153/CJM-1965-045-4 10.1142/9789812773449 10.1090/coll/060 10.1007/BF02579140 10.1145/2902251.2902279 10.1016/j.tcs.2004.08.008 10.1137/1.9781611973730.111 10.1145/2786017 10.1016/j.ic.2005.05.001 10.1007/978-3-662-47672-7_19 10.1007/3-540-29953-X 10.1145/3055399.3055502 10.1016/j.apal.2005.06.010 10.4230/LIPIcs.IPEC.2018.24 10.1137/S0097539703427203 10.1137/0220053 10.1016/0304-3975(76)90053-0 10.1016/j.jcss.2006.04.007 10.1007/s00493-016-3338-5 10.1017/CBO9780511608704 10.1016/j.jcss.2014.11.015 10.1561/0400000055 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION JQ2 |
| DOI | 10.1007/s00453-021-00894-9 |
| DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 404 |
| ExternalDocumentID | 10_1007_s00453_021_00894_9 |
| GrantInformation_xml | – fundername: H2020 European Research Council grantid: 786580 funderid: http://dx.doi.org/10.13039/100010663 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c363t-e33f97cc7d49ff7b3438dc15b9c80bfcf006d9f09466de6a2d707306a03f9cdb3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728240000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Sun Nov 09 08:21:33 EST 2025 Sat Nov 29 02:20:32 EST 2025 Tue Nov 18 21:43:31 EST 2025 Fri Feb 21 02:47:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Counting complexity Edge-transitive graphs Graph homomorphisms Induced subgraphs Parameterized complexity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-e33f97cc7d49ff7b3438dc15b9c80bfcf006d9f09466de6a2d707306a03f9cdb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3159-9418 |
| OpenAccessLink | https://link.springer.com/10.1007/s00453-021-00894-9 |
| PQID | 2629081640 |
| PQPubID | 2043795 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2629081640 crossref_citationtrail_10_1007_s00453_021_00894_9 crossref_primary_10_1007_s00453_021_00894_9 springer_journals_10_1007_s00453_021_00894_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | FlumJGroheMThe parameterized complexity of counting problemsSIAM J. Comput.2004334892922206533810.1137/S00975397034272031105.68042 Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June, 2017, pp. 210–223 (2017). https://doi.org/10.1145/3055399.3055502 Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Computer Science. An EATCS Series. Springer (2006). https://doi.org/10.1007/3-540-29953-X ChenJChorBFellowsMHuangXJuedesDWKanjIAXiaGTight lower bounds for certain parameterized NP-hard problemsInf. Comput.20052012216231216571610.1016/j.ic.2005.05.0011161.68476 Williams, V.V., Wang, J.R., Williams, R.R., Yu, H.: Finding four-node subgraphs in triangle time. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 January, 2015, pp. 1671–1680 (2015). https://doi.org/10.1137/1.9781611973730.111 DalmauVJonssonPThe complexity of counting homomorphisms seen from the other sideTheor. Comput. Sci.20043291–3315323210365510.1016/j.tcs.2004.08.0081086.68054 Björklund, A., Dell, H., Husfeldt, T.: The parity of set systems under random restrictions with applications to exponential time problems. In: Automata, Languages, and Programming—42nd International Colloquium, ICALP 2015, Kyoto, Japan, 6–10 July, 2015, Proceedings, Part I, pp. 231–242 (2015). https://doi.org/10.1007/978-3-662-47672-7_19 MillerCAEvasiveness of graph properties and topological fixed-point theoremsFound. Trends Theor. Comput. Sci.201374337415305561410.1561/04000000551278.68019 McCartinCParameterized counting problemsAnn. Pure Appl. Logic20061381–3147182218381210.1016/j.apal.2005.06.0101133.68027 Abhyankar, S.S.: Lectures on algebra, vol. I. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). https://doi.org/10.1142/9789812773449 Chen, H., Mengel, S.: Counting answers to existential positive queries: A complexity classification. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26–July 01, 2016, pp. 315–326 (2016). https://doi.org/10.1145/2902251.2902279 JerrumMMeeksKThe parameterised complexity of counting connected subgraphs and graph motifsJ. Comput. Syst. Sci.2015814702716330595710.1016/j.jcss.2014.11.0151320.68101 Jerrum, M., Meeks, K.: Some hard families of parameterized counting problems. TOCT 7(3), 11:1–11:18 (2015). https://doi.org/10.1145/2786017 Biggs, N.: Algebraic graph theory, 2nd (edn.). Cambridge Mathematical Library. Cambridge University Press, Cambridge (1993). https://doi.org/10.1017/CBO9780511608704 ChenJHuangXKanjIAXiaGStrong computational lower bounds via parameterized complexityJ. Comput. Syst. Sci.200672813461367227341210.1016/j.jcss.2006.04.0071119.68092 MeeksKThe challenges of unbounded treewidth in parameterised subgraph counting problemsDiscrete Appl. Math.2016198170194342689010.1016/j.dam.2015.06.0191327.05244 Curticapean, R.: The simple, little and slow things count: On parameterized counting complexity. Ph.D. thesis, Saarland University (2015). http://scidok.sulb.uni-saarland.de/volltexte/2015/6217 JerrumMMeeksKThe parameterised complexity of counting even and odd induced subgraphsCombinatorica2017375965990373737610.1007/s00493-016-3338-51413.68063 TodaSPP is as hard as the polynomial-time hierarchySIAM J. Comput.1991205865877111565510.1137/02200530733.68034 Lovász, L.: Large networks and graph limits, Colloquium Publications, vol. 60. American Mathematical Society (2012). http://www.ams.org/bookstore-getitem/item=COLL-60 Roth, M., Schmitt, J.: Counting induced subgraphs: A topological approach to #W[1]-hardness. In: 13th International Symposium on Parameterized and Exact Computation, IPEC 2018, 20–24 August, 2018, Helsinki, Finland, pp. 24:1–24:14 (2018). https://doi.org/10.4230/LIPIcs.IPEC.2018.24 Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency matrices. Theoret. Comput. Sci. 3(3), 371–384 (1976/77). https://doi.org/10.1016/0304-3975(76)90053-0 WeirAJThe Sylow subgroups of the symmetric groupsProc. Amer. Math. Soc.195565345417214210.2307/20334250065.25602 ValiantLGThe complexity of computing the permanentTheor. Comput. Sci.1979818920152620310.1016/0304-3975(79)90044-60415.68008 EdmondsJPaths, trees, and flowersCan. J. Math.19651744946717790710.4153/CJM-1965-045-40132.20903 KahnJSaksMESturtevantDA topological approach to evasivenessCombinatorica19844429730677989010.1007/BF025791400577.05061 K Meeks (894_CR19) 2016; 198 894_CR22 894_CR21 LG Valiant (894_CR24) 1979; 8 894_CR26 J Edmonds (894_CR10) 1965; 17 CA Miller (894_CR20) 2013; 7 V Dalmau (894_CR9) 2004; 329 894_CR3 894_CR4 894_CR7 894_CR8 M Jerrum (894_CR13) 2015; 81 894_CR17 894_CR1 894_CR2 S Toda (894_CR23) 1991; 20 AJ Weir (894_CR25) 1955; 6 J Chen (894_CR5) 2005; 201 894_CR14 894_CR12 J Flum (894_CR11) 2004; 33 J Kahn (894_CR16) 1984; 4 M Jerrum (894_CR15) 2017; 37 J Chen (894_CR6) 2006; 72 C McCartin (894_CR18) 2006; 138 |
| References_xml | – reference: McCartinCParameterized counting problemsAnn. Pure Appl. Logic20061381–3147182218381210.1016/j.apal.2005.06.0101133.68027 – reference: MeeksKThe challenges of unbounded treewidth in parameterised subgraph counting problemsDiscrete Appl. Math.2016198170194342689010.1016/j.dam.2015.06.0191327.05244 – reference: Curticapean, R.: The simple, little and slow things count: On parameterized counting complexity. Ph.D. thesis, Saarland University (2015). http://scidok.sulb.uni-saarland.de/volltexte/2015/6217/ – reference: Chen, H., Mengel, S.: Counting answers to existential positive queries: A complexity classification. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26–July 01, 2016, pp. 315–326 (2016). https://doi.org/10.1145/2902251.2902279 – reference: EdmondsJPaths, trees, and flowersCan. J. Math.19651744946717790710.4153/CJM-1965-045-40132.20903 – reference: JerrumMMeeksKThe parameterised complexity of counting even and odd induced subgraphsCombinatorica2017375965990373737610.1007/s00493-016-3338-51413.68063 – reference: TodaSPP is as hard as the polynomial-time hierarchySIAM J. Comput.1991205865877111565510.1137/02200530733.68034 – reference: Björklund, A., Dell, H., Husfeldt, T.: The parity of set systems under random restrictions with applications to exponential time problems. In: Automata, Languages, and Programming—42nd International Colloquium, ICALP 2015, Kyoto, Japan, 6–10 July, 2015, Proceedings, Part I, pp. 231–242 (2015). https://doi.org/10.1007/978-3-662-47672-7_19 – reference: FlumJGroheMThe parameterized complexity of counting problemsSIAM J. Comput.2004334892922206533810.1137/S00975397034272031105.68042 – reference: ChenJChorBFellowsMHuangXJuedesDWKanjIAXiaGTight lower bounds for certain parameterized NP-hard problemsInf. Comput.20052012216231216571610.1016/j.ic.2005.05.0011161.68476 – reference: WeirAJThe Sylow subgroups of the symmetric groupsProc. Amer. Math. Soc.195565345417214210.2307/20334250065.25602 – reference: Williams, V.V., Wang, J.R., Williams, R.R., Yu, H.: Finding four-node subgraphs in triangle time. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 January, 2015, pp. 1671–1680 (2015). https://doi.org/10.1137/1.9781611973730.111 – reference: Biggs, N.: Algebraic graph theory, 2nd (edn.). Cambridge Mathematical Library. Cambridge University Press, Cambridge (1993). https://doi.org/10.1017/CBO9780511608704 – reference: Roth, M., Schmitt, J.: Counting induced subgraphs: A topological approach to #W[1]-hardness. In: 13th International Symposium on Parameterized and Exact Computation, IPEC 2018, 20–24 August, 2018, Helsinki, Finland, pp. 24:1–24:14 (2018). https://doi.org/10.4230/LIPIcs.IPEC.2018.24 – reference: Abhyankar, S.S.: Lectures on algebra, vol. I. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). https://doi.org/10.1142/9789812773449 – reference: DalmauVJonssonPThe complexity of counting homomorphisms seen from the other sideTheor. Comput. Sci.20043291–3315323210365510.1016/j.tcs.2004.08.0081086.68054 – reference: ChenJHuangXKanjIAXiaGStrong computational lower bounds via parameterized complexityJ. Comput. Syst. Sci.200672813461367227341210.1016/j.jcss.2006.04.0071119.68092 – reference: KahnJSaksMESturtevantDA topological approach to evasivenessCombinatorica19844429730677989010.1007/BF025791400577.05061 – reference: Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Computer Science. An EATCS Series. Springer (2006). https://doi.org/10.1007/3-540-29953-X – reference: Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency matrices. Theoret. Comput. Sci. 3(3), 371–384 (1976/77). https://doi.org/10.1016/0304-3975(76)90053-0 – reference: MillerCAEvasiveness of graph properties and topological fixed-point theoremsFound. Trends Theor. Comput. Sci.201374337415305561410.1561/04000000551278.68019 – reference: Jerrum, M., Meeks, K.: Some hard families of parameterized counting problems. TOCT 7(3), 11:1–11:18 (2015). https://doi.org/10.1145/2786017 – reference: Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June, 2017, pp. 210–223 (2017). https://doi.org/10.1145/3055399.3055502 – reference: Lovász, L.: Large networks and graph limits, Colloquium Publications, vol. 60. American Mathematical Society (2012). http://www.ams.org/bookstore-getitem/item=COLL-60 – reference: ValiantLGThe complexity of computing the permanentTheor. Comput. Sci.1979818920152620310.1016/0304-3975(79)90044-60415.68008 – reference: JerrumMMeeksKThe parameterised complexity of counting connected subgraphs and graph motifsJ. Comput. Syst. Sci.2015814702716330595710.1016/j.jcss.2014.11.0151320.68101 – volume: 8 start-page: 189 year: 1979 ident: 894_CR24 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(79)90044-6 – volume: 6 start-page: 534 year: 1955 ident: 894_CR25 publication-title: Proc. Amer. Math. Soc. doi: 10.2307/2033425 – volume: 198 start-page: 170 year: 2016 ident: 894_CR19 publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2015.06.019 – volume: 17 start-page: 449 year: 1965 ident: 894_CR10 publication-title: Can. J. Math. doi: 10.4153/CJM-1965-045-4 – ident: 894_CR1 doi: 10.1142/9789812773449 – ident: 894_CR17 doi: 10.1090/coll/060 – volume: 4 start-page: 297 issue: 4 year: 1984 ident: 894_CR16 publication-title: Combinatorica doi: 10.1007/BF02579140 – ident: 894_CR4 doi: 10.1145/2902251.2902279 – volume: 329 start-page: 315 issue: 1–3 year: 2004 ident: 894_CR9 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2004.08.008 – ident: 894_CR26 doi: 10.1137/1.9781611973730.111 – ident: 894_CR14 doi: 10.1145/2786017 – volume: 201 start-page: 216 issue: 2 year: 2005 ident: 894_CR5 publication-title: Inf. Comput. doi: 10.1016/j.ic.2005.05.001 – ident: 894_CR3 doi: 10.1007/978-3-662-47672-7_19 – ident: 894_CR12 doi: 10.1007/3-540-29953-X – ident: 894_CR8 doi: 10.1145/3055399.3055502 – volume: 138 start-page: 147 issue: 1–3 year: 2006 ident: 894_CR18 publication-title: Ann. Pure Appl. Logic doi: 10.1016/j.apal.2005.06.010 – ident: 894_CR22 doi: 10.4230/LIPIcs.IPEC.2018.24 – ident: 894_CR7 – volume: 33 start-page: 892 issue: 4 year: 2004 ident: 894_CR11 publication-title: SIAM J. Comput. doi: 10.1137/S0097539703427203 – volume: 20 start-page: 865 issue: 5 year: 1991 ident: 894_CR23 publication-title: SIAM J. Comput. doi: 10.1137/0220053 – ident: 894_CR21 doi: 10.1016/0304-3975(76)90053-0 – volume: 72 start-page: 1346 issue: 8 year: 2006 ident: 894_CR6 publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2006.04.007 – volume: 37 start-page: 965 issue: 5 year: 2017 ident: 894_CR15 publication-title: Combinatorica doi: 10.1007/s00493-016-3338-5 – ident: 894_CR2 doi: 10.1017/CBO9780511608704 – volume: 81 start-page: 702 issue: 4 year: 2015 ident: 894_CR13 publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2014.11.015 – volume: 7 start-page: 337 issue: 4 year: 2013 ident: 894_CR20 publication-title: Found. Trends Theor. Comput. Sci. doi: 10.1561/0400000055 |
| SSID | ssj0012796 |
| Score | 2.4206161 |
| Snippet | We study the problem
#
I
N
D
S
U
B
(
Φ
)
of counting all induced subgraphs of size
k
in a graph
G
that satisfy the property
Φ
. It is shown that, given
any... We study the problem $$\#\textsc {IndSub}(\varPhi )$$ # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property... We study the problem #INDSUB(Φ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ. It is shown that, given any graph... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 379 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Graph theory Hardness Mathematics of Computing Theory of Computation |
| Title | Counting Induced Subgraphs: An Algebraic Approach to #W[1]-Hardness |
| URI | https://link.springer.com/article/10.1007/s00453-021-00894-9 https://www.proquest.com/docview/2629081640 |
| Volume | 84 |
| WOSCitedRecordID | wos000728240000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Link Contemporary 1997-Present customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-uCL8xOnUwL6poG2ydrEtzIcPg3xcyBS2ksrg7HJWv37TWLaoaigz02OcMl9pL_c_QBOcp0yoI8R7THuUc6QU8kwpSLgmMkiFZh7lmwiGg7FaCSvXFFYWb92ryFJ66mbYjeTfRjMUV9_PSG1zGVY0eFOGMKG65v7BjsIIsvKZXjnKdcB2pXKfC_jczha5JhfYFEbbQbt_61zA9Zddknij-OwCUv5dAvaNXMDcYa8Df2-o4gghroDc0W0A7G9q8tzEk9JPHk2gPIYSex6jpNqRo4fHv0narB-4x934G5wcdu_pI5OgSILWUVzxgoZIUaKmx-1GeNMKPR7mUThZQUW2gCVLDzTcV7lYRqoyNh_mHp6HqqM7UJrOpvme0D8AiOdCAgVSsnNrUthoXxf6YDLUwx5B_xaqwm6XuOG8mKSNF2SrZYSraXEaimRHTht5rx8dNr4dXS33qzEWV2ZBGEgDZEI9zpwVm_O4vPP0vb_NvwA1gJTBWEfb3ehVc1f80NYxbdqXM6P7Gl8Bza41oY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1IC-aaBtsrbxbQzHxDlEpw5ESntpZTA22ap_v0mWbigq6HOTI1xyH-nlfj-Ak1SlDOhiQGuMO5Qz5FQwjGnocUxEFoeYOoZsIuh0wl5P3NimsEnx2r0oSRpPPWt209mHrjmq668TCiVzEZa4ilgaMf_27mFWO_ACw8qleecpVwHatsp8L-NzOJrnmF_KoibaNMv_W-c6rNnsktSnx2EDFtLhJpQL5gZiDXkLGg1LEUE0dQemkigHYrCrJ-ekPiT1wYsuKPeR1C3mOMlH5PjxyX2mutav_eM23Dcvuo0WtXQKFJnPcpoylokAMZBc_6hNGGehRLeWCAydJMNMGaAUmaMR52Xqx54MtP37saPmoUzYDpSGo2G6C8TNMFCJQCh9Ibi-dUnMpOtKFXB5jD6vgFtoNUKLNa4pLwbRDCXZaClSWoqMliJRgdPZnNcp0savo6vFZkXW6iaR53tCE4lwpwJnxebMP_8sbe9vw49gpdW9bkfty87VPqx6uiPCPOSuQikfv6UHsIzveX8yPjQn8wNOS9lq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS8MwED98IX5xPnE-A_pNg22TtY3fxnQoyhj4BJHSXloZjCpb9e83l7XzgQri5yYhXJJ79O5-P4C91LgM6GLAG0I6XAqUXAmMeehJTFQWh5g6lmwi6HTCuzvV_dDFb6vdq5TkqKeBUJry4vBZZ4fjxjfyRCj_aEJhJ1Rm_UmYllRIT_H65c04j-AFlqGLOOi5NMa6bJv5fo3Ppund3_ySIrWWp137_54XYL70OllzdE0WYSLNl6BWMTqw8oEvQ6tVUkcwovTAVDOjWCym9fCINXPW7D9SormHrFlikbPiie3e3rsPnGoASG-uwHX75Kp1ykuaBY7CFwVPhchUgBhoST9wEyFFqNFtJApDJ8kwMw9Tq8whJHqd-rGnA9ILfuyYeagTsQpT-VOergFzMwyMgxBqXylJ0ZjGTLuuNoZYxujLOriVhCMsMciJCqMfjdGTrZQiI6XISilSddgfz3keIXD8OnqzOriofI3DyPM9RQQj0qnDQXVQ759_Xm39b8N3YLZ73I4uzjrnGzDnUaOEre_ehKli8JJuwQy-Fr3hYNte0jdGCeJO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counting+Induced+Subgraphs%3A+An+Algebraic+Approach+to+%23W%5B1%5D-Hardness&rft.jtitle=Algorithmica&rft.au=D%C3%B6rfler%2C+Julian&rft.au=Roth%2C+Marc&rft.au=Schmitt%2C+Johannes&rft.au=Wellnitz%2C+Philip&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=84&rft.issue=2&rft.spage=379&rft.epage=404&rft_id=info:doi/10.1007%2Fs00453-021-00894-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |